Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 551
Filtrar
1.
Eur J Med Chem ; 275: 116604, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38917665

RESUMO

The endogenous opioid system regulates pain through local release of neuropeptides and modulation of their action on opioid receptors. However, the effect of opioid peptides, the enkephalins, is short-lived due to their rapid hydrolysis by enkephalin-degrading enzymes. In turn, an innovative approach to the management of pain would be to increase the local concentration and prolong the stability of enkephalins by preventing their inactivation by neural enkephalinases such as puromycin-sensitive aminopeptidase (PSA). Our previous structure-activity relationship studies offered the S-diphenylmethyl cysteinyl derivative of puromycin (20) as a nanomolar inhibitor of PSA. This chemical class, however, suffered from undesirable metabolism to nephrotoxic puromycin aminonucleoside (PAN). To prevent such toxicity, we designed and synthesized 5'-chloro substituted derivatives. The compounds retained the PSA inhibitory potency of the corresponding 5'-hydroxy analogs and had improved selectivity toward PSA. In vivo treatment with the lead compound 19 caused significantly reduced pain response in antinociception assays, alone and in combination with Met-enkephalin. The analgesic effect was reversed by the opioid antagonist naloxone, suggesting the involvement of opioid receptors. Further, PSA inhibition by compound 19 in brain slices caused local increase in endogenous enkephalin levels, corroborating our rationale. Pharmacokinetic assessment of compound 19 showed desirable plasma stability and identified the cysteinyl sulfur as the principal site of metabolic liability. We gained additional insight into inhibitor-PSA interactions by molecular modeling, which underscored the importance of bulky aromatic amino acid in puromycin scaffold. The results of this study strongly support our rationale for the development of PSA inhibitors for effective pain management.


Assuntos
Transdução de Sinais , Animais , Relação Estrutura-Atividade , Transdução de Sinais/efeitos dos fármacos , Masculino , Camundongos , Estrutura Molecular , Relação Dose-Resposta a Droga , Humanos , Antígenos CD13/antagonistas & inibidores , Antígenos CD13/metabolismo , Encefalinas/química , Encefalinas/metabolismo , Encefalinas/farmacologia , Puromicina/farmacologia , Puromicina/metabolismo , Puromicina/química , Analgésicos/farmacologia , Analgésicos/química , Aminopeptidases/antagonistas & inibidores , Aminopeptidases/metabolismo , Ratos
2.
Sci Rep ; 14(1): 12549, 2024 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822041

RESUMO

Adult T-cell leukemia/lymphoma (ATL) occurs after human T-cell leukemia virus type-1 (HTLV-1) infection with a long latency period exceeding several decades. This implies the presence of immune evasion mechanisms for HTLV-1-infected T cells. Although ATL cells have a CD4+CD25+ phenotype similar to that of regulatory T cells (Tregs), they do not always possess the immunosuppressive functions of Tregs. Factors that impart effective immunosuppressive functions to HTLV-1-infected cells may exist. A previous study identified a new CD13+ Treg subpopulation with enhanced immunosuppressive activity. We, herein, describe the paired CD13- (designated as MT-50.1) and CD13+ (MT-50.4) HTLV-1-infected T-cell lines with Treg-like phenotype, derived from the peripheral blood of a single patient with lymphoma-type ATL. The cell lines were found to be derived from HTLV-1-infected non-leukemic cells. MT-50.4 cells secreted higher levels of immunosuppressive cytokines, IL-10 and TGF-ß, expressed higher levels of Foxp3, and showed stronger suppression of CD4+CD25- T cell proliferation than MT-50.1 cells. Furthermore, the CD13 inhibitor bestatin significantly attenuated MT-50.4 cell growth, while it did not for MT-50.1 cells. These findings suggest that CD13 expression may be involved in the increased Treg-like activity of MT-50.4 cells. Hence, MT-50.4 cells will be useful for in-depth studies of CD13+Foxp3+ HTLV-1-infected cells.


Assuntos
Antígenos CD13 , Vírus Linfotrópico T Tipo 1 Humano , Leucemia-Linfoma de Células T do Adulto , Linfócitos T Reguladores , Humanos , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Vírus Linfotrópico T Tipo 1 Humano/imunologia , Leucemia-Linfoma de Células T do Adulto/imunologia , Leucemia-Linfoma de Células T do Adulto/metabolismo , Leucemia-Linfoma de Células T do Adulto/virologia , Leucemia-Linfoma de Células T do Adulto/patologia , Antígenos CD13/metabolismo , Infecções por HTLV-I/imunologia , Infecções por HTLV-I/virologia , Linhagem Celular
3.
BMC Cancer ; 24(1): 369, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519889

RESUMO

CD13 (APN) is an Alanyl-Aminopeptidase with diverse functions. The role of CD13 for gliomas is still unknown. In this study, data of glioma patients obtained by TCGA and CGGA databases were used to evaluate the survival rate and prognostic value of CD13 expression level. Protein expression of CD13 was confirmed by immunofluorescence staining of fresh patient tissues. Eight human glioblastoma cell lines were studied by RT-PCR, Western Blot, immunofluorescence staining and flow cytometry to define CD13 expression. Cell lines with different CD13 expression status were treated with a CD13 inhibitor, bestatin, and examined by MTT, scratch and colony formation assaysas well as by apoptosis assay and Western Blots. Bioinformatics analysis indicated that patients with high expression of CD13 had poor survival and prognosis. Additionally, CD13 protein expression was positively associated with clinical malignant characteristics. Investigated glioblastoma cell lines showed distinct expression levels and subcellular localization of CD13 with intracellular enrichment. Bestatin treatment reduced proliferation, migration and colony formation of glioma cells in a CD13-dependent manner while apoptosis was increased. In summary, CD13 has an impact on glioma patient survival and is important for the main function of specific glioma cells.


Assuntos
Glioblastoma , Glioma , Humanos , Apoptose , Antígenos CD13/genética , Antígenos CD13/metabolismo , Linhagem Celular Tumoral , Glioblastoma/genética , Glioma/genética
4.
Vet Res Commun ; 48(1): 357-366, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37707657

RESUMO

Canine seminal plasma is a complex fluid containing proteins, peptides, enzymes, hormones as well as extracellular vesicles that are involved in many physiological and pathological processes including reproduction. We examined the expression of the extracellular vesicles surface antigens Aminopeptidase-N (CD13) and Dipeptidyl peptidase IV (CD26) by flow cytometry. For this study, third fraction of the ejaculate, from fertile adult male German Shepherd dogs, was manually collected twice, two days apart. FACS analyses revealed that CD13 and CD26 are co-expressed on the 69.3 ± 3.7% of extracellular vesicles and only a 2.0 ± 0.5% of extracellular vesicles express CD26 alone. On the other hand, 28.6 ± 3.6% of seminal EVs express CD13 alone. Our results agree with the hypothesis that CD26 needs to be co-expressed with other signal-transducing molecules, while CD13, can perform functions independently of the presence or co-expression of CD26. The results obtained in normal fertile dogs could represent physiological expression of these enzymes. Therefore, it would be interesting to carry out further studies to evaluate the expression of CD13 and CD26 on extracellular vesicles as biomarker for prostate pathological condition in dogs.


Assuntos
Dipeptidil Peptidase 4 , Sêmen , Cães , Masculino , Animais , Dipeptidil Peptidase 4/genética , Dipeptidil Peptidase 4/metabolismo , Antígenos CD13/genética , Antígenos CD13/metabolismo , Citometria de Fluxo/veterinária
5.
Cancer Sci ; 114(12): 4763-4769, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37858605

RESUMO

The phosphorylated form of histone H2AX (γ-H2AX) serves as a commonly utilized biomarker for DNA damage. Based on our previous findings, which demonstrated the formation of γ-H2AX foci as a reliable biomarker for detecting bladder carcinogens in repeated dose 28-day study in rats, we hypothesized that γ-H2AX could also function as a biomarker for detecting hepatocarcinogens. However, we found that γ-H2AX foci formation was not effectively induced by hepatocarcinogens that did not stimulate hepatocyte proliferation. Therefore, we explored alternative biomarkers to detect chemical hepatocarcinogenicity and discovered increased expressions of epithelial cell adhesion molecule (EpCAM/CD326)- and aminopeptidase N (APN/CD13) in the hepatocytes of rats administered various hepatocarcinogens. Significant increases in EpCAM- and APN-positive hepatocytes were observed for eight and five of the 10 hepatocarcinogens, respectively. Notably, five and two of them, respectively, were negative for γ-H2AX foci. These results highlight the potential of EpCAM and APN as useful biomarkers in combination with γ-H2AX for the detection of chemical hepatocarcinogenicity.


Assuntos
Biomarcadores , Antígenos CD13 , Carcinógenos , Molécula de Adesão da Célula Epitelial , Fosfoproteínas , Animais , Ratos , Molécula de Adesão da Célula Epitelial/genética , Molécula de Adesão da Célula Epitelial/metabolismo , Antígenos CD13/genética , Antígenos CD13/metabolismo , Fosfoproteínas/metabolismo , Masculino , Carcinógenos/análise , Carcinógenos/toxicidade , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Biomarcadores/análise
6.
J Virol ; 97(9): e0060123, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37676001

RESUMO

Canine coronavirus-human pneumonia-2018 (CCoV-HuPn-2018) was recently isolated from a child with pneumonia. This novel human pathogen resulted from cross-species transmission of a canine coronavirus. It has been known that CCoV-HuPn-2018 uses aminopeptidase N (APN) from canines, felines, and porcines, but not humans, as functional receptors for cell entry. The molecular mechanism of cell entry in CCoV-HuPn-2018 remains poorly understood. In this study, we demonstrated that among the nine APN orthologs tested, the APN of the Mexican free-tailed bat could also efficiently support CCoV-HuPn-2018 spike (S) protein-mediated entry, raising the possibility that bats may also be an alternative host epidemiologically important for the transmission of this virus. The glycosylation at residue N747 of canine APN is critical for its receptor activity. The gain of glycosylation at the corresponding residues in human and rabbit APNs converted them to functional receptors for CCoV-HuPn-2018. Interestingly, the CCoV-HuPn-2018 spike protein pseudotyped virus infected multiple human cancer cell lines in a human APN-independent manner, whereas sialic acid appeared to facilitate the entry of the pseudotyped virus into human cancer cells. Moreover, while host cell surface proteases trypsin and TMPRSS2 did not promote the entry of CCoV-HuPn-2018, endosomal proteases cathepsin L and B are required for the entry of CCoV-HuPn-2018 in a pH-dependent manner. IFITMs and LY6E are host restriction factors for the CCoV-HuPn-2018 entry. Our results thus suggest that CCoV-HuPn-2018 has not yet evolved to be an efficient human pathogen. Collectively, this study helps us understand the cell tropism, receptor usage, cross-species transmission, natural reservoir, and pathogenesis of this potential human coronavirus. IMPORTANCE Viral entry is driven by the interaction between the viral spike protein and its specific cellular receptor, which determines cell tropism and host range and is the major constraint to interspecies transmission of coronaviruses. Aminopeptidase N (APN; also called CD13) is a cellular receptor for HCoV-229E, the newly discovered canine coronavirus-human pneumonia-2018 (CCoV-HuPn-2018), and many other animal alphacoronaviruses. We examined the receptor activity of nine APN orthologs and found that CCoV-HuPn-2018 utilizes APN from a broad range of animal species, including bats but not humans, to enter host cells. To our surprise, we found that CCoV-HuPn-2018 spike protein pseudotyped viral particles successfully infected multiple human hepatoma-derived cell lines and a lung cancer cell line, which is independent of the expression of human APN. Our findings thus provide mechanistic insight into the natural hosts and interspecies transmission of CCoV-HuPn-2018-like coronaviruses.


Assuntos
Antígenos CD13 , Infecções por Coronavirus , Glicoproteína da Espícula de Coronavírus , Internalização do Vírus , Animais , Cães , Humanos , Coelhos , Antígenos CD13/metabolismo , Quirópteros/virologia , Coronavirus/fisiologia , Pneumonia , Glicoproteína da Espícula de Coronavírus/metabolismo
7.
ACS Sens ; 8(7): 2791-2798, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37405930

RESUMO

Aminopeptidase N (APN), a transmembrane ectoenzyme, plays multifunctional roles in cell survival and migration, angiogenesis, blood pressure regulation, and viral uptake. Abnormally high levels of the enzyme can be found in some tumors and injured liver and kidney. Therefore, noninvasive detection methods for APN are in demand for diagnosing and studying the associated diseases, leading to two dozen activatable small-molecule probes reported up to date. All of the known probes, however, analyze the enzyme activity by monitoring fluorescent molecules inside cells, despite the enzymatic reaction taking place on the outer cell membrane. In this case, different cell permeability and enzyme kinetics can cause false signal data. To address this critical issue, we have developed two cell-membrane-localizing APN probes whose enzymatic products also localize the outer cell membrane. The probes selectively respond to APN with ratiometric fluorescence signal changes. A selected probe, which has two-photon imaging capability, allowed us to determine the relative APN levels in various organ tissues for the first time: 4.3 (intestine), 2.1 (kidney), 2.7 (liver), 3.2 (lung), and 1.0 (stomach). Also, a higher APN level was observed from a HepG2-xenograft mouse tissue in comparison with the normal tissue. Furthermore, we observed a significant APN level increase in the mouse liver of a drug (acetaminophen)-induced liver injury model. The probe thus offers a reliable means for studying APN-associated biology including drug-induced hepatotoxicity simply by ratiometric imaging.


Assuntos
Antígenos CD13 , Humanos , Animais , Camundongos , Antígenos CD13/metabolismo , Fluorescência , Membrana Celular/metabolismo , Transporte Biológico
8.
Cancer Med ; 12(8): 9615-9626, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36951610

RESUMO

BACKGROUND: Cross-lineage expression of the myeloid-associated antigens CD13/CD33 is common in adult B-lymphoblastic leukemia (B-ALL) patients, yet its prognostic value is still controversial. METHODS: We conducted a retrospective study of 1005 de novo adult B-ALL patients from January 2009 to December 2019 in our hospital. Logistic and Cox regression were used to analyze the prognostic value of CD13/CD33 expression in B-ALL. A Cox regression model was established to predict overall survival (OS) for B-ALL patients. RESULTS: Of the 1005 B-ALL patients, 53.7% (n = 540) aberrantly expressed CD13/CD33 (CD13/CD33+ ). Patients in the CD13/CD33+ group showed a higher incidence of BCR::ABL1 rearrangement and minimal/measurable residual disease (MRD) positivity but similar complete remission rate, relapse-free survival, mortality, and OS with CD13/CD33- . CD13/CD33+ patients had a higher risk of MRD positivity than CD13/CD33- patients. Notably, CD13/CD33+ patients who underwent tyrosine kinase inhibitor (TKI) therapy had a better long-term prognosis than those without TKI experience. Sex, group based on CD13/CD33 expression and TKI experience and white blood cell count were variables independently associated with OS. The Cox regression model integrating these three variables showed a moderate performance for OS prediction (C-index: 0.724). CONCLUSIONS: In real-world practice, CD13/CD33 expression can predict the risk of MRD in patients without TKI experience, but has no adverse effect on the prognosis of adult B-ALL patients. Incorporating CD13/CD33 into the standard antibody panels of B-ALL diagnosis and MRD measurements can help predict relapse risk and decisions on therapy options.


Assuntos
Linfoma não Hodgkin , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Adulto , Prognóstico , Antígenos CD/metabolismo , Estudos Retrospectivos , Antígenos CD13/metabolismo , Doença Aguda , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico
9.
Int J Mol Sci ; 24(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36835408

RESUMO

Porcine epidemic diarrhea (PED) is an acute and severe atrophic enteritis caused by porcine epidemic diarrhea virus (PEDV) that infects pigs and makes huge economic losses to the global swine industry. Previously, researchers have believed that porcine aminopeptidase-N (pAPN) was the primary receptor for PEDV, but it has been found that PEDV can infect pAPN knockout pigs. Currently, the functional receptor for PEDV remains unspecified. In the present study, we performed virus overlay protein binding assay (VOPBA), found that ATP1A1 was the highest scoring protein in the mass spectrometry results, and confirmed that the CT structural domain of ATP1A1 interacts with PEDV S1. First, we investigated the effect of ATP1A1 on PEDV replication. Inhibition of hosts ATP1A1 protein expression using small interfering RNA (siRNAs) significantly reduced the cells susceptibility to PEDV. The ATP1A1-specific inhibitors Ouabain (a cardiac steroid) and PST2238 (a digitalis toxin derivative), which specifically bind ATP1A1, could block the ATP1A1 protein internalization and degradation, and consequently reduce the infection rate of host cells by PEDV significantly. Additionally, as expected, overexpression of ATP1A1 notably enhanced PEDV infection. Next, we observed that PEDV infection of target cells resulted in upregulation of ATP1A1 at the mRNA and protein levels. Furthermore, we found that the host protein ATP1A1 was involved in PEDV attachment and co-localized with PEDV S1 protein in the early stage of infection. In addition, pretreatment of IPEC-J2 and Vero-E6 cells with ATP1A1 mAb significantly reduced PEDV attachment. Our observations provided a perspective on identifying key factors in PEDV infection, and may provide valuable targets for PEDV infection, PEDV functional receptor, related pathogenesis, and the development of new antiviral drugs.


Assuntos
Infecções por Coronavirus , Interações Hospedeiro-Patógeno , Vírus da Diarreia Epidêmica Suína , ATPase Trocadora de Sódio-Potássio , Doenças dos Suínos , Animais , Antígenos CD13/metabolismo , Chlorocebus aethiops , Vírus da Diarreia Epidêmica Suína/fisiologia , Receptores Virais/metabolismo , RNA de Cadeia Dupla , RNA Interferente Pequeno , Suínos , Doenças dos Suínos/metabolismo , Células Vero , Ligação Viral , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , ATPase Trocadora de Sódio-Potássio/metabolismo
10.
Int J Mol Sci ; 23(17)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36077208

RESUMO

Aminopeptidase N (APN), also known as CD13 antigen or membrane alanyl aminopeptidase, belongs to the M1 family of the MA clan of zinc metallopeptidases. In cancer cells, the inhibition of aminopeptidases including APN causes the phenomenon termed the amino acid deprivation response (AADR), a stress response characterized by the upregulation of amino acid transporters and synthetic enzymes and activation of stress-related pathways such as nuclear factor kB (NFkB) and other pro-apoptotic regulators, which leads to cancer cell death by apoptosis. Recently, APN inhibition has been shown to augment DR4-induced tumor cell death and thus overcome resistance to cancer treatment with DR4-ligand TRAIL, which is available as a recombinant soluble form dulanermin. This implies that APN inhibitors could serve as potential weapons for overcoming cancer treatment resistance. In this study, a series of basically substituted acetamidophenones and the semicarbazones and thiosemicarbazones derived from them were prepared, for which APN inhibitory activity was determined. In addition, a selective anti-proliferative activity against cancer cells expressing APN was demonstrated. Our semicarbazones and thiosemicarbazones are the first compounds of these structural types of Schiff bases that were reported to inhibit not only a zinc-dependent aminopeptidase of the M1 family but also a metalloenzyme.


Assuntos
Neoplasias , Semicarbazonas , Tiossemicarbazonas , Aminopeptidases , Antígenos CD13/metabolismo , Humanos , Neoplasias/tratamento farmacológico , Zinco/farmacologia
11.
Front Immunol ; 13: 925922, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35837396

RESUMO

Although feline coronavirus (FCoV) infection is extremely common in cats, there are currently few effective treatments. A peptide derived from the heptad repeat 2 (HR2) domain of the coronavirus (CoV) spike protein has shown effective for inhibition of various human and animal CoVs in vitro, but further use of FCoV-HR2 in vivo has been limited by lack of practical delivery vectors and small animal infection model. To overcome these technical challenges, we first constructed a recombinant Bacillus subtilis (rBSCotB-HR2P) expressing spore coat protein B (CotB) fused to an HR2-derived peptide (HR2P) from a serotype II feline enteric CoV (FECV). Immunogenic capacity was evaluated in mice after intragastric or intranasal administration, showing that recombinant spores could trigger strong specific cellular and humoral immune responses. Furthermore, we developed a novel mouse model for FECV infection by transduction with its primary receptor (feline aminopeptidase N) using an E1/E3-deleted adenovirus type 5 vector. This model can be used to study the antiviral immune response and evaluate vaccines or drugs, and is an applicable choice to replace cats for the study of FECV. Oral administration of rBSCotB-HR2P in this mouse model effectively protected against FECV challenge and significantly reduced pathology in the digestive tract. Owing to its safety, low cost, and probiotic features, rBSCotB-HR2P is a promising oral vaccine candidate for use against FECV/FCoV infection in cats.


Assuntos
Infecções por Coronavirus , Coronavirus Felino , Animais , Bacillus subtilis/genética , Antígenos CD13/metabolismo , Gatos , Coronavirus Felino/genética , Coronavirus Felino/metabolismo , Modelos Animais de Doenças , Humanos , Imunidade , Camundongos , Peptídeos/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Esporos Bacterianos/genética
12.
In Vivo ; 36(2): 657-666, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35241519

RESUMO

BACKGROUND/AIM: Previous studies have already shown that 68Gallium(68Ga)-labeled NGR-based radiopharmaceuticals specifically bind to the neoangiogenic molecule Aminopeptidase N (APN/CD13). The aim of this study was to evaluate the applicability of 68Ga-NOTA-c(NGR) in the in vivo detection of the temporal changes of APN/CD13 expression in the diabetic retinopathy rat model using positron emission tomography (PET). MATERIALS AND METHODS: Ischemia/reperfusion injury was initiated by surgical ligation of the left bulbus oculi of rats. In vivo PET imaging studies were performed after the surgery using 68Ga-NOTA-c(NGR). RESULTS: Significantly higher 68Ga-NOTA-c(NGR) uptake was observed in the surgically-ligated left bulbus, compared to the bulbus of the non-surgical group at each investigated time point. The western blot and histological analysis confirmed the increased expression of the neo-angiogenic marker APN/CD13. CONCLUSION: 68Ga-NOTA-c(NGR) is a suitable radiotracer for the detection of the temporal changes of the ischemia/reperfusion-mediated expression of APN/CD13 in the surgically induced diabetic retinopathy rat model.


Assuntos
Antígenos CD13 , Radioisótopos de Gálio , Animais , Antígenos CD13/metabolismo , Linhagem Celular Tumoral , Compostos Heterocíclicos com 1 Anel , Isquemia , Tomografia por Emissão de Pósitrons/métodos , Ratos , Reperfusão
13.
Int J Mol Sci ; 23(4)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35216249

RESUMO

Multiple studies have demonstrated that various nanoparticles (NPs) stimulate osteogenic differentiation of mesenchymal stem cells (MSCs) and inhibit adipogenic ones. The mechanisms of these effects are not determined. The aim of this paper was to estimate Wharton's Jelly MSCs phenotype and humoral factor production during tri-lineage differentiation per se and in the presence of silicon-gold NPs. Silicon (SiNPs), gold (AuNPs), and 10% Au-doped Si nanoparticles (SiAuNPs) were synthesized by laser ablation, characterized, and studied in MSC cultures before and during differentiation. Humoral factor production (n = 41) was analyzed by Luminex technology. NPs were nontoxic, did not induce ROS production, and stimulated G-CSF, GM-CSF, VEGF, CXCL1 (GRO) production in four day MSC cultures. During MSC differentiation, all NPs stimulated CD13 and CD90 expression in osteogenic cultures. MSC differentiation resulted in a decrease in multiple humoral factor production to day 14 of incubation. NPs did not significantly affect the production in chondrogenic cultures and stimulated it in both osteogenic and adipogenic ones. The major difference in the protein production between osteogenic and adipogenic MSC cultures in the presence of NPs was VEGF level, which was unaffected in osteogenic cells and 4-9 times increased in adipogenic ones. The effects of NPs decreased in a row AuNPs > SiAuNPs > SiNPs. Taken collectively, high expression of CD13 and CD90 by MSCs and critical level of VEGF production can, at least, partially explain the stimulatory effect of NPs on MSC osteogenic differentiation.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Ouro/farmacologia , Nanopartículas Metálicas/administração & dosagem , Secretoma/efeitos dos fármacos , Silício/farmacologia , Geleia de Wharton/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Animais , Antígenos CD13/metabolismo , Condrogênese/efeitos dos fármacos , Feminino , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Fenótipo , Secretoma/metabolismo , Antígenos Thy-1/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Geleia de Wharton/metabolismo
14.
Biosci Rep ; 41(12)2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34796903

RESUMO

Parasporin-2Aa1 (PS2Aa1) is a toxic protein of 37 KDa (30 kDa, activated form produced by proteolysis) that was shown to be cytotoxic against specific human cancer cells, although its mechanism of action has not been elucidated yet. In order to study the role of some native peptide fragments of proteins on anticancer activity, here we investigated the cytotoxic effect of peptide fragments from domain-1 of PS2Aa1 and one of the loops present in the binding region of the virus spike protein from Alphacoronavirus (HCoV-229E), the latter according to scientific reports, who showed interaction with the human APN (h-APN) receptor, evidence corroborated through computational simulations, and thus being possible active against colon cancer cells. Peptides namely P264-G274, Loop1-PS2Aa, and Loop2-PS2Aa were synthesized using the Fmoc solid-phase synthesis and characterized by mass spectrometry (MS). Additionally, one region from loop 1 of HCoV-229E, Loop1-HCoV-229E, was also synthesized and characterized. The A4W-GGN5 anticancer peptide and 5-fluorouracil (5-FU) were taken as a control in all experiments. Circular dichroism revealed an α-helix structure for the peptides derived from PS2Aa1 (P264-G274, Loop1-PS2Aa, and Loop2-PS2Aa) and ß-laminar structure for the peptide derived from Alphacoronavirus spike protein Loop1-HCoV-229E. Peptides showed a hemolysis percentage of less than 20% at 100 µM concentration. Besides, peptides exhibited stronger anticancer activity against SW480 and SW620 cells after exposure for 48 h. Likewise, these compounds showed significantly lower toxicity against normal cells CHO-K1. The results suggest that native peptide fragments from Ps2Aa1 may be optimized as a novel potential cancer-therapeutic agents.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Endotoxinas/farmacologia , Fragmentos de Peptídeos/farmacologia , Glicoproteína da Espícula de Coronavírus/farmacologia , Alphacoronavirus , Animais , Antineoplásicos/síntese química , Antineoplásicos/toxicidade , Antígenos CD13/metabolismo , Células CHO , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Cricetulus , Endotoxinas/toxicidade , Hemólise/efeitos dos fármacos , Humanos , Simulação de Acoplamento Molecular , Fragmentos de Peptídeos/síntese química , Fragmentos de Peptídeos/toxicidade , Conformação Proteica em alfa-Hélice , Carneiro Doméstico , Glicoproteína da Espícula de Coronavírus/toxicidade , Relação Estrutura-Atividade
15.
Aging (Albany NY) ; 13(19): 23245-23261, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34633989

RESUMO

Non-small cell lung cancer (NSCLC) is the most common type in lung cancer in the world, and it severely threatens the life of patients. Resveratrol has been reported to inhibit cancer. However, mechanisms of resveratrol inhibiting NSCLC were unclear. The aim of this study was to identify differentially expressed genes (DEGs) of NSCLC treated with resveratrol and reveal the potential targets of resveratrol in NSCLC. We obtained mRNA expression profiles of two datasets from the National Center for Biotechnology Information Gene Expression Omnibus (NCBI-GEO) and 271 DEGs were selected for further analysis. Data from STRING shown that 177 nodes and 342 edges were in the protein-protein interaction (PPI) network, and 10 hub genes (ANPEP, CD69, ITGAL, PECAM1, PTPRC, CD34, ITGA1, CCL2, SOX2, and EGFR) were identified by Cytoscape plus-in cytoHubba. Survival analysis revealed that NSCLC patients showing low expression of PECAM1, ANPEP, CD69, ITGAL, and PTPRC were associated with worse overall survival (OS) (P < 0.05), and high expression of SOX2 and EGFR was associated with worse OS for NSCLC patients (P < 0.05). Overall, we identified ANPEP, CD69, ITGAL, and PTPRC as potential candidate genes which were main effects of resveratrol on the treatment of NSCLC. ANPEP, ITGAL, CD69, and PTPRC are all clusters of differentiation (CD) antigens, might be the targets of resveratrol. The bioinformatic results suggested that the inhibitory effect of resveratrol on lung cancer may be related to the immune signaling pathway. Further studies are needed to validate these findings and to explore their functional mechanisms.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Mapas de Interação de Proteínas/efeitos dos fármacos , Resveratrol/farmacologia , Transdução de Sinais/efeitos dos fármacos , Células A549 , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Antígenos CD13/genética , Antígenos CD13/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Biologia Computacional , Bases de Dados Genéticas , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidade
16.
Biochim Biophys Acta Rev Cancer ; 1876(2): 188641, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34695533

RESUMO

Aminopeptidase N (APN/CD13) is a multifunctional glycoprotein that acts as a peptidase, receptor, and signalling molecule in a tissue-dependent manner. The activities of APN have been implicated in the progression of many cancers, pointing toward significant therapeutic potential for cancer treatment. However, despite the tumour-specific functions of this protein that have been uncovered, the ubiquitous nature of its expression in normal tissues as generally reported remains a limitation to the potential utility of APN as a target for cancer therapeutics and drug discovery. With this in mind, we have extensively explored the literature, and present a comprehensive review that for the first-time provides evidence to support the suggestion that tumour-expressed APN may in fact be unique in structure, function, substrate specificity and activity, contrary to its nature in normal tissues. The review also focuses on the biology of APN, and its "moonlighting" functional roles in both normal physiology and cancer development. Several APN-targeting approaches that have been explored over recent decades as therapeutic strategies in cancer treatment, including APN-targeting agents reported both in preclinical and clinical studies, are also extensively discussed. This review concludes by posing critical questions about APN that remain unanswered and unexplored, hence providing opportunities for further research.


Assuntos
Antígenos CD13/metabolismo , Neoplasias/fisiopatologia , Peptídeo Hidrolases/metabolismo , Humanos
17.
J Mater Chem B ; 9(36): 7530-7543, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34551051

RESUMO

Tumour revascularization and the consequent radioresistance activated by the up-regulated angiogenic pathway after radiation exposure remain a major bottleneck for improving the tumouricidal effect of radiotherapy (RT) in hepatocellular carcinoma (HCC). Herein, we show that fabricated aminopeptidase N (ANP/CD13)-targeting Gd-hybridized gold nanomolecules (tGd-GNMs) can efficaciously suppress tumour revascularization and the consequent radioresistance, and then synergize in augmenting the RT response. Both in vitro and in vivo experiments demonstrate that the targeted delivery of vascular endothelial growth factor (VEGF) siRNA into the tumour site and the generation of an abundance of intratumourally cytotoxic reactive oxygen species (ROS) under X-ray radiation by the tGd-GNMssiRNA complex has the capability to down-regulate VEGF gene expression and strengthen the radiation response. Furthermore, the tGd-GNMssiRNA complex contributes to excellent active tumour targeting ability, remarkably enhancing tumour contrast in the fluorescence, computed tomography (CT) and magnetic resonance (MR) imaging modalities in real-time with a long imaging time window. Overall, the synthesized tGd-GNMssiRNA complex with excellent potentiation of the antitumour ability and real-time multimodal imaging ability represents a promising visualized theranostic nanoplatform for the treatment of HCC.


Assuntos
Antineoplásicos/química , Antígenos CD13/antagonistas & inibidores , Nanoestruturas/química , RNA Interferente Pequeno/química , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antígenos CD13/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Gadolínio/química , Ouro/química , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Neoplasias/radioterapia , Peptídeos/química , Espécies Reativas de Oxigênio/metabolismo , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Raios X
18.
Nat Commun ; 12(1): 4697, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34349123

RESUMO

Polarized epithelial cells can organize into complex structures with a characteristic central lumen. Lumen formation requires that cells coordinately orient their polarity axis so that the basolateral domain is on the outside and apical domain inside epithelial structures. Here we show that the transmembrane aminopeptidase, CD13, is a key determinant of epithelial polarity orientation. CD13 localizes to the apical membrane and associates with an apical complex with Par6. CD13-deficient cells display inverted polarity in which apical proteins are retained on the outer cell periphery and fail to accumulate at an intercellular apical initiation site. Here we show that CD13 is required to couple apical protein cargo to Rab11-endosomes and for capture of endosomes at the apical initiation site. This role in polarity utilizes the short intracellular domain but is independent of CD13 peptidase activity.


Assuntos
Antígenos CD13/metabolismo , Polaridade Celular , Células Epiteliais/citologia , Epitélio/crescimento & desenvolvimento , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Antígenos CD13/química , Antígenos CD13/genética , Células CACO-2 , Membrana Celular/metabolismo , Endocitose , Endossomos/metabolismo , Células Epiteliais/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Domínios Proteicos , Proteínas rab de Ligação ao GTP/metabolismo
19.
Eur J Pharm Sci ; 166: 105964, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34375678

RESUMO

The aminopeptidase N (APN/CD13) is a key protein specifically expressed on activated endothelial cells and by various tumors, representing a promising target for molecular imaging and therapy of malignant diseases. It is known that the tripeptide NGR is a specific ligand for CD13, therefore radiolabeled NGR peptides are auspicious radiotracers for non-invasive imaging of CD13-positive tumors. From previous studies, it is known that the target affinity could be improved by molecules with multiple ligand sequences. Therefore, the aim of this study was to compare two NGR radioligands [68Ga]NODAGA-NGR (NGR monomer) and [68Ga]NOTA-(NGR)2 (NGR dimer), the latter with two NGR ligand motifs, in vitro and in vivo. CD13 expression was determined by FACS in the human tumor cells A549, SKHep-1, and MDA-MB-231, followed by the investigation of the cell uptake of [68Ga]NODAGA-NGR and [68Ga]NOTA-(NGR)2. For in vivo evaluation of [68Ga]NODAGA-NGR and [68Ga]NOTA-(NGR)2, microPET and biodistribution were carried out in A549- and SKHep-1-bearing mice. After the final examination, tumors were cryo-conserved, cut, and stained against CD13 and CD31. A549 and SKHep-1 cells were identified as CD13 positive, whereas no CD13 expression was detected in MDA-MB-231 cells. The cell uptake study showed relatively low accumulation of both the NGR monomer and dimer in all tumor cell lines examined, with consistently higher cell uptake observed for the dimer than for the monomer. In vivo, [68Ga]NODAGA-NGR and [68Ga]NOTA-(NGR)2 accumulated in the tumors, with slightly higher tumor-to-muscle ratio for the NGR dimer in A549 and SKHep-1. The tumor-to-liver ratio of the NGR dimer was diminished in comparison to the NGR monomer. This finding was confirmed by biodistribution, which revealed higher accumulation in liver and spleen for the NGR dimer. Immunohistochemical staining confirmed the CD13 expression in the tumors and tumor-associated vessels. In conclusion, both the [68Ga]NODAGA-NGR and the [68Ga]NOTA-(NGR)2 were found to be suitable for PET imaging of CD13-positive tumors. Despite slight differences in tumor-to-background ratio and organ accumulation, both radiotracers can be considered comparable.


Assuntos
Antígenos CD13 , Radioisótopos de Gálio , Acetatos , Animais , Antígenos CD13/metabolismo , Linhagem Celular Tumoral , Células Endoteliais/metabolismo , Compostos Heterocíclicos com 1 Anel , Ligantes , Camundongos , Tomografia por Emissão de Pósitrons , Distribuição Tecidual
20.
Virulence ; 12(1): 1111-1121, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34034617

RESUMO

Coronaviruses and influenza viruses are circulating in humans and animals all over the world. Co-infection with these two viruses may aggravate clinical signs. However, the molecular mechanisms of co-infections by these two viruses are incompletely understood. In this study, we applied air-liquid interface (ALI) cultures of well-differentiated porcine tracheal epithelial cells (PTECs) to analyze the co-infection by a swine influenza virus (SIV, H3N2 subtype) and porcine respiratory coronavirus (PRCoV) at different time intervals. Our results revealed that in short-term intervals, prior infection by influenza virus caused complete inhibition of coronavirus infection, while in long-term intervals, some coronavirus replication was detectable. The influenza virus infection resulted in (i) an upregulation of porcine aminopeptidase N, the cellular receptor for PRCoV and (ii) in the induction of an innate immune response which was responsible for the inhibition of PRCoV replication. By contrast, prior infection by coronavirus only caused a slight inhibition of influenza virus replication. Taken together, the timing and the order of virus infection are important determinants in co-infections. This study is the first to show the impact of SIV and PRCoV co- and super-infection on the cellular level. Our results have implications also for human viruses, including potential co-infections by SARS-CoV-2 and seasonal influenza viruses.


Assuntos
Células Epiteliais/virologia , Vírus da Influenza A Subtipo H3N2/fisiologia , Coronavirus Respiratório Porcino/fisiologia , Interferência Viral , Animais , Antígenos CD13/metabolismo , Células Cultivadas , Coinfecção/virologia , Infecções por Coronavirus/virologia , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Imunidade Inata , Infecções por Orthomyxoviridae/virologia , Suínos , Traqueia/citologia , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA