Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Chemistry ; 30(32): e202401108, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38567703

RESUMO

Sialyl-Lewisx (SLex) is involved in immune regulation, human fertilization, cancer, and bacterial and viral diseases. The influence of the complex glycan structures, which can present SLex epitopes, on binding is largely unknown. We report here a chemoenzymatic strategy for the preparation of a panel of twenty-two isomeric asymmetrical tri-antennary N-glycans presenting SLex-Lex epitopes on either the MGAT4 or MGAT5 arm that include putative high-affinity ligands for E-selectin. The N-glycans were prepared starting from a sialoglycopeptide isolated from egg yolk powder and took advantage of inherent substrate preferences of glycosyltransferases and the use of 5'-diphospho-N-trifluoracetylglucosamine (UDP-GlcNHTFA) that can be transferred by branching N-acetylglucosaminyltransferases to give, after base treatment, GlcNH2-containing glycans that temporarily disable an antenna from enzymatic modification. Glycan microarray binding studies showed that E-selectin bound equally well to linear glycans and tri-antennary N-glycans presenting SLex-Lex. On the other hand, it was found that hemagglutinins (HA) of H5 influenza A viruses (IAV) preferentially bound the tri-antennary N-glycans. Furthermore, several H5 HAs preferentially bound to N-glycan presenting SLex on the MGAT4 arm. SLex is displayed in the respiratory tract of several avian species, demonstrating the relevance of investigating the binding of, among others IAVs, to complex N-glycans presenting SLex.


Assuntos
Selectina E , Vírus da Influenza A , Polissacarídeos , Antígeno Sialil Lewis X , Polissacarídeos/química , Polissacarídeos/metabolismo , Vírus da Influenza A/metabolismo , Antígeno Sialil Lewis X/metabolismo , Antígeno Sialil Lewis X/química , Selectina E/metabolismo , Selectina E/química , Humanos , Oligossacarídeos/química , Oligossacarídeos/síntese química , Oligossacarídeos/metabolismo , Receptores Virais/metabolismo , Receptores Virais/química , Epitopos/química , Epitopos/metabolismo , Animais
2.
Int J Biol Macromol ; 260(Pt 1): 129318, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38232866

RESUMO

Cancer pathogenesis is strongly linked to the qualitative and quantitative alteration of the cell surface glycans, that are glycosidically linked to proteins and lipids. Glycans that are covalently linked to the polypeptide backbone of a protein through nitrogen or oxygen, are known as N-glycans or O-glycans, respectively. Although the role of glycans in the expression, physiology, and communication of cells is well documented, the function of these glycans in tumor biology is not fully elucidated. In this context, current review summarizes biosynthesis, modifications and pathological implications of O-glycans The review also highlights illustrative examples of cancer types modulated by aberrant O-glycosylation. Related O-glycans like Thomsen-nouveau (Tn), Thomsen-Friedenreich (TF), Lewisa/x, Lewisb/y, sialyl Lewisa/x and some other O-glycans are discussed in detail. Since, the overexpression of O-glycans are attributed to the aggressiveness and metastatic behavior of cancer cells, the current review attempts to understand the relation between metastasis and O-glycans.


Assuntos
Neoplasias , Polissacarídeos , Humanos , Polissacarídeos/metabolismo , Antígeno Sialil Lewis X/metabolismo , Glicosilação
3.
J Cell Biochem ; 124(8): 1173-1185, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37357420

RESUMO

Sialyl Lewis X (sLex ) antigen is a fucosylated cell-surface glycan that is normally involved in cell-cell interactions. The enhanced expression of sLex on cell surface glycans, which is attributed to the upregulation of fucosyltransferase 6 (FUT6), has been implicated in facilitating metastasis in human colorectal, lung, prostate, and oral cancers. The role that the upregulated FUT6 plays in the progression of tumor to malignancy, with reduced survival rates, makes it a potential target for anticancer drugs. Unfortunately, the lack of experimental structures for FUT6 has hampered the design and development of its inhibitors. In this study, we used in silico techniques to identify potential FUT6 inhibitors. We first modeled the three-dimensional structure of human FUT6 using AlphaFold. Then, we screened the natural compound libraries from the COCONUT database to sort out potential natural products (NPs) with best affinity toward the FUT6 model. As a result of these simulations, we identified three NPs for which we predicted binding affinities and interaction patterns quite similar to those we calculated for two experimentally tested FUT6 inhibitors, that is, fucose mimetic-1 and a GDP-triazole derived compound. We also performed molecular dynamics (MD) simulations for the FUT6 complexes with identified NPs, to investigate their stability. Analysis of the MD simulations showed that the identified NPs establish stable contacts with FUT6 under dynamics conditions. On these grounds, the three screened compounds appear as promising natural alternatives to experimentally tested FUT6 synthetic inhibitors, with expected comparable binding affinity. This envisages good prospects for future experimental validation toward FUT6 inhibition.


Assuntos
Fucosiltransferases , Neoplasias , Humanos , Masculino , Descoberta de Drogas , Fucosiltransferases/antagonistas & inibidores , Fucosiltransferases/metabolismo , Glicosilação , Antígeno Sialil Lewis X/metabolismo
4.
Biol Reprod ; 108(4): 564-574, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36648484

RESUMO

Cell surface carbohydrate antigens sialyl Lewis X (sLeX) and Lewis Y (LeY) are paramount glycoconjugates and are abundantly expressed in the receptive endometrium. Furthermore, among the important biological functions of both antigens is their role in leukocytes adhesion and extravasation. Interleukin-1 beta (IL-1ß) is involved in the process of human embryo implantation and placenta development. Here, we used an in vitro model to investigate whether sLeX and LeY are playing a role in the embryo implantation process mediated by IL-1ß. Our results are showing that the expression of cell surface sLeX was enhanced in endometrial RL95-2 cells after exposure to IL-1ß. RT-qPCR detection indicated that the transcript level of glycosyltransferase gene fucosyltransferase 3 (FUT3) was significantly elevated and that of FUT4/7 and ST3 beta-galactoside alpha-2,3-sialyltransferase 3/4 (ST3GAL3/4) were decreased by treatment with IL-1ß. Modulatory role of glycosyltransferase FUT3 on sLeX biosynthesis was determined by FUT3 siRNA transfection in RL95-2 cells. Results showed that the expression level of sLeX was suppressed, but no change was observed in regard to LeY. Moreover, IL-1ß promoted the HTR-8/SVneo trophoblast spheroids attachment to the RL95-2 endometrial monolayer, which was partially blocked by anti-sLeX antibody and FUT3 knockdown. Gene expression analysis of the RNA-seq transcriptome data from human secretory endometrium demonstrated a significantly higher level of FUT3 in the mid-secretory phase compared to the early secretory phase, which was correlated with the expression of IL1B. In summary, the inflammatory microenvironment at the fetomaternal interface can regulate the glycosylation pattern of endometrial cells at the time of implantation. SLeX can be significantly induced by IL-1ß via increasing FUT3 expression, which facilitates the trophoblast adhesion during embryo implantation.


Assuntos
Endométrio , Interleucina-1beta , Trofoblastos , Feminino , Humanos , Gravidez , Adesão Celular , Implantação do Embrião , Endométrio/metabolismo , Fucosiltransferases/genética , Fucosiltransferases/metabolismo , Glicosiltransferases/metabolismo , Interleucina-1beta/metabolismo , Antígeno Sialil Lewis X/metabolismo , Trofoblastos/metabolismo
5.
Arthritis Rheumatol ; 73(7): 1220-1232, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33452865

RESUMO

OBJECTIVE: To compare immune cell phenotype and function in psoriatic arthritis (PsA) versus psoriasis in order to better understand the pathogenesis of PsA. METHODS: In-depth immunophenotyping of different T cell and dendritic cell subsets was performed in patients with PsA, psoriasis, or axial spondyloarthritis and healthy controls. Subsequently, we analyzed cells from peripheral blood, synovial fluid (SF), and skin biopsy specimens using flow cytometry, along with high-throughput transcriptome analyses and functional assays on the specific cell populations that appeared to differentiate PsA from psoriasis. RESULTS: Compared to healthy controls, the peripheral blood of patients with PsA was characterized by an increase in regulatory CD4+ T cells and interleukin-17A (IL-17A) and IL-22 coproducing CD8+ T cells. One population specifically differentiated PsA from psoriasis: i.e., CD8+CCR10+ T cells were enriched in PsA. CD8+CCR10+ T cells expressed high levels of DNAX accessory molecule 1 and were effector memory cells that coexpressed skin-homing receptors CCR4 and cutaneous lymphocyte antigen. CD8+CCR10+ T cells were detected under inflammatory and homeostatic conditions in skin, but were not enriched in SF. Gene profiling further revealed that CD8+CCR10+ T cells expressed GATA3, FOXP3, and core transcriptional signature of tissue-resident memory T cells, including CD103. Specific genes, including RORC, IFNAR1, and ERAP1, were up-regulated in PsA compared to psoriasis. CD8+CCR10+ T cells were endowed with a Tc2/22-like cytokine profile, lacked cytotoxic potential, and displayed overall regulatory function. CONCLUSION: Tissue-resident memory CD8+ T cells derived from the skin are enhanced in the circulation of patients with PsA compared to patients with psoriasis alone. This may indicate that aberrances in cutaneous tissue homeostasis contribute to arthritis development.


Assuntos
Artrite Psoriásica/imunologia , Linfócitos T CD8-Positivos/imunologia , Psoríase/imunologia , Pele/imunologia , Subpopulações de Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia , Adulto , Aminopeptidases/genética , Antígenos CD/genética , Antígenos de Diferenciação de Linfócitos T/imunologia , Artrite Psoriásica/genética , Artrite Psoriásica/patologia , Linfócitos T CD8-Positivos/metabolismo , Estudos de Casos e Controles , Feminino , Fatores de Transcrição Forkhead/genética , Fator de Transcrição GATA3/genética , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Memória Imunológica/imunologia , Imunofenotipagem , Cadeias alfa de Integrinas/genética , Interleucina-17/imunologia , Interleucinas/imunologia , Masculino , Pessoa de Meia-Idade , Antígenos de Histocompatibilidade Menor/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Oligossacarídeos/metabolismo , Psoríase/genética , Psoríase/patologia , Receptor de Interferon alfa e beta/genética , Receptores CCR10/metabolismo , Receptores CCR4/metabolismo , Antígeno Sialil Lewis X/análogos & derivados , Antígeno Sialil Lewis X/metabolismo , Pele/patologia , Espondiloartropatias/genética , Espondiloartropatias/imunologia , Espondiloartropatias/patologia , Líquido Sinovial/citologia , Subpopulações de Linfócitos T/metabolismo , Linfócitos T Citotóxicos/imunologia , Linfócitos T Reguladores/metabolismo , Interleucina 22
6.
J Immunol ; 205(7): 1920-1932, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32868410

RESUMO

Sialyl Lewis X (sLeX) regulates T cell trafficking from the vasculature into skin and sites of inflammation, thereby playing a critical role in immunity. In healthy persons, only a small proportion of human blood T cells express sLeX, and their function is not fully defined. Using a combination of biochemical and functional studies, we find that human blood sLeX+CD4+T cells comprise a subpopulation expressing high levels of Th2 and Th17 cytokines, chemokine receptors CCR4 and CCR6, and the transcription factors GATA-3 and RORγT. Additionally, sLeX+CD4+T cells exclusively contain the regulatory T cell population (CD127lowCD25high and FOXP3+) and characteristically display immune-suppressive molecules, including the coinhibitor receptors PD-1 and CTLA-4. Among CD8+T cells, sLeX expression distinguishes a subset displaying low expression of cytotoxic effector molecules, perforin and granzyme ß, with reduced degranulation and CD57 expression and, consistently, marginal cytolytic capacity after TCR engagement. Furthermore, sLeX+CD8+T cells present a pattern of features consistent with Th cell-like phenotype, including release of pertinent Tc2 cytokines and elevated expression of CD40L. Together, these findings reveal that sLeX display is associated with unique functional specialization of both CD4+ and CD8+T cells and indicate that circulating T cells that are primed to migrate to lesional sites at onset of inflammation are not poised for cytotoxic function.


Assuntos
Antígeno Sialil Lewis X/metabolismo , Subpopulações de Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Tolerância Central , Citotoxicidade Imunológica , Fator de Transcrição GATA3/metabolismo , Regulação da Expressão Gênica , Humanos , Tolerância Imunológica , Memória Imunológica , Ativação Linfocitária , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Tolerância Periférica , Receptor de Morte Celular Programada 1/metabolismo , Antígeno Sialil Lewis X/genética
7.
Int J Mol Sci ; 21(18)2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32911675

RESUMO

BACKGROUND: The Sda antigen and its biosynthetic enzyme B4GALNT2 are highly expressed in healthy colon but undergo a variable down-regulation in colon cancer. The biosynthesis of the malignancy-associated sialyl Lewis x (sLex) antigen in normal and cancerous colon is mediated by fucosyltransferase 6 (FUT6) and is mutually exclusive from that of Sda. It is thought that the reduced malignancy associated with high B4GALNT2 was due to sLex inhibition. METHODS: We transfected the cell lines SW480 and SW620, derived respectively from a primary tumor and a metastasis of the same patient, with the cDNAs of FUT6 or B4GALNT2, generating cell variants expressing either the sLex or the Sda antigens. Transfectants were analyzed for growth in poor adherence, wound healing, stemness and gene expression profile. RESULTS: B4GALNT2/Sda expression down-regulated all malignancy-associated phenotypes in SW620 but only those associated with stemness in SW480. FUT6/sLex enhanced some malignancy-associated phenotypes in SW620, but had little effect in SW480. The impact on the transcriptome was stronger for FUT6 than for B4GALNT2 and only partially overlapping between SW480 and SW620. CONCLUSIONS: B4GALNT2/Sda inhibits the stemness-associated malignant phenotype, independently of sLex inhibition. The impact of glycosyltransferases on the phenotype and the transcriptome is highly cell-line specific.


Assuntos
Neoplasias do Colo/metabolismo , N-Acetilgalactosaminiltransferases/metabolismo , Antígeno Sialil Lewis X/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Neoplasias do Colo/genética , Fucosiltransferases/genética , Fucosiltransferases/metabolismo , Glicosiltransferases/metabolismo , Humanos , Antígenos CD15/metabolismo , N-Acetilgalactosaminiltransferases/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/fisiologia , Oligossacarídeos/genética , Oligossacarídeos/imunologia , Oligossacarídeos/metabolismo , Antígeno Sialil Lewis X/fisiologia , Transfecção , Células Tumorais Cultivadas
8.
J Cell Mol Med ; 24(21): 12789-12798, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32985079

RESUMO

In this study, a new water and alkaline-soluble polysaccharide (ALP), with an average molecular weight of 6.63 × 104  Da, was successfully purified from the rhizomes of Atractylodes lancea. GC analysis demonstrated that ALP was a kind of glucan. The effect of the ALP on the interaction between E-selectin and sialyl Lewis X (sLex ) was examined in human osteosarcoma U-2 OS cells. It was obvious that the expression of sLex antigen on the surface of U-2 OS cells was visible under fluorescence microscopy. The addition of ALP (0.5, 1 and 2 mg/mL) resulted in a marked inhibition on the adhesion, migration and invasion of U-2 OS cells to human umbilical vein endothelial cells (HUVECs), which was achieved by the decreased sLex expression on U-2 OS cells. Additionally, the induction of apoptosis can be observed in U-2 OS cells following ALP treatment using TUNEL staining and Annexin V-FITC/PI double-staining analysis on flow cytometry. In conclusion, these results indicated that ALP exerted anti-metastatic activity towards osteosarcoma cells via inhibition of sLex /E-selectin binding, which suggested that ALP could be a potent agent for human osteosarcoma intervention.


Assuntos
Atractylodes/química , Selectina E/metabolismo , Osteossarcoma/patologia , Polissacarídeos/farmacologia , Antígeno Sialil Lewis X/metabolismo , Apoptose/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Movimento Celular/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Monossacarídeos/análise , Metástase Neoplásica , Polissacarídeos/isolamento & purificação , Ligação Proteica/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia
9.
Cell Rep ; 32(5): 107991, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32755584

RESUMO

A comprehensive understanding of the phenotype of persistent HIV-infected cells, transcriptionally active and/or transcriptionally inactive, is imperative for developing a cure. The relevance of cell-surface glycosylation to HIV persistence has never been explored. We characterize the relationship between cell-surface glycomic signatures and persistent HIV transcription in vivo. We find that the cell surface of CD4+ T cells actively transcribing HIV, despite suppressive therapy, harbors high levels of fucosylated carbohydrate ligands, including the cell extravasation mediator Sialyl-LewisX (SLeX), compared with HIV-infected transcriptionally inactive cells. These high levels of SLeX are induced by HIV transcription in vitro and are maintained after therapy in vivo. Cells with high-SLeX are enriched with markers associated with HIV susceptibility, signaling pathways that drive HIV transcription, and pathways involved in leukocyte extravasation. We describe a glycomic feature of HIV-infected transcriptionally active cells that not only differentiates them from their transcriptionally inactive counterparts but also may affect their trafficking abilities.


Assuntos
Terapia Antirretroviral de Alta Atividade , Linfócitos T CD4-Positivos/metabolismo , HIV/genética , Antígeno Sialil Lewis X/metabolismo , Transcrição Gênica , Linfócitos T CD4-Positivos/imunologia , Carboidratos/química , Linhagem Celular , Membrana Celular/metabolismo , Fucose/metabolismo , Glicômica , Glicosilação , Infecções por HIV/imunologia , Humanos , Memória Imunológica , Ligantes , Ativação Linfocitária/imunologia
10.
Theranostics ; 10(11): 4903-4928, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32308758

RESUMO

Esophageal (OC), gastric (GC) and colorectal (CRC) cancers are amongst the digestive track tumors with higher incidence and mortality due to significant molecular heterogeneity. This constitutes a major challenge for patients' management at different levels, including non-invasive detection of the disease, prognostication, therapy selection, patient's follow-up and the introduction of improved and safer therapeutics. Nevertheless, important milestones have been accomplished pursuing the goal of molecular-based precision oncology. Over the past five years, high-throughput technologies have been used to interrogate tumors of distinct clinicopathological natures, generating large-scale biological datasets (e.g. genomics, transcriptomics, and proteomics). As a result, GC and CRC molecular subtypes have been established to assist patient stratification in the clinical settings. However, such molecular panels still require refinement and are yet to provide targetable biomarkers. In parallel, outstanding advances have been made regarding targeted therapeutics and immunotherapy, paving the way for improved patient care; nevertheless, important milestones towards treatment personalization and reduced off-target effects are also to be accomplished. Exploiting the cancer glycoproteome for unique molecular fingerprints generated by dramatic alterations in protein glycosylation may provide the necessary molecular rationale towards this end. Therefore, this review presents functional and clinical evidences supporting a reinvestigation of classical serological glycan biomarkers such as sialyl-Tn (STn) and sialyl-Lewis A (SLeA) antigens from a tumor glycoproteomics perspective. We anticipate that these glycobiomarkers that have so far been employed in non-invasive cancer prognostication may hold unexplored value for patients' management in precision oncology settings.


Assuntos
Antígenos Glicosídicos Associados a Tumores/metabolismo , Neoplasias Colorretais/diagnóstico , Neoplasias Esofágicas/diagnóstico , Medicina de Precisão , Antígeno Sialil Lewis X/metabolismo , Neoplasias Gástricas/diagnóstico , Glicômica/métodos , Glicoproteínas/metabolismo , Glicosilação , Humanos , Proteômica/métodos
11.
Acta Derm Venereol ; 100(6): adv00099, 2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32176307

RESUMO

Atopic dermatitis (AD) is a chronic, or chronically relapsing, inflammatory skin disease associated with asthma and allergic rhinitis, and is dominated by Th2 cells. The co-stimulatory T-cell receptor OX40 and its ligand, OX40L, play a central role in the pathogenesis of AD, as their interactions are crucial for the generation of TH2 memory cells. Using enzyme-linked immunoassay (ELISA) and flow cytometry on blood samples from patients with AD and healthy volunteers, this study shows that the serum level of soluble (s) OX40 is decreased in patients with AD, and the expression of OX40 by activated skin-homing CD4+ T cells is increased. This study further shows, using immunofluorescence on skin biopsies, that OX40+ and OX40L+ cells are co-located within the dermis, indicating local activity of OX40/OX40L. Serum levels of sOX40 were associated with atopic diseases and, together, these results support that the OX40 system is important for chronic inflammation in AD skin.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Dermatite Atópica/sangue , Ligante OX40/sangue , Receptores OX40/sangue , Pele/metabolismo , Adolescente , Adulto , Asma/sangue , Asma/complicações , Estudos de Casos e Controles , Criança , Pré-Escolar , Dermatite Atópica/complicações , Dermatite Atópica/metabolismo , Humanos , Imunoglobulina E/sangue , Mastócitos/metabolismo , Pessoa de Meia-Idade , Ligante OX40/metabolismo , Oligossacarídeos/metabolismo , Receptores OX40/metabolismo , Índice de Gravidade de Doença , Antígeno Sialil Lewis X/análogos & derivados , Antígeno Sialil Lewis X/metabolismo , Adulto Jovem
12.
Glycoconj J ; 37(2): 277-291, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32062824

RESUMO

In the past decades, the roles of carbohydrates in living organisms and their potential use in many fields have been extensively investigated. Sialyl Lewis x (sLex), a member of body carbohydrate, is an inherent blood-type tetrasaccharide on the surface of different cells, the lymphocyte, neutrophil, some T cells, multiple tumor cells and so on. SLex is a common ligand of the three selectins, L-selectin, E-selectin and P-selectin, and plays important roles in multiple physiological phenomenas by interacting with selectins. Under normal physiological conditions, sLex can affect the immune process and fertilization process. Lower expression of sLex could cause leukocyte adhesion defects (LAD) II. Overexpression of sLex on the other hand has been linked to several cancers including melanoma, breast, pancreatic, liver, lung, head and neck, ovarian, bladder carcinomas and some blood disease including Hodgkin disease, some B cell chronic lymphocytic leukemias, acute lymphoblastic leukemias, and most acute nonlymphocytic leukemias. This paper mainly reviews the physiological functions and pathological effects of sLex and its applications in disease diagnosis, drug delivery, gene transfer and medical molecular imaging. We aim to help researchers and other readers quickly grasp the physiological and pathological roles and its medical applications of sLex, and give some suggestions for research directions.


Assuntos
Neoplasias/metabolismo , Selectinas/metabolismo , Antígeno Sialil Lewis X/metabolismo , Animais , Biomarcadores Tumorais/metabolismo , Portadores de Fármacos/metabolismo , Humanos , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico
13.
Pathol Res Pract ; 216(4): 152859, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32081510

RESUMO

Breast cancer spreading to different organs have been related to different molecules and mechanisms, but cutaneous metastasis remains unexplored. Increasing evidence showed that MUC1 and some of its carbohydrate associated antigens may be implicated in breast cancer metastasis. In this study we analyzed these tumor markers in order to identify breast cancer cutaneous metastatic profiles. A cohort of 26 primary tumors from breast cancer patients with cutaneous metastases were included; also, cutaneous and lymphatic node metastatic samples and primary tumors from breast cancer patients without metastases were analysed. Immunohistochemical (IHC) studies demonstrated that both underglycosylated MUC1 (uMUC1) and sialyl Lewis x (sLex) to be positively associated with cutaneous metastatic primary tumors (p < 0.05). Notably, a high percentage of tumors with cutaneous metastases were characterized as triple negative and Her2+ tumors (37.5 % and 29 %, respectively). Some discordant results were found between primary tumors and their matched cutaneous metastases. To determine if MUC1 variants may be carriers of carbohydrate antigens, subcellular fractions from a cutaneous metastatic lesion were obtained, immunoprecipitated and analyzed by Western blot. We found that the isolated uMUC1 with a molecular weight of>200 kDa was also the site for binding of anti-sLex MAb; in coincidence, a high correlation of positive IHC expression of both markers was observed. Our findings confirm that breast cancer cutaneous metastases were associated to highly malignant primary tumors and sustain the hypothesis that u-MUC1 and sLe x may drive breast cancer cutaneous metastases.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/patologia , Mucina-1/metabolismo , Antígeno Sialil Lewis X/metabolismo , Neoplasias Cutâneas/secundário , Adulto , Idoso , Biomarcadores Tumorais/análise , Feminino , Humanos , Pessoa de Meia-Idade
14.
Expert Opin Biol Ther ; 20(3): 275-282, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31951753

RESUMO

Introduction: The cutaneous lymphocyte antigen interacts with E-selectin on endothelial cells and is expressed on 15% of circulating T-cells. Skin-homing T-cells express the cutaneous lymphocyte antigen and play a role in local cutaneous immunity in inflammatory reactions and neoplastic conditions.Areas covered: Lymphocyte extravasation is the essential para-physiological mechanism enabling immune surveillance of tissues for tumors as well as effector cell recruitment to inflammatory sites.The authors focused on skin inflammatory disorders, on cutaneous lymphoproliferative disease, and on other skin malignancies.Expert opinion: Interfering with leukocyte extravasation has been regarded as an attractive strategy in skin disorders, in the past for inflammatory conditions and more recently for cutaneous T-cell lymphomas. Therapeutic blocking of skin-homing interactions has been attempted in psoriasis and atopic dermatitis and has been achieved in the treatment of cutaneous T-cell lymphomas. Cutaneous lymphocyte antigen is a potential molecular target for both systemic and skin-directed therapy for cutaneous T-cell lymphomas.


Assuntos
Transtornos Linfoproliferativos/patologia , Oligossacarídeos/metabolismo , Antígeno Sialil Lewis X/análogos & derivados , Neoplasias Cutâneas/patologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Humanos , Linfoma Cutâneo de Células T/metabolismo , Linfoma Cutâneo de Células T/patologia , Transtornos Linfoproliferativos/tratamento farmacológico , Transtornos Linfoproliferativos/metabolismo , Oligossacarídeos/antagonistas & inibidores , Antígeno Sialil Lewis X/metabolismo , Dermatopatias/tratamento farmacológico , Dermatopatias/metabolismo , Dermatopatias/patologia , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Microambiente Tumoral
15.
Int J Oncol ; 55(5): 1033-1048, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31793656

RESUMO

The formation of distant metastasis resulting from vascular dissemination is one of the leading causes of mortality in non­small cell lung cancer (NSCLC). This metastatic dissemination initiates with the adhesion of circulating cancer cells to the endothelium. The minimal requirement for the binding of leukocytes to endothelial E­selectins and subsequent transmigration is the epitope of the fucosylated glycan, sialyl Lewis x (sLex), attached to specific cell surface glycoproteins. sLex and its isomer sialyl Lewis a (sLea) have been described in NSCLC, but their functional role in cancer cell adhesion to endothelium is still poorly understood. In this study, it was hypothesised that, similarly to leukocytes, sLe glycans play a role in NSCLC cell adhesion to E­selectins. To assess this, paired tumour and normal lung tissue samples from 18 NSCLC patients were analyzed. Immunoblotting and immunohistochemistry assays demonstrated that tumour tissues exhibited significantly stronger reactivity with anti­sLex/sLea antibody and E­selectin chimera than normal tissues (2.2­ and 1.8­fold higher, respectively), as well as a higher immunoreactive score. High sLex/sLea expression was associated with bone metastasis. The overall α1,3­fucosyltransferase (FUT) activity was increased in tumour tissues, along with the mRNA levels of FUT3, FUT6 and FUT7, whereas FUT4 mRNA expression was decreased. The expression of E­selectin ligands exhibited a weak but significant correlation with the FUT3/FUT4 and FUT7/FUT4 ratios. Additionally, carcinoembryonic antigen (CEA) was identified in only 8 of the 18 tumour tissues; CEA­positive tissues exhibited significantly increased sLex/sLea expression. Tumour tissue areas expressing CEA also expressed sLex/sLea and showed reactivity to E­selectin. Blot rolling assays further demonstrated that CEA immunoprecipitates exhibited sustained adhesive interactions with E­selectin­expressing cells, suggesting CEA acts as a functional protein scaffold for E­selectin ligands in NSCLC. In conclusion, this work provides the first demonstration that sLex/sLea are increased in primary NSCLC due to increased α1,3­FUT activity. sLex/sLea is carried by CEA and confers the ability for NSCLC cells to bind E­selectins, and is potentially associated with bone metastasis. This study contributes to identifying potential future diagnostic/prognostic biomarkers and therapeutic targets for lung cancer.


Assuntos
Antígeno Carcinoembrionário/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Selectina E/metabolismo , Fucosiltransferases/metabolismo , Neoplasias Pulmonares/metabolismo , Antígeno Sialil Lewis X/metabolismo , Idoso , Carcinoma Pulmonar de Células não Pequenas/patologia , Adesão Celular/fisiologia , Feminino , Humanos , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Polissacarídeos/metabolismo
16.
Theranostics ; 9(24): 7431-7446, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31695778

RESUMO

Malignant transformation of gastric cells is accompanied by the deregulated expression of glycosyltransferases leading to the biosynthesis of tumor-associated glycans such as the sialyl-Lewis X antigen (SLex). SLex presence on cell surface glycoconjugates increases the invasive capacity of gastric cancer cells and is associated with tumor metastasis. ST3Gal IV enzyme is involved in the synthesis of SLex antigen and overexpressed in gastric carcinomas. Herein, we identified the glycoproteins carrying SLex in gastric cancer cells overexpressing ST3Gal IV enzyme and evaluated their biomarker potential for gastric carcinoma. Methods: SLex modified glycoproteins were identified applying western blot and mass spectrometry. Immunoprecipitation, proximity ligation assay (PLA), E-selectin binding assay and CRISPR/cas9 knockout experiments were performed to characterize the presence of SLex on the identified glycoprotein. Protein N-glycans of the SLex protein carrier were in deep analyzed by porous-graphitized-carbon liquid-chromatography and tandem mass spectrometry glycomics. In silico expression analysis of α2-3 sialyltransferase ST3Gal IV and SLex protein carrier was performed and the conjoint expression of the SLex modified glycoproteins evaluated by immunohistochemistry and PLA in a series of gastric carcinomas. Results: Carcinoembryonic antigen (CEA; CEACAM5) was identified and validated by different methodologies as a major carrier of SLex. N-glycomics of CEA revealed that complex N-glycans are capped with α2-3 linked sialic acid (Neu5Acα2-3Galß1-4GlcNAc). Data set analysis of ST3Gal IV and CEA showed that ST3Gal IV expression was associated with patient´s poor survival, whereas CEA did not show any prognostic value. The co-expression of both CEA and SLeX was observed in 86,3% of gastric carcinoma cases and 74,5% of the total cases displayed the conjoint CEA+SLexin situ PLA expression. This expression was associated with clinicopathological features of the tumors, including infiltrative pattern of tumor growth, presence of venous invasion and patient's poor survival. CEA immunoprecipitation from gastric carcinoma tissues also confirmed the presence of SLex. Conclusion: CEA is the major glycoprotein carrying SLex in gastric carcinoma and the conjoint detection of CEA-SLex is associated with aggressive tumor features highlighting its PLA detection as a biomarker of gastric cancer patient prognosis for theranostic applications.


Assuntos
Biomarcadores Tumorais/metabolismo , Antígeno Carcinoembrionário/metabolismo , Antígeno Sialil Lewis X/metabolismo , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Linhagem Celular Tumoral , Glicômica , Glicoproteínas/metabolismo , Humanos , Invasividade Neoplásica , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/farmacologia , Prognóstico , Sialiltransferases/metabolismo , Análise de Sobrevida , beta-Galactosídeo alfa-2,3-Sialiltransferase
17.
J Biol Chem ; 294(48): 18465-18474, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31628196

RESUMO

Tissue colonization (homing) by blood-borne cells critically hinges on the ability of the cells to adhere to vascular endothelium with sufficient strength to overcome prevailing hemodynamic shear stress. These adhesive interactions are most effectively engendered via binding of the endothelial lectin E-selectin (CD62E) to its cognate ligand, sialyl Lewis-X (sLe X ), displayed on circulating cells. Although chimeric antigen receptor (CAR) T-cell immunotherapy holds promise for treatment of various hematologic and non-hematologic malignancies, there is essentially no information regarding the efficiency of CAR T-cell homing. Accordingly, we performed integrated biochemical studies and adhesion assays to examine the capacity of human CAR T-cells to engage E-selectin. Our data indicate that CAR T-cells do not express sLe X and do not bind E-selectin. However, enforced sLe X display can be achieved on human CAR T-cells by surface fucosylation, with resultant robust E-selectin binding under hemodynamic shear. Importantly, following intravascular administration into mice, fucosylated human CAR-T cells infiltrate marrow with 10-fold higher efficiency than do unfucosylated cells. Collectively, these findings indicate that custom installation of sLe X programs tissue colonization of vascularly administered human CAR T-cells, offering a readily translatable strategy to augment tissue delivery, thereby lowering the pertinent cell dosing and attendant cell production burden, for CAR T-cell immunotherapy applications.


Assuntos
Selectina E/metabolismo , Glicoproteínas/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Antígeno Sialil Lewis X/metabolismo , Linfócitos T/metabolismo , Animais , Adesão Celular , Linhagem Celular Tumoral , Células Cultivadas , Fucose/metabolismo , Glicosilação , Humanos , Imunoterapia Adotiva/métodos , Ligantes , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Ligação Proteica , Engenharia de Proteínas/métodos
18.
Sci Rep ; 9(1): 950, 2019 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-30700826

RESUMO

More than 50% of colon cancers bear mutations in p53, one of the most important tumor suppressors, and its family members p63 or p73 are expected to contribute to inhibiting the progression of colon cancers. The AP2 family also acts as a tumor suppressor. Here we found that p73 and AP2 are able to activate NEU4, a neuraminidase gene, which removes the terminal sialic acid residues from cancer-associated glycans. Under serum starvation, NEU4 was up-regulated and one of the NEU4 target glycans, sialyl Lewis X, was decreased, whereas p73 and AP2 were up-regulated. Sialyl Lewis X levels were not, however, decreased under starvation conditions in p73- or AP2-knockdown cells. p53 and AP2 underwent protein-protein interactions, exerting synergistic effects to activate p21, and interaction of p53 with AP2 was lost in cells expressing the L350P mutation of p53. The homologous residues in p63 and p73 are L423 and L377, respectively. The synergistic effect of p53/p63 with AP2 to activate genes was lost with the L350P/L423P mutation in p53/p63, but p73 bearing the L377P mutation was able to interact with AP2 and exerted its normal synergistic effects. We propose that p73 and AP2 synergistically activate the NEU4 promoter in colon cancer cells.


Assuntos
Neoplasias do Colo/genética , Neuraminidase/genética , Regiões Promotoras Genéticas , Fator de Transcrição AP-2/metabolismo , Proteína Tumoral p73/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Linhagem Celular Tumoral , Regulação para Baixo/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Modelos Biológicos , Neuraminidase/metabolismo , Ligação Proteica , Mapeamento de Interação de Proteínas , Elementos de Resposta/genética , Antígeno Sialil Lewis X/metabolismo , Fator de Transcrição AP-2/genética , Proteína Tumoral p73/química , Proteína Tumoral p73/genética , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA