Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.492
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cytotherapy ; 26(11): 1331-1340, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39033444

RESUMO

BACKGROUND AIMS: Hu8F4 is a T-cell receptor-like antibody with high affinity for the leukemia-associated antigen PR1/HLA-A2 epitope. Adapted into a chimeric antigen receptor (CAR) format, Hu8F4-CAR is composed of the Hu8F4 single-chain variable fragment, the human IgG1 CH2CH3 extracellular spacer domain, a human CD28 costimulatory domain and the human CD3ζ signaling domain. We have demonstrated high efficacy of Hu8F4-CAR-T cells against PR1/HLA-A2-expressing cell lines and leukemic blasts from patients with acute myeloid leukemia in vitro. Previous studies have shown that modification of the Fc domains of IgG4 CH2CH3 spacer regions can eliminate activation-induced cell death and off-target killing mediated by mouse Fc gamma receptor-expressing cells. METHODS: We generated Hu8F4-CAR(PQ) with mutated Fc receptor binding sites on the CH2 domain of Hu8F4-CAR to prevent unwanted interactions with Fc gamma receptor-expressing cells in vivo. RESULTS: The primary human T cells transduced with Hu8F4-CAR(PQ) can specifically lyse HLA-A2+ PR1-expressing leukemia cell lines in vitro. Furthermore, both adult donor-derived and cord blood-derived Hu8F4-CAR(PQ)-T cells are active and can eliminate U937 leukemia cells in NSG mice. CONCLUSIONS: Herein, we demonstrate that modification of the IgG1-based spacer can eliminate Fc receptor binding-induced adverse effects and Hu8F4-CAR(PQ)-T cells can kill leukemia in vivo.


Assuntos
Receptores de Antígenos Quiméricos , Linfócitos T , Humanos , Animais , Camundongos , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Imunoterapia Adotiva/métodos , Antígeno HLA-A2/imunologia , Antígeno HLA-A2/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/imunologia , Linhagem Celular Tumoral , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/imunologia , Mutação/genética , Imunoglobulina G/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/genética , Leucemia/terapia , Leucemia/imunologia , Camundongos Endogâmicos NOD
2.
Vaccine ; 42(22): 126032, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-38964950

RESUMO

For the rational design of epitope-specific vaccines, identifying epitopes that can be processed and presented is essential. As algorithm-based epitope prediction is frequently discordant with actually recognized CD8+ T-cell epitopes, we developed an in vitro CD8 T-cell priming protocol to enable the identification of truly and functionally expressed HLA class I epitopes. The assay was established and validated to identify epitopes presented by hepatitis C virus (HCV)-infected cells. In vitro priming of naïve CD8 T cells was achieved by culturing unfractionated PBMCs in the presence of a specific cocktail of growth factors and cytokines, and next exposing the cells to hepatic cells expressing the NS3 protein of HCV. After a 10-day co-culture, HCV-specific T-cell responses were identified based on IFN-γ ELISpot analysis. For this, the T cells were restimulated with long synthetic peptides (SLPs) spanning the whole NS3 protein sequence allowing the identification of HCV-specificity. We demonstrated that this protocol resulted in the in vitro priming of naïve precursors to antigen-experienced T-cells specific for 11 out of 98 SLPs tested. These 11 SLPs contain 12 different HLA-A*02:01-restricted epitopes, as predicted by a combination of three epitope prediction algorithms. Furthermore, we identified responses against 3 peptides that were not predicted to contain any immunogenic HLA class I epitopes, yet showed HCV-specific responses in vitro. Separation of CD8+ and CD8- T cells from PBMCs primed in vitro showed responses only upon restimulation with short peptides. We established an in vitro method that enables the identification of HLA class I epitopes resulting from cross-presented antigens and that can cross-prime T cells and allows the effective selection of functional immunogenic epitopes, but also less immunogenic ones, for the design of tailored therapeutic vaccines against persistent viral infections and tumor antigens.


Assuntos
Linfócitos T CD8-Positivos , Epitopos de Linfócito T , Hepacivirus , Vacinas contra Hepatite Viral , Proteínas não Estruturais Virais , Linfócitos T CD8-Positivos/imunologia , Humanos , Epitopos de Linfócito T/imunologia , Hepacivirus/imunologia , Hepacivirus/genética , Vacinas contra Hepatite Viral/imunologia , Proteínas não Estruturais Virais/imunologia , Hepatite C/imunologia , Hepatite C/prevenção & controle , ELISPOT/métodos , Antígeno HLA-A2/imunologia , Interferon gama/imunologia , Interferon gama/metabolismo , Proteases Virais , Serina Endopeptidases , Nucleosídeo-Trifosfatase , RNA Helicases DEAD-box
3.
Front Immunol ; 15: 1415102, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39007132

RESUMO

Human regulatory T cells (Treg) suppress other immune cells. Their dysfunction contributes to the pathophysiology of autoimmune diseases, including type 1 diabetes (T1D). Infusion of Tregs is being clinically evaluated as a novel way to prevent or treat T1D. Genetic modification of Tregs, most notably through the introduction of a chimeric antigen receptor (CAR) targeting Tregs to pancreatic islets, may improve their efficacy. We evaluated CAR targeting of human Tregs to monocytes, a human ß cell line and human islet ß cells in vitro. Targeting of HLA-A2-CAR (A2-CAR) bulk Tregs to HLA-A2+ cells resulted in dichotomous cytotoxic killing of human monocytes and islet ß cells. In exploring subsets and mechanisms that may explain this pattern, we found that CD39 expression segregated CAR Treg cytotoxicity. CAR Tregs from individuals with more CD39low/- Tregs and from individuals with genetic polymorphism associated with lower CD39 expression (rs10748643) had more cytotoxicity. Isolated CD39- CAR Tregs had elevated granzyme B expression and cytotoxicity compared to the CD39+ CAR Treg subset. Genetic overexpression of CD39 in CD39low CAR Tregs reduced their cytotoxicity. Importantly, ß cells upregulated protein surface expression of PD-L1 and PD-L2 in response to A2-CAR Tregs. Blockade of PD-L1/PD-L2 increased ß cell death in A2-CAR Treg co-cultures suggesting that the PD-1/PD-L1 pathway is important in protecting islet ß cells in the setting of CAR immunotherapy. In summary, introduction of CAR can enhance biological differences in subsets of Tregs. CD39+ Tregs represent a safer choice for CAR Treg therapies targeting tissues for tolerance induction.


Assuntos
Apirase , Receptores de Antígenos Quiméricos , Linfócitos T Reguladores , Humanos , Apirase/imunologia , Apirase/metabolismo , Linfócitos T Reguladores/imunologia , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Citotoxicidade Imunológica , Ilhotas Pancreáticas/imunologia , Ilhotas Pancreáticas/metabolismo , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/terapia , Antígeno HLA-A2/imunologia , Antígeno HLA-A2/genética , Antígeno HLA-A2/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Células Secretoras de Insulina/imunologia , Células Secretoras de Insulina/metabolismo , Antígenos CD
4.
Front Immunol ; 15: 1398002, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38947322

RESUMO

Background: In the present study we investigated whether peptides derived from the entire SARS-CoV-2 proteome share homology to TAAs (tumor-associated antigens) and cross-reactive CD8+ T cell can be elicited by the BNT162b2 preventive vaccine or the SARS-CoV-2 natural infection. Methods and results: Viral epitopes with high affinity (<100nM) to the HLA-A*02:01 allele were predicted. Shared and variant-specific epitopes were identified. Significant homologies in amino acidic sequence have been found between SARS-CoV-2 peptides and multiple TAAs, mainly associated with breast, liver, melanoma and colon cancers. The molecular mimicry of the viral epitopes and the TAAs was found in all viral proteins, mostly the Orf 1ab and the Spike, which is included in the BNT162b2 vaccine. Predicted structural similarities confirmed the sequence homology and comparable patterns of contact with both HLA and TCR α and ß chains were observed. CD8+ T cell clones cross-reactive with the paired peptides have been found by MHC class l-dextramer staining. Conclusions: Our results show for the first time that several SARS-COV-2 antigens are highly homologous to TAAs and cross-reactive T cells are identified in infected and BNT162b2 preventive vaccinated individuals. The implication would be that the SARS-Cov-2 pandemic could represent a natural preventive immunization for breast, liver, melanoma and colon cancers. In the coming years, real-world evidences will provide the final proof for such immunological experimental evidence. Moreover, such SARS-CoV-2 epitopes can be used to develop "multi-cancer" off-the-shelf preventive/therapeutic vaccine formulations, with higher antigenicity and immunogenicity than over-expressed tumor self-antigens, for the potential valuable benefit of thousands of cancer patients around the World.


Assuntos
Linfócitos T CD8-Positivos , COVID-19 , Reações Cruzadas , Epitopos de Linfócito T , Mimetismo Molecular , SARS-CoV-2 , Humanos , SARS-CoV-2/imunologia , COVID-19/prevenção & controle , COVID-19/imunologia , Mimetismo Molecular/imunologia , Linfócitos T CD8-Positivos/imunologia , Reações Cruzadas/imunologia , Epitopos de Linfócito T/imunologia , Vacina BNT162/imunologia , Antígenos Virais/imunologia , Antígeno HLA-A2/imunologia , Neoplasias/imunologia , Neoplasias/prevenção & controle , Antígenos de Neoplasias/imunologia , Vacinas contra COVID-19/imunologia
6.
Cancer Genomics Proteomics ; 21(4): 414-420, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38944423

RESUMO

BACKGROUND/AIM: Clear cell carcinoma is a prevalent histological type of ovarian cancer in East Asia, particularly in Japan, known for its resistance to chemotherapeutic agents and poor prognosis. ARID1A gene mutations, commonly found in ovarian clear cell carcinoma (OCCC), contribute to its pathogenesis. Recent data revealed that the ARID1A mutation is related to better outcomes of cancer immunotherapy. Thus, this study aimed to investigate the immunotherapy treatment susceptibility of OCCC bearing ARID1A mutations. MATERIALS AND METHODS: Expression of ARID1A was analyzed using western blotting in ovarian cancer cell lines. OCCC cell lines JHOC-9 and RMG-V were engineered to overexpress NY-ESO-1, HLA-A*02:01, and ARID1A. Sensitivity to chemotherapy and T cell receptor-transduced T (TCR-T) cells specific for NY-ESO-1 was assessed in ARID1A-restored cells compared to ARID1A-deficient wild-type cells. RESULTS: JHOC-9 cells and RMG-V cells showed no expression of ARID1A protein. Overexpression of ARID1A in JHOC-9 and RMG-V cells did not impact sensitivity to gemcitabine. While ARID1A overexpression decreased sensitivity to cisplatin in RMG-V cells, it had no such effect in JHOC-9 cells. ARID1A overexpression reduced the reactivity of NY-ESO-1-specific TCR-T cells, as observed by the IFNγ ESLIPOT assay. CONCLUSION: Cancer immunotherapy is an effective approach to target ARID1A-deficient clear cell carcinoma of the ovary.


Assuntos
Adenocarcinoma de Células Claras , Proteínas de Ligação a DNA , Neoplasias Ovarianas , Linfócitos T Citotóxicos , Fatores de Transcrição , Humanos , Feminino , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Adenocarcinoma de Células Claras/patologia , Adenocarcinoma de Células Claras/genética , Adenocarcinoma de Células Claras/imunologia , Adenocarcinoma de Células Claras/metabolismo , Linfócitos T Citotóxicos/imunologia , Linhagem Celular Tumoral , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Antígenos de Neoplasias/imunologia , Antígeno HLA-A2/genética , Antígeno HLA-A2/imunologia , Antígeno HLA-A2/metabolismo , Proteínas de Membrana
7.
J Clin Invest ; 134(11)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38828721

RESUMO

The adoptive transfer of T cell receptor-engineered (TCR-engineered) T cells (ACT) targeting the HLA-A2-restricted cancer-testis epitope NY-ESO-1157-165 (A2/NY) has yielded favorable clinical responses against several cancers. Two approaches to improve ACT are TCR affinity optimization and T cell coengineering to express immunomodulatory molecules that can exploit endogenous immunity. By computational design we previously developed a panel of binding-enhanced A2/NY-TCRs including A97L, which augmented the in vitro function of gene-modified T cells as compared with WT. Here, we demonstrated higher persistence and improved tumor control by A97L-T cells. In order to harness macrophages in tumors, we further coengineered A97L-T cells to secrete a high-affinity signal regulatory protein α (SiRPα) decoy (CV1) that blocks CD47. While CV1-Fc-coengineered A97L-T cells mediated significantly better control of tumor outgrowth and survival in Winn assays, in subcutaneous xenograft models the T cells, coated by CV1-Fc, were depleted. Importantly, there was no phagocytosis of CV1 monomer-coengineered T cells by human macrophages. Moreover, avelumab and cetuximab enhanced macrophage-mediated phagocytosis of tumor cells in vitro in the presence of CV1 and improved tumor control upon coadministration with A97L-T cells. Taken together, our study indicates important clinical promise for harnessing macrophages by combining CV1-coengineered TCR-T cells with targeted antibodies to direct phagocytosis against tumor cells.


Assuntos
Macrófagos , Fagocitose , Receptores Imunológicos , Animais , Humanos , Camundongos , Antígenos de Diferenciação/imunologia , Antígenos de Neoplasias/imunologia , Antígeno CD47/imunologia , Linhagem Celular Tumoral , Antígeno HLA-A2/imunologia , Antígeno HLA-A2/genética , Imunoterapia Adotiva , Macrófagos/imunologia , Macrófagos/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores Imunológicos/imunologia , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genética , Linfócitos T/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto , Masculino , Feminino
8.
Blood Adv ; 8(15): 4113-4124, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-38885482

RESUMO

ABSTRACT: Cytotoxic T lymphocytes (CTLs) destroy virally infected cells and are critical for the elimination of viral infections such as those caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Delayed and dysfunctional adaptive immune responses to SARS-CoV-2 are associated with poor outcomes. Treatment with allogeneic SARS-CoV-2-specific CTLs may enhance cellular immunity in high-risk patients providing a safe, direct mechanism of treatment. Thirty high-risk ambulatory patients with COVID-19 were enrolled in a phase 1 trial assessing the safety of third party, SARS-CoV-2-specific CTLs. Twelve interventional patients, 6 of whom were immunocompromised, matched the HLA-A∗02:01 restriction of the CTLs and received a single infusion of 1 of 4 escalating doses of a product containing 68.5% SARS-CoV-2-specific CD8+ CTLs/total cells. Symptom improvement and resolution in these patients was compared with an observational group of 18 patients lacking HLA-A∗02:01 who could receive standard of care. No dose-limiting toxicities were observed at any dosing level. Nasal swab polymerase chain reaction testing showed ≥88% and >99% viral elimination from baseline in all patients at 4 and 14 days after infusion, respectively. The CTLs did not interfere with the development of endogenous anti-SARS-CoV-2 humoral or cellular responses. T-cell receptor ß analysis showed persistence of donor-derived SARS-CoV-2-specific CTLs through the end of the 6-month follow-up period. Interventional patients consistently reported symptomatic improvement 2 to 3 days after infusion, whereas improvement was more variable in observational patients. SARS-CoV-2-specific CTLs are a potentially feasible cellular therapy for COVID-19 illness. This trial was registered at www.clinicaltrials.gov as #NCT04765449.


Assuntos
COVID-19 , SARS-CoV-2 , Linfócitos T Citotóxicos , Humanos , COVID-19/imunologia , COVID-19/terapia , Linfócitos T Citotóxicos/imunologia , Pessoa de Meia-Idade , Masculino , SARS-CoV-2/imunologia , Feminino , Idoso , Adulto , Estudos de Viabilidade , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Resultado do Tratamento , Antígeno HLA-A2/imunologia
9.
Biomol Biomed ; 24(5): 1424-1434, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-38752985

RESUMO

Kirsten Rat Sarcoma viral oncogene homolog (KRAS) is one of the most frequent oncogenes. However, there are limited treatment options due to its intracellular expression. To address this, we developed a novel bispecific T-cell engager (BiTE) antibody targeting HLA-A2/KRAS G12V complex and CD3 (HLA-G12V/CD3 BiTE). We examined its specific binding to tumor cells and T cells, as well as its anti-tumor effects in vivo. HLA-G12V/CD3 BiTE was expressed in Escherichia coli and its binding affinities to CD3 and HLA-A2/KRAS G12V were measured by flow cytometry, along with T-cell activation. In a xenograft pancreatic tumor model, the HLA-G12V/CD3 BiTE's anti-tumor effects were assessed through tumor growth, survival time, and safety. Our results demonstrated specific binding of HLA-G12V/CD3 BiTE to tumor cells with an HLA-A2/KRAS G12V mutation and T cells. The HLA-G12V/CD3 BiTE also activated T-cells in the presence of tumor cells in vitro. HLA-G12V/CD3 BiTE in vivo testing showed delayed tumor growth without severe toxicity to major organs and prolonged mouse survival. This study highlights the potential of constructing BiTEs recognizing an HLA-peptide complex and providing a novel therapy for cancer treatment targeting the intracellular tumor antigen.


Assuntos
Anticorpos Biespecíficos , Complexo CD3 , Proteínas Proto-Oncogênicas p21(ras) , Linfócitos T , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico , Anticorpos Biespecíficos/imunologia , Humanos , Animais , Linfócitos T/imunologia , Linfócitos T/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/imunologia , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Camundongos , Complexo CD3/imunologia , Complexo CD3/metabolismo , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , Linhagem Celular Tumoral , Antígeno HLA-A2/imunologia , Antígeno HLA-A2/genética , Feminino
10.
Viruses ; 16(5)2024 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-38793551

RESUMO

Epstein-Barr Virus (EBV) is closely linked to nasopharyngeal carcinoma (NPC), notably prevalent in southern China. Although type II latency of EBV plays a crucial role in the development of NPC, some lytic genes and intermittent reactivation are also critical for viral propagation and tumor progression. Since T cell-mediated immunity is effective in targeted killing of EBV-positive cells, it is important to identify EBV-derived peptides presented by highly prevalent human leukocyte antigen class I (HLA-I) molecules throughout the EBV life cycle. Here, we constructed an EBV-positive NPC cell model to evaluate the presentation of EBV lytic phase peptides on streptavidin-tagged specific HLA-I molecules. Utilizing a mass spectrometry (LC-MS/MS)-based immunopeptidomic approach, we characterized eleven novel EBV peptides as well as two previously identified peptides. Furthermore, we determined these peptides were immunogenic and could stimulate PBMCs from EBV VCA/NA-IgA positive donors in an NPC endemic southern Chinese population. Overall, this work demonstrates that highly prevalent HLA-I-specific EBV peptides can be captured and functionally presented to elicit immune responses in an in vitro model, which provides insight into the epitopes presented during EBV lytic cycle and reactivation. It expands the range of viral targets for potential NPC early diagnosis and treatment.


Assuntos
Antígeno HLA-A11 , Antígeno HLA-A2 , Herpesvirus Humano 4 , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Peptídeos , Humanos , Linhagem Celular Tumoral , China , Epitopos de Linfócito T/imunologia , Infecções por Vírus Epstein-Barr/imunologia , Infecções por Vírus Epstein-Barr/virologia , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/imunologia , Antígeno HLA-A11/imunologia , Antígeno HLA-A11/genética , Antígeno HLA-A2/imunologia , Antígeno HLA-A2/genética , Carcinoma Nasofaríngeo/imunologia , Carcinoma Nasofaríngeo/virologia , Neoplasias Nasofaríngeas/imunologia , Neoplasias Nasofaríngeas/virologia , Peptídeos/imunologia , Peptídeos/química , Proteômica , Espectrometria de Massas em Tandem
11.
Immunol Lett ; 268: 106881, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38810886

RESUMO

Wilms' tumor (WT1), a transcription factor highly expressed in various leukemias and solid tumors, is a highly specific intracellular tumor antigen, requiring presentation through complexation with HLA-restricted peptides.. WT1-derived epitopes are able to assemble with MHC-I and thereby be recognized by T cell receptors (TCR). Identification of new targetable epitopes derived from WT1 on solid tumors is a challenge, but meaningful for the development of therapeutics that could in this way target intracellular oncogenic proteins. In this study, we developed and comprehensively describe methods to validate the formation of the complex of WT1126-134 and HLA-A2. Subsequently, we developed an antibody fragment able to recognize the extracellular complex on the surface of cancer cells. The single chain variable fragment (scFv) of an established TCR-mimic antibody, specifically recognizing the WT1-derived peptide presented by the HLA-A2 complex, was expressed, purified, and functionally validated using a T2 cell antigen presentation model. Furthermore, we evaluated the potential of the WT1-derived peptide as a targetable extracellular antigen in multiple solid tumor cell lines. Our study describes methodology for the evaluation of WT1-derived peptides as tumor-specific antigen on solid tumors, and may facilitate the selection of potential candidates for future immunotherapy targeting WT1 epitopes.


Assuntos
Antígeno HLA-A2 , Neoplasias , Ligação Proteica , Proteínas WT1 , Humanos , Proteínas WT1/imunologia , Proteínas WT1/metabolismo , Antígeno HLA-A2/imunologia , Antígeno HLA-A2/metabolismo , Linhagem Celular Tumoral , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/terapia , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/metabolismo , Anticorpos de Cadeia Única/imunologia , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/genética , Apresentação de Antígeno/imunologia , Epitopos/imunologia , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/metabolismo , Peptídeos/imunologia , Peptídeos/química , Peptídeos/metabolismo
12.
J Leukoc Biol ; 116(3): 601-610, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-38626292

RESUMO

Conventional treatments have shown a limited efficacy for pancreatic cancer, and immunotherapy is an emerging option for treatment of this highly fatal malignancy. Neoantigen is critical to improving the efficacy of tumor-specific immunotherapy. The cancer and peripheral blood specimens from an HLA-A0201-positive pancreatic cancer patient were subjected to next-generation sequencing, and bioinformatics analyses were performed to screen high-affinity and highly stable neoepitopes. The activation of cytotoxic T lymphocytes (CTLs) by dendritic cells (DCs) loaded with mutBCL2A111-20 neoepitope targeting a BCL2A1 mutant epitope was investigated, and the cytotoxicity of mutBCL2A111-20 neoepitope-specific CTLs to pancreatic cancer cells was evaluated. The mutBCL2A111-20 neoepitope was found to present a high immunogenicity and induce CTLs activation and proliferation, and these CTLs were cytotoxic to mutBCL2A111-20 neoepitope-loaded T2 cells and pancreatic cancer PANC-1-Neo and A2-BxPC-3-Neo cells that overexpressed mutBCL2A111-20 neoepitopes, appearing to be a targeting neoepitope specificity. In addition, high BCL2A1 expression correlated with a low 5-yr progression-free interval among pancreatic cancer patients. Our findings provide experimental supports to individualized T cell therapy targeting mutBCL2A111-20 neoepitopes, and provide an option of immunotherapy for pancreatic cancer.


Assuntos
Imunoterapia , Neoplasias Pancreáticas , Proteínas Proto-Oncogênicas c-bcl-2 , Linfócitos T Citotóxicos , Humanos , Linfócitos T Citotóxicos/imunologia , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas c-bcl-2/imunologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Imunoterapia/métodos , Antígenos de Neoplasias/imunologia , Linhagem Celular Tumoral , Antígeno HLA-A2/imunologia , Medicina de Precisão , Masculino , Células Dendríticas/imunologia , Epitopos/imunologia , Pessoa de Meia-Idade , Feminino , Mutação , Antígenos de Histocompatibilidade Menor
13.
Acta Biochim Biophys Sin (Shanghai) ; 56(7): 986-996, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38655616

RESUMO

Vaccines play essential roles in the fight against the COVID-19 pandemic. The development and assessment of COVID-19 vaccines have generally focused on the induction and boosting of neutralizing antibodies targeting the SARS-CoV-2 spike (S) protein. Due to rapid and continuous variation in the S protein, such vaccines need to be regularly updated to match newly emerged dominant variants. T-cell vaccines that target MHC I- or II-restricted epitopes in both structural and non-structural viral proteins have the potential to induce broadly cross-protective and long-lasting responses. In this work, the entire proteome encoded by SARS-CoV-2 (Wuhan-hu-1) is subjected to immunoinformatics-based prediction of HLA-A*02:01-restricted epitopes. The immunogenicity of the predicted epitopes is evaluated using peripheral blood mononuclear cells from convalescent Wuhan-hu-1-infected patients. Furthermore, predicted epitopes that are conserved across major SARS-CoV-2 lineages and variants are used to construct DNA vaccines expressing multi-epitope polypeptides. Most importantly, two DNA vaccine constructs induce epitope-specific CD8 + T-cell responses in a mouse model of HLA-A*02:01 restriction and protect immunized mice from challenge with Wuhan-hu-1 virus after hACE2 transduction. These data provide candidate T-cell epitopes useful for the development of T-cell vaccines against SARS-CoV-2 and demonstrate a strategy for quick T-cell vaccine candidate development applicable to other emerging pathogens.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Biologia Computacional , Epitopos de Linfócito T , Antígeno HLA-A2 , SARS-CoV-2 , Vacinas de DNA , Epitopos de Linfócito T/imunologia , Humanos , SARS-CoV-2/imunologia , SARS-CoV-2/genética , Animais , Vacinas de DNA/imunologia , Vacinas de DNA/genética , Antígeno HLA-A2/imunologia , Antígeno HLA-A2/genética , Camundongos , COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/virologia , Vacinas contra COVID-19/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Feminino , Camundongos Endogâmicos BALB C , Imunoinformática
14.
Oncol Res Treat ; 47(7-8): 351-359, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38583422

RESUMO

INTRODUCTION: Naked DNA vaccination could be a powerful and safe strategy to mount antigen-specific cellular immunity. We designed a phase I clinical trial to investigate the toxicity of naked DNA vaccines encoding CD8+ T-cell epitope from tumor-associated antigen MART-1 in patients with advanced melanoma. METHODS: This dose escalating phase Ia clinical trial investigates the toxicity and immunological response upon naked DNA vaccines encoding a CD8+ T-cell epitope from the tumor-associated antigen MART-1, genetically linked to the gene encoding domain 1 of subunit-tetanus toxin fragment C in patients with advanced melanoma (inoperable stage IIIC-IV, AJCC 7th edition). The vaccine was administrated via intradermal application using a permanent make-up or tattoo device. Safety was monitored according to CTCAE v.3.0 and skin biopsies and blood samples were obtained for immunologic monitoring. RESULTS: Nine pretreated, HLA-A*0201-positive patients with advanced melanoma expressing MART-1 and MHC class I, with a good performance status, and adequate organ function, were included. With a median follow-up of 5.9 months, DNA vaccination was safe, without treatment-related deaths. Common treatment-emergent adverse events of any grade were dermatologic reactions at the vaccination site (100%) and pain (56%). One patient experienced grade 4 toxicity, most likely related to tumor progression. One patient (11%) achieved stable disease, lasting 353 days. Immune analysis showed no increase in vaccine-induced T cell response in peripheral blood of 5 patients, but did show a MART-1 specific CD8+ T cell response at the tattoo administration site. The maximum dose administered was 2 mg due to lack of clinical activity. CONCLUSION: We showed that the developed DNA vaccine, applied using a novel intradermal application strategy, can be administered safely. Further research with improved vaccine formats is required to show possible clinical benefit of DNA vaccination.


Assuntos
Vacinas Anticâncer , Melanoma , Estadiamento de Neoplasias , Tatuagem , Vacinas de DNA , Humanos , Melanoma/imunologia , Melanoma/terapia , Vacinas de DNA/administração & dosagem , Vacinas de DNA/imunologia , Pessoa de Meia-Idade , Feminino , Masculino , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/uso terapêutico , Injeções Intradérmicas , Idoso , Adulto , Neoplasias Cutâneas/imunologia , Antígeno MART-1/imunologia , Linfócitos T CD8-Positivos/imunologia , Vacinação/métodos , Resultado do Tratamento , Antígeno HLA-A2/imunologia , Epitopos de Linfócito T/imunologia
15.
Front Immunol ; 13: 927804, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35967402

RESUMO

Multiple myeloma (MM) is a malignant plasma cell disorder affecting mainly the elderly population. Revolutionary progress in immunotherapy has been made recently, including monoclonal antibodies and chimeric antigen receptor T cell (CAR-T) therapies; however, the high relapse rate remains problematic. Therefore, combination therapies against different targets would be a reasonable strategy. In this study, we present a new X-chromosome encoded testis-cancer antigen (CTA) AKAP4 as a potential target for MM. AKAP4 is expressed in MM cell lines and MM primary malignant plasma cells. HLA-A*0201-restricted cytotoxic T lymphocytes (CTLs) induced by dendritic cells (DCs) transduced with an adenovirus vector encoding the full-length AKAP4 gene were demonstrated to lyse AKAP4+ myeloma cells. Seven of the 12 candidate epitopes predicated by the BIMAS and SYFPEITH algorithms were able to bind HLA-A*0201 in the T2 binding assay, of which only two peptides were able to induce CTL cytotoxicity in the co-culture of peptide-loaded human mature dendritic cells and the autologous peripheral blood mononuclear cells (PBMCs) from the same HLA-A*0201 donor. The AKAP4 630-638 VLMLIQKLL was identified as the strongest CTL epitope by the human IFN-γ ELISPOT assay. Finally, the VLMLIQKLL-specific CTLs can lyse the HLA-A*0201+AKAP4+ myeloma cell line U266 in vitro, and inhibit tumor growth in the mice bearing U266 tumors in vivo. These results suggest that the VLMLIQKLL epitope could be used to develop cancer vaccine or T-cell receptor transgenic T cells (TCR-T) to kill myeloma cells.


Assuntos
Proteínas de Ancoragem à Quinase A , Linfócitos T CD8-Positivos , Epitopos de Linfócito T , Mieloma Múltiplo , Proteínas de Ancoragem à Quinase A/genética , Proteínas de Ancoragem à Quinase A/imunologia , Idoso , Animais , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/imunologia , Antígeno HLA-A2/genética , Antígeno HLA-A2/imunologia , Humanos , Leucócitos Mononucleares/imunologia , Masculino , Camundongos , Mieloma Múltiplo/genética , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/terapia , Peptídeos
16.
Front Immunol ; 13: 874157, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720402

RESUMO

Solid organ transplantation is the treatment of choice for various end-stage diseases, but requires the continuous need for immunosuppression to prevent allograft rejection. This comes with serious side effects including increased infection rates and development of malignancies. Thus, there is a clinical need to promote transplantation tolerance to prevent organ rejection with minimal or no immunosuppressive treatment. Polyclonal regulatory T-cells (Tregs) are a potential tool to induce transplantation tolerance, but lack specificity and therefore require administration of high doses. Redirecting Tregs towards mismatched donor HLA molecules by modifying these cells with chimeric antigen receptors (CAR) would render Tregs far more effective at preventing allograft rejection. Several studies on HLA-A2 specific CAR Tregs have demonstrated that these cells are highly antigen-specific and show a superior homing capacity to HLA-A2+ allografts compared to polyclonal Tregs. HLA-A2 CAR Tregs have been shown to prolong survival of HLA-A2+ allografts in several pre-clinical humanized mouse models. Although promising, concerns about safety and stability need to be addressed. In this review the current research, obstacles of CAR Treg therapy, and its potential future in solid organ transplantation will be discussed.


Assuntos
Transplante de Órgãos , Receptores de Antígenos Quiméricos , Linfócitos T Reguladores , Animais , Antígeno HLA-A2/imunologia , Humanos , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T Reguladores/imunologia , Tolerância ao Transplante
17.
Proc Natl Acad Sci U S A ; 119(25): e2122379119, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35696582

RESUMO

Acute myeloid leukemia (AML) remains a therapeutic challenge, and a paucity of tumor-specific targets has significantly hampered the development of effective immune-based therapies. Recent paradigm-changing studies have shown that natural killer (NK) cells exhibit innate memory upon brief activation with IL-12 and IL-18, leading to cytokine-induced memory-like (CIML) NK cell differentiation. CIML NK cells have enhanced antitumor activity and have shown promising results in early phase clinical trials in patients with relapsed/refractory AML. Here, we show that arming CIML NK cells with a neoepitope-specific chimeric antigen receptor (CAR) significantly enhances their antitumor responses to nucleophosphmin-1 (NPM1)-mutated AML while avoiding off-target toxicity. CIML NK cells differentiated from peripheral blood NK cells were efficiently transduced to express a TCR-like CAR that specifically recognizes a neoepitope derived from the cytosolic oncogenic NPM1-mutated protein presented by HLA-A2. These CAR CIML NK cells displayed enhanced activity against NPM1-mutated AML cell lines and patient-derived leukemic blast cells. CAR CIML NK cells persisted in vivo and significantly improved AML outcomes in xenograft models. Single-cell RNA sequencing and mass cytometry analyses identified up-regulation of cell proliferation, protein folding, immune responses, and major metabolic pathways in CAR-transduced CIML NK cells, resulting in tumor-specific, CAR-dependent activation and function in response to AML target cells. Thus, efficient arming of CIML NK cells with an NPM1-mutation-specific TCR-like CAR substantially improves their innate antitumor responses against an otherwise intracellular mutant protein. These preclinical findings justify evaluating this approach in clinical trials in HLA-A2+ AML patients with NPM1c mutations.


Assuntos
Memória Imunológica , Células de Memória Imunológica , Imunoterapia Adotiva , Células Matadoras Naturais , Leucemia Mieloide Aguda , Nucleofosmina , Receptores de Antígenos Quiméricos , Antígeno HLA-A2/imunologia , Humanos , Células de Memória Imunológica/imunologia , Células de Memória Imunológica/transplante , Imunoterapia Adotiva/métodos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/transplante , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Mutação , Nucleofosmina/genética , Nucleofosmina/imunologia , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/imunologia
18.
J Immunol ; 208(8): 1851-1856, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35379743

RESUMO

Unconventional HLA class I-restricted CD8+ T cell epitopes, longer than 10 aa, have been implicated to play a role in human immunity against viruses and cancer. T cell recognition of long peptides, centrally bulging from the HLA cleft, has been described previously. Alternatively, long peptides can contain a linear HLA-bound core peptide, with a N- or C-terminal peptide "tail" extending from the HLA peptide binding groove. The role of such a peptide "tail" in CD8+ T cell recognition remains unclear. In this study, we identified a 20mer peptide (FLPTPEELGLLGPPRPQVLA [FLP]) derived from the IL-27R subunit α gene restricted to HLA-A*02:01, for which we solved the crystal structure and demonstrated a long C-terminal "tail" extension. FLP-specific T cell clones demonstrated various recognition modes, some T cells recognized the FLP core peptide, while for other T cells the peptide tail was essential for recognition. These results demonstrate a crucial role for a C-terminal peptide tail in immunogenicity.


Assuntos
Linfócitos T CD8-Positivos , Epitopos de Linfócito T , Antígeno HLA-A2 , Linfócitos T CD8-Positivos/imunologia , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/imunologia , Genes MHC Classe I/genética , Genes MHC Classe I/imunologia , Antígenos HLA-A/genética , Antígenos HLA-A/imunologia , Antígeno HLA-A2/genética , Antígeno HLA-A2/imunologia , Humanos , Peptídeos/genética , Peptídeos/imunologia
19.
J Biol Chem ; 298(3): 101684, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35124005

RESUMO

Adoptive cell therapy with tumor-specific T cells can mediate durable cancer regression. The prime target of tumor-specific T cells are neoantigens arising from mutations in self-proteins during malignant transformation. To understand T cell recognition of cancer neoantigens at the atomic level, we studied oligoclonal T cell receptors (TCRs) that recognize a neoepitope arising from a driver mutation in the p53 oncogene (p53R175H) presented by the major histocompatibility complex class I molecule HLA-A2. We previously reported the structures of three p53R175H-specific TCRs (38-10, 12-6, and 1a2) bound to p53R175H and HLA-A2. The structures showed that these TCRs discriminate between WT and mutant p53 by forming extensive interactions with the R175H mutation. Here, we report the structure of a fourth p53R175H-specific TCR (6-11) in complex with p53R175H and HLA-A2. In contrast to 38-10, 12-6, and 1a2, TCR 6-11 makes no direct contacts with the R175H mutation, yet is still able to distinguish mutant from WT p53. Structure-based in silico mutagenesis revealed that the 60-fold loss in 6-11 binding affinity for WT p53 compared to p53R175H is mainly due to the higher energetic cost of desolvating R175 in the WT p53 peptide during complex formation than H175 in the mutant. This indirect strategy for preferential neoantigen recognition by 6-11 is fundamentally different from the direct strategies employed by other TCRs and highlights the multiplicity of solutions to recognizing p53R175H with sufficient selectivity to mediate T cell killing of tumor but not normal cells.


Assuntos
Antígeno HLA-A2 , Imunoterapia Adotiva , Neoplasias , Receptores de Antígenos de Linfócitos T , Proteína Supressora de Tumor p53 , Antígenos de Neoplasias/química , Antígenos de Neoplasias/imunologia , Epitopos/imunologia , Antígeno HLA-A2/química , Antígeno HLA-A2/imunologia , Humanos , Neoplasias/imunologia , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/química , Receptores de Antígenos de Linfócitos T/imunologia , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/imunologia
20.
J Immunother Cancer ; 10(1)2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35091455

RESUMO

BACKGROUND: Mesothelin (MSLN) is a classic tumor-associated antigen that is expressed in lung cancer and many other solid tumors. However, MSLN is also expressed in normal mesothelium which creates a significant risk of serious inflammation for MSLN-directed therapeutics. We have developed a dual-receptor (Tmod™) system that exploits the difference between tumor and normal tissue in a subset of patients with defined heterozygous gene loss (LOH) in their tumors. METHODS: T cells engineered with the MSLN CAR Tmod construct described here contain (1) a novel MSLN-activated CAR and (2) an HLA-A*02-gated inhibitory receptor (blocker). A*02 binding is intended to override T-cell cytotoxicity, even in the presence of MSLN. The Tmod system is designed to treat heterozygous HLA class I patients, selected for HLA LOH. When A*02 is absent from tumors selected for LOH, the MSLN Tmod cells are predicted to mediate potent killing of the MSLN(+)A*02(-) malignant cells. RESULTS: The sensitivity of the MSLN Tmod cells is comparable with a benchmark MSLN CAR-T that was active but toxic in the clinic. Unlike MSLN CAR-T cells, the Tmod system robustly protects surrogate "normal" cells even in mixed-cell populations in vitro and in a xenograft model. The MSLN CAR can also be paired with other HLA class I blockers, supporting extension of the approach to patients beyond A*02 heterozygotes. CONCLUSIONS: The Tmod mechanism exemplified by the MSLN CAR Tmod construct provides an alternative route to leverage solid-tumor antigens such as MSLN in safer, more effective ways than previously possible.


Assuntos
Antígeno HLA-A2/genética , Imunoterapia Adotiva/métodos , Mesotelina/imunologia , Neoplasias/terapia , Receptores de Antígenos Quiméricos/imunologia , Animais , Linhagem Celular Tumoral , Feminino , Antígeno HLA-A2/imunologia , Humanos , Perda de Heterozigosidade , Camundongos , Linfócitos T/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA