Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Blood Adv ; 3(9): 1519-1532, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31076408

RESUMO

Sickle cell anemia (SCA) is caused by a point mutation in the ß-globin gene that leads to devastating downstream consequences including chronic hemolytic anemia, episodic vascular occlusion, and cumulative organ damage resulting in death. SCA patients show coagulation activation and inflammation even in the absence of vascular occlusion. The coagulation factor fibrinogen is not only central to hemostasis but also plays important roles in pathologic inflammatory processes, in part by engaging neutrophils/macrophages through the αMß2 integrin receptor. To determine whether fibrin(ogen)-mediated inflammation is a driver of SCA-associated pathologies, hematopoietic stem cells from Berkeley sickle mice were transplanted into homozygous Fibγ390-396A mice that express normal levels of a mutant form of fibrin(ogen) that does not engage αMß2 Fibγ390-396A mice with SCA displayed an impressive reduction of reactive oxygen species (ROS) in white blood cells (WBCs), decreased circulating inflammatory cytokines/chemokines, and significantly improved SCA-associated glomerular pathology highlighted by reduced glomerulosclerosis, inflammatory cell infiltration, ischemic lesions, mesangial thickening, mesangial hypercellularity, and glomerular enlargement. In addition, Fibγ390-396A mice with SCA had improved glomerular protective responses and podocyte/mesangial transcriptional signatures that resulted in reduced albuminuria. Interestingly, the fibrinogen γ390-396A mutation had a negligible effect on cardiac, lung, and liver functions and pathologies in the context of SCA over a year-long observation period. Taken together, our data support that fibrinogen significantly contributes to WBC-driven inflammation and ROS production, which is a key driver of SCA-associated glomerulopathy, and may represent a novel therapeutic target against irreversible kidney damage in SCA.


Assuntos
Anemia Falciforme/patologia , Fibrinogênio/metabolismo , Rim/patologia , Antígeno de Macrófago 1/metabolismo , Motivos de Aminoácidos , Animais , Sítios de Ligação , Transplante de Medula Óssea , Quimiocinas/sangue , Creatinina/sangue , Citocinas/sangue , Modelos Animais de Doenças , Feminino , Fibrinogênio/química , Fibrinogênio/genética , Leucócitos/citologia , Leucócitos/metabolismo , Antígeno de Macrófago 1/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutagênese , Espécies Reativas de Oxigênio/metabolismo
2.
J Cell Mol Med ; 23(5): 3402-3416, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30869196

RESUMO

Mindin has a broad spectrum of roles in the innate immune system, including in macrophage migration, antigen phagocytosis and cytokine production. Mindin functions as a pattern-recognition molecule for microbial pathogens. However, the underlying mechanisms of mindin-mediated phagocytosis and its exact membrane receptors are not well established. Herein, we generated mindin-deficient mice using the CRISPR-Cas9 system and show that peritoneal macrophages from mindin-deficient mice were severely defective in their ability to phagocytize E  coli. Phagocytosis was enhanced when E  coli or fluorescent particles were pre-incubated with mindin, indicating that mindin binds directly to bacteria or non-pathogen particles and promotes phagocytosis. We defined that 131 I-labelled mindin binds with integrin Mac-1 (CD11b/CD18), the F-spondin (FS)-fragment of mindin binds with the αM -I domain of Mac-1 and that mindin serves as a novel ligand of Mac-1. Blockade of the αM -I domain of Mac-1 using either a neutralizing antibody or si-Mac-1 efficiently blocked mindin-induced phagocytosis. Furthermore, mindin activated the Syk and MAPK signalling pathways and promoted NF-κB entry into the nucleus. Our data indicate that mindin binds with the integrin Mac-1 to promote macrophage phagocytosis through Syk activation and NF-κB p65 translocation, suggesting that the mindin/Mac-1 axis plays a critical role during innate immune responses.


Assuntos
Proteínas da Matriz Extracelular/metabolismo , Antígeno de Macrófago 1/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Fagocitose , Receptores de Reconhecimento de Padrão/metabolismo , Quinase Syk/metabolismo , Fator de Transcrição RelA/metabolismo , Animais , Sequência de Bases , Núcleo Celular/metabolismo , Células HEK293 , Humanos , Antígeno de Macrófago 1/química , Camundongos , Camundongos Knockout , Fosforilação , Ligação Proteica , Domínios Proteicos , Transporte Proteico , Células RAW 264.7
3.
Front Immunol ; 9: 2716, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30534123

RESUMO

Complement receptors (CR) 3 and 4 belong to the family of beta-2 (CD18) integrins. CR3 and CR4 are often co-expressed in the myeloid subsets of leukocytes, but they are also found in NK cells and activated T and B lymphocytes. The heterodimeric ectodomain undergoes considerable conformational change in order to switch the receptor from a structurally bent, ligand-binding in-active state into an extended, ligand-binding active state. CR3 binds the C3d fragment of C3 in a way permitting CR2 also to bind concomitantly. This enables a hand-over of complement-opsonized antigens from the cell surface of CR3-expressing macrophages to the CR2-expressing B lymphocytes, in consequence acting as an antigen presentation mechanism. As a more enigmatic part of their functions, both CR3 and CR4 bind several structurally unrelated proteins, engineered peptides, and glycosaminoglycans. No consensus motif in the proteinaceous ligands has been established. Yet, the experimental evidence clearly suggest that the ligands are primarily, if not entirely, recognized by a single site within the receptors, namely the metal-ion dependent adhesion site (MIDAS). Comparison of some recent identified ligands points to CR3 as inclined to bind positively charged species, while CR4, by contrast, binds strongly negative-charged species, in both cases with the critical involvement of deprotonated, acidic groups as ligands for the Mg2+ ion in the MIDAS. These properties place CR3 and CR4 firmly within the realm of modern molecular medicine in several ways. The expression of CR3 and CR4 in NK cells was recently demonstrated to enable complement-dependent cell cytotoxicity toward antibody-coated cancer cells as part of biological therapy, constituting a significant part of the efficacy of such treatment. With the flexible principles of ligand recognition, it is also possible to propose a response of CR3 and CR4 to existing medicines thereby opening a possibility of drug repurposing to influence the function of these receptors. Here, from advances in the structural and cellular immunology of CR3 and CR4, we review insights on their biochemistry and functions in the immune system.


Assuntos
Linfócitos B/imunologia , Regulação da Expressão Gênica/imunologia , Integrina alfaXbeta2 , Células Matadoras Naturais/imunologia , Antígeno de Macrófago 1 , Macrófagos/imunologia , Animais , Humanos , Integrina alfaXbeta2/química , Integrina alfaXbeta2/imunologia , Antígeno de Macrófago 1/química , Antígeno de Macrófago 1/imunologia , Relação Estrutura-Atividade
4.
Analyst ; 143(20): 4981-4989, 2018 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-30225497

RESUMO

In this research a method called immobilized cell capillary electrophoresis (ICCE) was established under approximately physiological conditions for rapid screening of anti-tumor metastasis drugs targeting integrin macrophage antigen-1 (MAC-1). In this method, separation and purification of the target receptors on cell membranes was unnecessary, thus, maintaining their natural conformation and bioactivity. MAC-1-, CD11b-, or CD18-overexpressing HEK293 cells (human embryonic kidney) were cultured and immobilized on the inner wall of capillaries as stationary phase, and their interactions with lactosyl derivative Gu-4 (positive control)/dimethylsulfoxide (DMSO; negative control) were studied using ICCE. Using this method, 29 phenylethanoid glycosides from Cistanches Herba were screened, and the binding kinetic parameters (K, ka, kd, and k') of active compounds were calculated, and the specific subunits of MAC-1 were determined. Then, molecular docking studies were performed to discover the direct interaction sites between active compounds and MAC-1, and the order of Glide-calculated Emodel value obtained from the molecular docking study is consistent with that of the binding constants obtained using ICCE. Finally, pharmaceutical efficacy assays in vitro and in vivo were carried out to show that the anti-tumor metastasis activity of the active compound had better pharmaceutical efficacy and lower toxic side effects. The method was verified to be valid and practical for further use, and it is expected that it will be transferred to capillary array electrophoresis for use in high-throughput drug screening.


Assuntos
Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Eletroforese Capilar/métodos , Glicosídeos/farmacologia , Antígeno de Macrófago 1/metabolismo , Metástase Neoplásica/prevenção & controle , Células A549 , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Células Imobilizadas/metabolismo , Cistanche/química , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Glicosídeos/química , Glicosídeos/metabolismo , Células HEK293 , Humanos , Cinética , Antígeno de Macrófago 1/química , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Ligação Proteica
5.
Immunol Lett ; 189: 73-81, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28577901

RESUMO

The expression and role of CR3 (CD11b/CD18) and CR4 (CD11c/CD18) in B cells are not yet explored in contrast to myeloid cells, where these ß2-integrin type receptors are known to participate in various cellular functions, including phagocytosis, adherence and migration. Here we aimed to reveal the expression and role of CR3 and CR4 in human B cells. In B cells of healthy donors CR3 and CR4 are scarcely expressed. However, two patients with chronic lymphocytic leukemia (CLL) characterized by a peculiar immune-phenotype containing both CD5-positive and CD5-negative B cell populations made possible to study these molecules in distinct B cell subsets. We found that CD11b and CD11c were expressed on both CD5-positive and CD5-negative B cells, albeit to different extents. Our data suggest that these receptors are involved in spreading, since this activity of CpG-activated B cells on fibrinogen could be partially blocked by monoclonal antibodies specific for CD11b or CD11c. CpG-stimulation lead to proliferation of both CD5-positive and CD5-negative B cells of the patients with a less pronounced effect on the CD5-positive cells. In contrast to normal B cells, CLL B cells of both patients reacted to CpG-stimulation with robust IL-10 production. The concomitant, suboptimal stimulus via the BCR and TLR9 exerted either a synergistic enhancing effect or resulted in inhibition of proliferation and IL-10 production of patients' B cells. Our data obtained studying B cells of leukemic patients point to the role of CR3 and probably CR4 in the interaction of tumor cells with the microenvironment and suggest the involvement of IL-10 producing B cells in the pathologic process.


Assuntos
Linfócitos B/fisiologia , Integrina alfaXbeta2/metabolismo , Leucemia Linfocítica Crônica de Células B/imunologia , Antígeno de Macrófago 1/metabolismo , Receptores de Antígenos de Linfócitos B/metabolismo , Idoso , Antígenos CD18/química , Antígenos CD18/metabolismo , Antígenos CD5/metabolismo , Células Cultivadas , Feminino , Regulação da Expressão Gênica , Humanos , Integrina alfaXbeta2/química , Interleucina-10/metabolismo , Antígeno de Macrófago 1/química , Receptor Toll-Like 9/metabolismo , Microambiente Tumoral
6.
Biophys J ; 105(11): 2517-27, 2013 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-24314082

RESUMO

Integrin CD11b/CD18 is a key adhesion receptor that mediates leukocyte migration and immune functions. Leukadherin-1 (LA1) is a small molecule agonist that enhances CD11b/CD18-dependent cell adhesion to its ligand ICAM-1. Here, we used single-molecule force spectroscopy to investigate the biophysical mechanism by which LA1-activated CD11b/CD18 mediates leukocyte adhesion. Between the two distinct populations of CD11b/CD18:ICAM-1 complex that participate in cell adhesion, the cytoskeleton(CSK)-anchored elastic elements and the membrane tethers, we found that LA1 enhanced binding of CD11b/CD18 on K562 cells to ICAM-1 via the formation of long membrane tethers, whereas Mn(2+) additionally increased ICAM-1 binding via CSK-anchored bonds. LA1 activated wild-type and LFA1(-/-) neutrophils also showed longer detachment distances and time from ICAM-1-coated atomic force microscopy tips, but significantly lower detachment force, as compared to the Mn(2+)-activated cells, confirming that LA1 primarily increased membrane-tether bonds to enhance CD11b/CD18:ICAM-1 binding, whereas Mn(2+) induced additional CSK-anchored bond formation. The results suggest that the two types of agonists differentially activate integrins and couple them to the cellular machinery, providing what we feel are new insights into signal mechanotransduction by such agents.


Assuntos
Benzoatos/farmacologia , Membrana Celular/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Antígeno de Macrófago 1/metabolismo , Tioidantoínas/farmacologia , Citoesqueleto de Actina/metabolismo , Sequência de Aminoácidos , Animais , Benzoatos/química , Adesão Celular , Linhagem Celular Tumoral , Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Humanos , Molécula 1 de Adesão Intercelular/química , Leucócitos/metabolismo , Antígeno-1 Associado à Função Linfocitária/metabolismo , Antígeno de Macrófago 1/química , Manganês/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Neutrófilos/metabolismo , Ligação Proteica , Tioidantoínas/química
7.
Proc Natl Acad Sci U S A ; 110(41): 16426-31, 2013 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-24065820

RESUMO

Complement receptors (CRs), expressed notably on myeloid and lymphoid cells, play an essential function in the elimination of complement-opsonized pathogens and apoptotic/necrotic cells. In addition, these receptors are crucial for the cross-talk between the innate and adaptive branches of the immune system. CR3 (also known as Mac-1, integrin αMß2, or CD11b/CD18) is expressed on all macrophages and recognizes iC3b on complement-opsonized objects, enabling their phagocytosis. We demonstrate that the C3d moiety of iC3b harbors the binding site for the CR3 αI domain, and our structure of the C3d:αI domain complex rationalizes the CR3 selectivity for iC3b. Based on extensive structural analysis, we suggest that the choice between a ligand glutamate or aspartate for coordination of a receptor metal ion-dependent adhesion site-bound metal ion is governed by the secondary structure of the ligand. Comparison of our structure to the CR2:C3d complex and the in vitro formation of a stable CR3:C3d:CR2 complex suggests a molecular mechanism for the hand-over of CR3-bound immune complexes from macrophages to CR2-presenting cells in lymph nodes.


Assuntos
Complemento C3b/metabolismo , Imunidade Inata/imunologia , Antígeno de Macrófago 1/química , Macrófagos/metabolismo , Modelos Moleculares , Proteínas Opsonizantes/química , Fagocitose/imunologia , Biologia Computacional , Escherichia coli , Humanos , Antígeno de Macrófago 1/metabolismo , Proteínas Opsonizantes/metabolismo , Conformação Proteica
8.
Ann Rheum Dis ; 71(12): 2028-34, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22586164

RESUMO

OBJECTIVES: The rs1143679 variant of ITGAM, encoding the R77H variant of CD11b (part of complement receptor 3; CR3), is among the strongest genetic susceptibility effects in human systemic lupus erythematosus (SLE). The authors aimed to demonstrate R77H function in ex-vivo human cells. METHODS: Monocytes/monocyte-derived macrophages from healthy volunteers homozygous for either wild type (WT) or 77H CD11b were studied. The genotype-specific expression of CD11b, and CD11b activation using conformation-specific antibodies were measured. Genotype-specific differences in iC3b-mediated phagocytosis, adhesion to a range of ligands and the secretion of cytokines following CR3 ligation were studied. The functionality of R77H was confirmed by replicating findings in COS7 cells expressing variant-specific CD11b. RESULTS: No genotype-specific difference in CD11b expression or in the expression of CD11b activation epitopes was observed. A 31% reduction was observed in the phagocytosis of iC3b opsonised sheep erythrocytes (sRBC(iC3b)) by 77H cells (p=0.003) and reduced adhesion to a range of ligands: notably a 24% reduction in adhesion to iC3b (p=0.014). In transfected COS7 cells, a 42% reduction was observed in phagocytosis by CD11b (77H)-expressing cells (p=0.004). A significant inhibition was seen in the release of Toll-like receptor 7/8-induced pro-inflammatory cytokines from WT monocytes when CR3 was pre-engaged using sRBC(iC3b), but no inhibition in 77H monocytes resulting in a significant difference between genotypes (interleukin (IL)-1ß p=0.030; IL-6 p=0.029; tumour necrosis factor alpha p=0.027). CONCLUSIONS: The R77H variant impairs a broad range of CR3 effector functions in human monocytes. This study discusses how perturbation of this pathway may predispose to SLE.


Assuntos
Antígeno CD11b/genética , Antígeno CD11b/imunologia , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/imunologia , Antígeno de Macrófago 1/imunologia , Monócitos/imunologia , Adulto , Animais , Antígeno CD11b/química , Células COS , Adesão Celular/imunologia , Chlorocebus aethiops , Citocinas/metabolismo , Fibroblastos/citologia , Expressão Gênica/imunologia , Predisposição Genética para Doença/genética , Variação Genética , Genótipo , Homozigoto , Humanos , Antígeno de Macrófago 1/química , Macrófagos/citologia , Macrófagos/imunologia , Monócitos/citologia , Fagocitose/imunologia , Conformação Proteica , Estrutura Terciária de Proteína
9.
Matrix Biol ; 31(1): 66-77, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22100634

RESUMO

The leukocyte ß2 integrin Mac-1 (CD11b/CD18) plays a pivotal role in inflammation and host defense. To develop peptide antagonists selectively inhibiting the function of Mac-1, we used a random constrained 6-mer (cys-6aa-cys) peptide library to map the structural features of CD11b, by determining the epitope of neutralizing monoclonal antibody mAb 44a (anti-CD11b). We have used a stringent phage display strategy, which resulted in the identification of one disulfide C-RLKEKH-C constrained peptide by direct biopanning of library on decreasing amounts of purified mAb 44a. The selected peptide mimics a discontinuous epitope, a peculiar shape on the CD11b-I-domain surface. Competitive ELISA experiments with different Mac-1 ligands showed that C-RLKEKH-C is able to bind to fibrinogen, iC3b, and C1q. Furthermore, the monomeric circular peptide C-RLKEKH-C, was effective in blocking the interaction between (125)I-fibrinogen and Mac-1 (IC(50)=3.35±0.1×10(-6)M), and inhibited the adhesion of human neutrophils to fibrinogen and iC3b. These data provide information about the relative location of amino acids on the I-domain surface using mAb 44a imprint of the CD11b protein. The derived mimotope may help in the design of future anti-inflammatory therapeutic agents that can act as specific therapeutic agents targeting PMNs mediated inflammation.


Assuntos
Antígeno CD11b/genética , Antígenos CD18/genética , Mapeamento de Epitopos/métodos , Fibrinogênio/metabolismo , Antígeno de Macrófago 1/genética , Peptídeos/metabolismo , Receptores de Fibrinogênio/antagonistas & inibidores , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Anticorpos Monoclonais , Sítios de Ligação , Antígeno CD11b/metabolismo , Antígenos CD18/química , Antígenos CD18/metabolismo , Adesão Celular , Complemento C3b/metabolismo , Humanos , Antígeno de Macrófago 1/química , Antígeno de Macrófago 1/metabolismo , Neutrófilos/metabolismo , Biblioteca de Peptídeos , Peptídeos/antagonistas & inibidores , Peptídeos/química , Peptídeos Cíclicos/antagonistas & inibidores , Ligação Proteica
10.
J Biol Chem ; 286(51): 43842-43854, 2011 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-22052909

RESUMO

Integrins are heterodimeric (α and ß subunits) signal transducer proteins involved in cell adhesions and migrations. The cytosolic tails of integrins are essential for transmitting bidirectional signaling and also implicated in maintaining the resting states of the receptors. In addition, cytosolic tails of integrins often undergo post-translation modifications like phosphorylation. However, the consequences of phosphorylation on the structures and interactions are not clear. The leukocyte-specific integrin αMß2 is essential for myeloid cell adhesion, phagocytosis, and degranulation. In this work, we determined solution structures of the myristoylated cytosolic tail of αM and a Ser phosphorylated variant in dodecylphosphocholine micelles by NMR spectroscopy. Furthermore, the interactions between non-phosphorylated and phosphorylated αM tails with ß2 tail were investigated by NMR and fluorescence resonance energy transfer (FRET). The three-dimensional structures of the 24-residue cytosolic tail of αM or phosphorylated αM are characterized by an N-terminal amphipathic helix and a loop at the C terminus. The residues at the loop are involved in packing interactions with the hydrophobic face of the helix. 15N-1H heteronuclear single quantum coherence experiments identified residues of αM and ß2 tails that may be involved in the formation of a tail-tail heterocomplex. We further examined interactions between myristoylated ß2 tail in dodecylphosphocholine micelles with dansylated αM tail peptides by FRET. These studies revealed enhanced interactions between αM or phosphorylated αM tails with ß2 tail with Kd values ∼5.2±0.6 and ∼4.4±0.7 µm, respectively. Docked structures of tail-tail complexes delineated that the αM/ß2 interface at the cytosolic region could be sustained by a network of polar interactions, ionic interactions, and/or hydrogen bonds.


Assuntos
Antígeno de Macrófago 1/química , Dicroísmo Circular/métodos , Citosol/metabolismo , Dimerização , Transferência Ressonante de Energia de Fluorescência , Humanos , Espectroscopia de Ressonância Magnética/métodos , Micelas , Peptídeos/química , Fosforilação , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Transdução de Sinais , Espectrofotometria/métodos
11.
J Biol Chem ; 286(35): 30535-30541, 2011 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-21676865

RESUMO

The LDL receptor-related protein 1 (LRP1) is a large endocytic receptor that controls macrophage migration in part by interacting with ß(2) integrin receptors. However, the molecular mechanism underlying LRP1 integrin recognition is poorly understood. Here, we report that LRP1 specifically recognizes α(M)ß(2) but not its homologous receptor α(L)ß(2). The interaction between these two cellular receptors in macrophages is significantly enhanced upon α(M)ß(2) activation by LPS and is mediated by multiple regions in both LRP1 and α(M)ß(2). Specifically, we find that both the heavy and light chains of LRP1 are involved in α(M)ß(2) binding. Within the heavy chain, the binding is mediated primarily via the second and fourth ligand binding repeats. For α(M)ß(2), we find that the α(M)-I domain represents a major LRP1 recognition site. Indeed, substitution of the I domain of the α(L)ß(2) receptor with that of α(M) confers the α(L)ß(2) receptor with the ability to interact with LRP1. Furthermore, we show that residues (160)EQLKKSKTL(170) within the α(M)-I domain represent a major LRP1 recognition site. Given that perturbation of this specific sequence leads to altered adhesive activity of α(M)ß(2), our finding suggests that binding of LRP1 to α(M)ß(2) could alter integrin function. Indeed, we further demonstrate that the soluble form of LRP1 (sLRP1) inhibits α(M)ß(2)-mediated adhesion of cells to fibrinogen. These studies suggest that sLRP1 may attenuate inflammation by modulating integrin function.


Assuntos
Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/química , Antígeno de Macrófago 1/química , Animais , Sítios de Ligação , Adesão Celular , Linhagem Celular , Fibrinogênio/química , Humanos , Cinética , Ligantes , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Macrófagos/metabolismo , Camundongos , Mutação , Ligação Proteica , Estrutura Terciária de Proteína , Solubilidade , Transfecção
12.
FEBS Lett ; 580(18): 4435-42, 2006 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-16854414

RESUMO

Integrins are type I heterodimeric (alpha/beta) cell adhesion molecules. They trigger cell-signaling by recruiting cytosolic molecules to their cytoplasmic tails. Integrin alpha cytoplasmic tail contributes towards integrin function specificity, an important feature of integrins having different alpha subunits but sharing the same beta subunit. Herein, we show that the src family kinase Hck co-capped selectively with leukocyte integrin alpha(M)beta(2) but not alpha(L)beta(2) or alpha(X)beta(2). This was disrupted when the alpha(M) cytoplasmic tail was substituted with that of alpha(L) or alpha(X). Co-capping was recovered by alpha(L) or alpha(X) cytoplasmic tail truncation or forced separation of the alpha and beta cytoplasmic tails via salt-bridge disruption.


Assuntos
Antígeno de Macrófago 1/metabolismo , Proteínas Proto-Oncogênicas c-hck/metabolismo , Sequência de Aminoácidos , Animais , Adesão Celular , Linhagem Celular , Humanos , Integrina alfaXbeta2/análise , Integrina alfaXbeta2/química , Integrina alfaXbeta2/metabolismo , Antígeno-1 Associado à Função Linfocitária/análise , Antígeno-1 Associado à Função Linfocitária/química , Antígeno-1 Associado à Função Linfocitária/metabolismo , Antígeno de Macrófago 1/análise , Antígeno de Macrófago 1/química , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Fagossomos/enzimologia , Proteínas Proto-Oncogênicas c-hck/análise , Deleção de Sequência
13.
Infect Immun ; 73(11): 7317-23, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16239529

RESUMO

CR3 (CD11b/CD18) is expressed on neutrophils, and the engagement of CR3 can promote phagocytosis. CR3 serves as the receptor for the Bordetella pertussis adhesin filamentous hemagglutinin (FHA) and for the adenylate cyclase toxin (ACT), which blocks neutrophil function. The influence of CR3, FHA, and ACT on the phagocytosis of B. pertussis by human neutrophils was examined. The surface expression and function of CR3 are regulated. Tumor necrosis factor alpha (TNF-alpha) and gamma interferon (IFN-gamma) increased CR3 surface expression, but only TNF-alpha increased the ability of neutrophils to phagocytose B. pertussis, suggesting that elevated CR3 expression alone is not sufficient to promote phagocytosis. Purified FHA and pertussis toxin also increased the surface expression of CR3 on neutrophils, while ACT and the B subunit of pertussis toxin did not affect CR3 expression. FHA-mediated attachment to CR3 can lead to phagocytosis, especially in the absence of ACT. FHA mutants failed to attach and were not phagocytosed by neutrophils. Similarly, an antibody to CR3 blocked both attachment and phagocytosis. The addition of exogenous FHA enhanced the attachment and phagocytosis of wild-type B. pertussis and FHA mutants. Mutants lacking the SphB1 protease, which cleaves FHA and allows the release of FHA from the bacterial surface, were phagocytosed more efficiently than wild-type bacteria. ACT mutants were efficiently phagocytosed, but wild-type B. pertussis or ACT mutants plus exogenous ACT resisted phagocytosis. These studies suggest that the activation and surface expression of CR3, FHA expression, and the efficiency of ACT internalization all influence whether B. pertussis will be phagocytosed and ultimately killed by neutrophils.


Assuntos
Bordetella pertussis/imunologia , Antígeno de Macrófago 1/fisiologia , Neutrófilos/citologia , Neutrófilos/imunologia , Fagocitose/fisiologia , Adesinas Bacterianas/fisiologia , Aderência Bacteriana , Proteínas de Bactérias/fisiologia , Antígeno CD11b/genética , Antígeno CD11b/metabolismo , Antígenos CD18/genética , Antígenos CD18/metabolismo , Células Cultivadas , Regulação da Expressão Gênica , Humanos , Interferon gama/fisiologia , Antígeno de Macrófago 1/química , Antígeno de Macrófago 1/genética , Ligação Proteica , Estrutura Terciária de Proteína , Temperatura , Fator de Necrose Tumoral alfa/fisiologia , Fatores de Virulência de Bordetella
14.
J Biol Chem ; 280(9): 8324-31, 2005 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-15615722

RESUMO

Integrin activation has been postulated to occur in part via conformational changes in the I domain of the beta subunit (the betaI domain), especially near the F-alpha(7) loop, in response to "inside-out" signaling. However, direct evidence for a role of the F-alpha(7) loop in ligand binding and activity modulation is still lacking. Here, we report our finding that the F-alpha(7) loop (residues 344-358) within the beta(2)I domain has dual functions in ligand binding by alpha(M)beta(2). On the one hand, it supports intercellular adhesion molecule 1 (ICAM-1) binding to alpha(M)beta(2) directly as part of a recognition interface formed by five noncontiguous segments (Pro(192)-Glu(197), Asn(213)-Glu(220), Leu(225)-Leu(230), Ser(324)-Thr(329), and Glu(344)-Asp(348)) on the apex of the beta(2)I domain. On the other hand, it controls the open and closed conformation of the alpha(M)beta(2) receptor, thereby indirectly affecting alpha(M)beta(2) binding to other ligands. Switching the five constituent sequences of the ICAM-1-binding site within the beta(2)I domain to their beta(1) counterparts destroyed ICAM-1 binding but had no effect on the gross conformations of the receptor. Of the five ICAM-1 binding-defective mutants, four had normal or even stronger interaction with Fg and C3bi, as reported in our previous study. Synthetic peptides derived from the identified site inhibited alpha(M)beta(2)-ICAM-1 interaction and supported direct binding to ICAM-1. Most importantly, perturbation of the F-alpha(7) loop caused conformational changes within the beta(2)I domain, which was further propagated to other regions of alpha(M)beta(2). Altogether, our data demonstrate that inside-out signaling could modulate ligand binding directly by changing the ligand-binding pocket per se and/or indirectly by inducing multiple conformational changes within the receptor.


Assuntos
Antígeno de Macrófago 1/química , Anticorpos Monoclonais/química , Sítios de Ligação , Adesão Celular , Linhagem Celular , Separação Celular , DNA Complementar/metabolismo , Dimerização , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Cinética , Ligantes , Antígeno de Macrófago 1/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Peptídeos/química , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Transdução de Sinais
15.
J Biol Chem ; 279(43): 44897-906, 2004 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-15304494

RESUMO

The leukocyte integrin alphaMbeta2 (Mac-1) is a multiligand receptor that mediates a range of adhesive reactions of leukocytes during the inflammatory response. This integrin binds the coagulation protein fibrinogen providing a key link between thrombosis and inflammation. However, the mechanism by which alphaMbeta2 binds fibrinogen remains unknown. Previous studies indicated that a model in which two fibrinogen gammaC domain sequences, P1 (gamma190-202) and P2 (gamma377-395), serve as the alphaMbeta2 binding sites cannot fully account for recognition of fibrinogen by integrin. Here, using surface plasmon resonance, we examined the interaction of the ligand binding alphaMI-domain of alphaMbeta2 with the D fragment of fibrinogen and showed that this ligand is capable of associating with several alphaMI-domain molecules. To localize the alternative alphaMI-domain binding sites, we screened peptide libraries covering the complete sequences of the gammaC and betaC domains, comprising the majority of the D fragment structure, for alphaMI-domain binding. In addition to the P2 and P1 peptides, the alphaMI-domain bound to many other sequences in the gammaC and betaC scans. Similar to P1 and P2, synthetic peptides derived from gammaC and betaC were efficient inhibitors of alphaMbeta2-mediated cell adhesion and were able to directly support adhesion suggesting that they contain identical recognition information. Analyses of recognition specificity using substitutional peptide libraries demonstrated that the alphaMI-domain binding depends on basic and hydrophobic residues. These findings establish a new model of alphaMbeta2 binding in which the alphaMI-domain interacts with multiple sites in fibrinogen and has the potential to recognize numerous sequences. This paradigm may have implications for mechanisms of promiscuity in ligand binding exhibited by integrin alphaMbeta2.


Assuntos
Fibrinogênio/química , Antígeno de Macrófago 1/química , Algoritmos , Sequência de Aminoácidos , Sítios de Ligação , Adesão Celular , Linhagem Celular , Análise Mutacional de DNA , Biblioteca Gênica , Humanos , Concentração Inibidora 50 , Ligantes , Antígeno de Macrófago 1/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/química , Ligação Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Ressonância de Plasmônio de Superfície , Fatores de Tempo
16.
J Immunol ; 173(2): 1284-91, 2004 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-15240721

RESUMO

The adhesion of neutrophils to endothelial cells is a central event leading to diapedesis and involves the binding of the I-domain of beta(2) integrins (CD11/CD18) to endothelial ICAMs. In addition to the I-domain, the beta(2) integrin complement receptor 3 (CR3) (CD11b/CD18) contains a lectin-like domain (LLD) that can alter leukocyte functions such as chemotaxis and cytotoxicity. The present study demonstrates that, in contrast to the CR3 I-domain, Ab blockade of the CR3 LLD has no role in mediating neutrophil-induced loss of endothelial barrier function. However, activation of CR3 with the LLD agonist beta-glucan protects the barrier function of endothelial cells in the presence of activated neutrophils and reduces transendothelial migration without affecting adhesion of the neutrophils to the endothelium. The LLD site-specific mAb VIM12 obviates beta-glucan protection while activation of the LLD by VIM12 cross-linking mimics the beta-glucan response by both preserving endothelial barrier function and reducing neutrophil transendothelial migration. beta-glucan has no direct effect on endothelial cell function in the absence of activated neutrophils. These findings demonstrate that signaling through the CR3 LLD prevents neutrophil-induced loss of endothelial barrier function and reduces diapedesis. This suggests that the LLD may be a suitable target for oligosaccharide-based anti-inflammatory therapeutics.


Assuntos
Células Endoteliais/fisiologia , Antígeno de Macrófago 1/fisiologia , Neutrófilos/fisiologia , Quimiotaxia de Leucócito , Glucanos/fisiologia , Humanos , Lectinas , Antígeno de Macrófago 1/química , Antígeno de Macrófago 1/imunologia , Ativação de Neutrófilo , Estrutura Terciária de Proteína/fisiologia , Fator de Necrose Tumoral alfa/fisiologia
17.
Blood ; 103(3): 1105-13, 2004 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-14512306

RESUMO

Two novel CD18 mutations were identified in a patient who was a compound heterozygote with type 1 leukocyte adhesion deficiency and whose phenotype was typical except that he exhibited hypertrophic scarring. A deletion of 36 nucleotides in exon 12 (1622del36) predicted the net loss of 12 amino acid (aa) residues in the third cysteine-rich repeat of the extracellular stalk region (mut-1). A nonsense mutation in exon 15 (2200G>T), predicted a 36-aa truncation of the cytoplasmic domain (mut-2). Lymphocyte function-associated antigen 1 (LFA-1) and macrophage antigen-1 (Mac-1) containing the mut-1 beta(2) subunit were expressed at very low levels compared with wild-type (wt) beta(2). Mac-1 and LFA-1 expression with the mut-2 beta(2) subunit were equivalent to results with wt beta(2). Binding function of Mac-1 with mut-2 beta(2) was equivalent to that with wt beta(2). However, binding function of LFA-1 with the mut-2 beta(2) subunit was reduced by 50% versus wt beta(2). It was concluded that (1) the portion of the CD18 stalk region deleted in mut-1 is critical for beta(2) integrin heterodimer expression but the portion of the cytoplasmic domain truncated in mut-2 is not; and (2) the mut-2 cytoplasmic domain truncation impairs binding function of LFA-1 but not of Mac-1. Studies with the patient's neutrophils (PMNs) were consistent with functional impairment of LFA-1 but not of Mac-1.


Assuntos
Antígenos CD18/química , Antígenos CD18/genética , Códon sem Sentido , Síndrome da Aderência Leucocítica Deficitária/genética , Síndrome da Aderência Leucocítica Deficitária/imunologia , Deleção de Sequência , Adulto , Sequência de Aminoácidos , Animais , Sequência de Bases , Antígenos CD18/metabolismo , Células COS , Estudos de Casos e Controles , Adesão Celular , DNA Complementar/genética , Heterozigoto , Humanos , Técnicas In Vitro , Molécula 1 de Adesão Intercelular/metabolismo , Síndrome da Aderência Leucocítica Deficitária/classificação , Antígeno-1 Associado à Função Linfocitária/metabolismo , Antígeno de Macrófago 1/química , Antígeno de Macrófago 1/metabolismo , Masculino , Dados de Sequência Molecular , Fenótipo , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Formação de Roseta , Transfecção
18.
J Biol Chem ; 278(36): 34395-402, 2003 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-12816955

RESUMO

Interactions between the complement degradation product C3bi and leukocyte integrin alpha M beta 2 are critical to phagocytosis of opsonized particles in host defense against foreign pathogens and certain malignant cells. Previous studies have mapped critical residues for C3bi binding to the I-domains of the alpha M and the beta2 subunits. However, the role of the alpha M beta-propeller in ligand binding remains less well defined, and the functional residues are still unknown. In the present study, we studied the function of the alpha M beta-propeller in specific ligand recognition by alpha M beta 2 using a number of different approaches, and we report four major findings. 1) Substitution of five individual segments (Asp398-Ala402, Leu412-Leu419, Tyr426-Met434, Phe435-Glu443, and Ser444-Thr451) within the W4 blade of the beta-propeller with their homologous counterparts in integrin alpha2 abrogated C3bi binding, whereas substitution of eight other segments outside this blade had no effect. 2) These five mutants defective in C3bi binding supported strong alpha M beta 2-mediated and cation-dependent cell adhesion to fibrinogen, suggesting that the conformations of these five defective mutants were intact. 3) Polyclonal antibodies recognizing sequences within the W4 blade significantly blocked C3bi binding by wild-type alpha M beta 2. 4) A synthetic peptide corresponding to Gln424-Gly440 within W4 interacted directly with C3bi. In conclusion, our data demonstrate that the W4 blade (residues Asp398 to Thr451) is involved specifically in C3bi but not fibrinogen binding to alpha M beta 2. Altogether, our study supports a model in which three separate domains of alpha M beta 2 (the alpha MI-domain, the alpha M beta-propeller, and the beta 2I-domain) function together and contribute to the formation of the C3bi-binding site.


Assuntos
Complemento C3b/química , Antígeno de Macrófago 1/química , Sequência de Aminoácidos , Sítios de Ligação , Cátions , Adesão Celular , Linhagem Celular , Separação Celular , Complemento C3b/genética , Relação Dose-Resposta a Droga , Fibrinogênio/química , Citometria de Fluxo , Humanos , Ligantes , Antígeno de Macrófago 1/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Peptídeos/química , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos
19.
J Biol Chem ; 278(28): 25808-15, 2003 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-12736251

RESUMO

CCN1 (cysteine-rich 61) and CCN2 (connective tissue growth factor) are growth factor-inducible immediate-early gene products found in atherosclerotic lesions, restenosed blood vessels, and healing cutaneous wounds. Both CCN proteins have been shown to support cell adhesion and induce cell migration through interaction with integrin receptors. Recently, we have identified integrin alphaMbeta2 as the major adhesion receptor mediating monocyte adhesion to CCN1 and CCN2 and have shown that the alphaMI domain binds specifically to both proteins. In the present study, we demonstrated that activated monocytes adhered to a synthetic peptide (CCN1-H2, SSVKKYRPKYCGS) derived from a conserved region within the CCN1 C-terminal domain, and this process was blocked by the anti-alphaM monoclonal antibody 2LPM19c. Consistently, a glutathione S-transferase (GST) fusion protein containing the alphaMI domain (GST-alphaMI) bound to immobilized CCN1-H2 as well as to the corresponding H2 sequence in CCN2 (CCN2-H2, TSVKTYRAKFCGV). By contrast, a scrambled CCN1-H2 peptide and an 18-residue peptide derived from an adjacent sequence of CCN1-H2 failed to support monocyte adhesion or alphaMI domain binding. To confirm that the CCN1-H2 sequence within the CCN1 protein mediates alphaMbeta2 interaction, we developed an anti-peptide antibody against CCN1-H2 and showed that it specifically blocked GST-alphaMI binding to intact CCN1. Collectively, these results identify the H2 sequence in CCN1 and CCN2 as a novel integrin alphaMbeta2 binding motif that bears no apparent homology to any alphaMbeta2 binding sequence reported to date.


Assuntos
Arteriosclerose/metabolismo , Proteínas Imediatamente Precoces/química , Peptídeos e Proteínas de Sinalização Intercelular/química , Antígeno de Macrófago 1/química , Cicatrização , Motivos de Aminoácidos , Sequência de Aminoácidos , Sítios de Ligação , Adesão Celular , Proteína Rica em Cisteína 61 , Relação Dose-Resposta a Droga , Glutationa Transferase/metabolismo , Humanos , Proteínas Imediatamente Precoces/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Antígeno de Macrófago 1/metabolismo , Manganês/metabolismo , Manganês/farmacologia , Dados de Sequência Molecular , Monócitos/metabolismo , Peptídeos/química , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/metabolismo
20.
Proc Natl Acad Sci U S A ; 99(26): 16737-41, 2002 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-12466503

RESUMO

Conformational movement of the C-terminal alpha7 helix in the integrin inserted (I) domain, a major ligand-binding domain that adopts an alpha/beta Rossmann fold, has been proposed to allosterically regulate ligand-binding activity. Disulfide bonds were engineered here to reversibly lock the position of the alpha7 helix in one of two alternative conformations seen in crystal structures, termed open and closed. Our results show that pairs of residues with Cbeta atoms farther apart than optimal for disulfide bond stereochemistry can be successfully replaced by cysteine, suggesting that backbone movement accommodates disulfide formation. We also find more success with substituting partially exposed than buried residues. Disulfides stabilizing the open conformation resulted in constitutively active alphaMbeta2 heterodimers and isolated alphaM inserted domains, which were reverted to an inactive form by dithiothreitol reduction. By contrast, a disulfide stabilizing the closed conformation resulted in inactive alphaMbeta2 that was resistant to activation but became activatable after dithiothreitol treatment.


Assuntos
Antígeno de Macrófago 1/química , Dimerização , Dissulfetos/química , Ditiotreitol/farmacologia , Humanos , Antígeno de Macrófago 1/fisiologia , Conformação Proteica , Engenharia de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA