Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.206
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Cell Host Microbe ; 32(5): 755-767.e4, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38653242

RESUMO

Kaposi sarcoma (KS) is the most common cancer in persons living with HIV. It is caused by KS-associated herpesvirus (KSHV). There exists no animal model for KS. Pronuclear injection of the 170,000-bp viral genome induces early-onset, aggressive angiosarcoma in transgenic mice. The tumors are histopathologically indistinguishable from human KS. As in human KS, all tumor cells express the viral latency-associated nuclear antigen (LANA). The tumors transcribe most viral genes, whereas endothelial cells in other organs only transcribe the viral latent genes. The tumor cells are of endothelial lineage and exhibit the same molecular pattern of pathway activation as KS, namely phosphatidylinositol 3-kinase (PI3K)/Akt/mTOR, interleukin-10 (IL-10), and vascular endothelial growth factor (VEGF). The KSHV-induced tumors are more aggressive than Ha-ras-induced angiosarcomas. Overall survival is increased by prophylactic ganciclovir. Thus, whole-virus KSHV-transgenic mice represent an accurate model for KS and open the door for the genetic dissection of KS pathogenesis and evaluation of therapies, including vaccines.


Assuntos
Modelos Animais de Doenças , Hemangiossarcoma , Herpesvirus Humano 8 , Camundongos Transgênicos , Sarcoma de Kaposi , Animais , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/patogenicidade , Camundongos , Hemangiossarcoma/virologia , Hemangiossarcoma/genética , Hemangiossarcoma/patologia , Sarcoma de Kaposi/virologia , Sarcoma de Kaposi/patologia , Genoma Viral , Humanos , Antígenos Virais/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Ganciclovir/uso terapêutico , Ganciclovir/farmacologia , Interleucina-10/genética
2.
Microb Pathog ; 190: 106630, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38556102

RESUMO

Porcine circovirus type 2 (PCV2) is a globally prevalent infectious pathogen affecting swine, with its capsid protein (Cap) being the sole structural protein critical for vaccine development. Prior research has demonstrated that PCV2 Cap proteins produced in Escherichia coli (E. coli) can form virus-like particles (VLPs) in vitro, and nuclear localization signal peptides (NLS) play a pivotal role in stabilizing PCV2 VLPs. Recently, PCV2d has emerged as an important strain within the PCV2 epidemic. In this study, we systematically optimized the PCV2d Cap protein and successfully produced intact PCV2d VLPs containing NLS using E. coli. The recombinant PCV2d Cap protein was purified through affinity chromatography, yielding 7.5 mg of recombinant protein per 100 ml of bacterial culture. We augmented the conventional buffer system with various substances such as arginine, ß-mercaptoethanol, glycerol, polyethylene glycol, and glutathione to promote VLP assembly. The recombinant PCV2d Cap self-assembled into VLPs approximately 20 nm in diameter, featuring uniform distribution and exceptional stability in the optimized buffer. We developed the vaccine and immunized pigs and mice, evaluating the immunogenicity of the PCV2d VLPs vaccine by measuring PCV2-IgG, IL-4, TNF-α, and IFN-γ levels, comparing them to commercial vaccines utilizing truncated PCV2 Cap antigens. The HE staining and immunohistochemical tests confirmed that the PCV2 VLPs vaccine offered robust protection. The results revealed that animals vaccinated with the PCV2d VLPs vaccine exhibited high levels of PCV2 antibodies, with TNF-α and IFN-γ levels rapidly increasing at 14 days post-immunization, which were higher than those observed in commercially available vaccines, particularly in the mouse trial. This could be due to the fact that full-length Cap proteins can assemble into more stable PCV2d VLPs in the assembling buffer. In conclusion, our produced PCV2d VLPs vaccine elicited stronger immune responses in pigs and mice compared to commercial vaccines. The PCV2d VLPs from this study serve as an excellent candidate vaccine antigen, providing insights for PCV2d vaccine research.


Assuntos
Anticorpos Antivirais , Proteínas do Capsídeo , Circovirus , Escherichia coli , Proteínas Recombinantes , Vacinas de Partículas Semelhantes a Vírus , Animais , Circovirus/imunologia , Circovirus/genética , Suínos , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas de Partículas Semelhantes a Vírus/genética , Proteínas do Capsídeo/imunologia , Proteínas do Capsídeo/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Camundongos , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/genética , Infecções por Circoviridae/prevenção & controle , Infecções por Circoviridae/imunologia , Doenças dos Suínos/prevenção & controle , Vacinas Virais/imunologia , Vacinas Virais/genética , Desenvolvimento de Vacinas , Antígenos Virais/imunologia , Antígenos Virais/genética , Imunoglobulina G/sangue , Análise Custo-Benefício , Feminino , Interferon gama/metabolismo , Imunogenicidade da Vacina
3.
Virus Genes ; 60(2): 148-158, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38340271

RESUMO

Guinea Pig Herpes-Like Virus (GPHLV) is a virus isolated from leukemic guinea pigs with herpes virus-like morphology described by Hsiung and Kaplow in 1969. GPHLV transformed embryonic cells from Syrian hamsters or rats, which were tumorigenic in adult animals. Herein, we present the genomic sequence of GPHLV strain LK40 as a reference for future molecular analysis. GPHLV has a broad host tropism and replicates efficiently in Guinea pig, Cat, and Green African Monkey-derived cell lines. GPHLV has a GC content of 35.45%. The genome is predicted to encode at least 75 open-reading frames (ORFs) with 84% (63 ORFs) sharing homology to human Kaposi Sarcoma Associated Herpes Virus (KSHV). Importantly, GPHLV encodes homologues of the KSHV oncogenes, vBCL2 (ORF16), vPK (ORF36), viral cyclin (v-cyclin, ORF72), the latency associated nuclear antigen (LANA, ORF73), and vGPCR (ORF74). GPHLV is a Rhadinovirus of Cavia porcellus, and we propose the formal name of Caviid gamma herpesvirus 1 (CaGHV-1). GPHLV can be a novel small animal model of Rhadinovirus pathogenesis with broad host tropism.


Assuntos
Herpesviridae , Herpesvirus Humano 8 , Cricetinae , Cobaias , Humanos , Animais , Ratos , Chlorocebus aethiops , Antígenos Virais/genética , Mesocricetus , Ciclinas , Herpesvirus Humano 8/genética
4.
Cell Rep ; 43(3): 113888, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38416644

RESUMO

Higher-order genome structure influences the transcriptional regulation of cellular genes through the juxtaposition of regulatory elements, such as enhancers, close to promoters of target genes. While enhancer activation has emerged as an important facet of Kaposi sarcoma-associated herpesvirus (KSHV) biology, the mechanisms controlling enhancer-target gene expression remain obscure. Here, we discover that the KSHV genome tethering protein latency-associated nuclear antigen (LANA) potentiates enhancer-target gene expression in primary effusion lymphoma (PEL), a highly aggressive B cell lymphoma causally associated with KSHV. Genome-wide analyses demonstrate increased levels of enhancer RNA transcription as well as activating chromatin marks at LANA-bound enhancers. 3D genome conformation analyses identified genes critical for latency and tumorigenesis as targets of LANA-occupied enhancers, and LANA depletion results in their downregulation. These findings reveal a mechanism in enhancer-gene coordination and describe a role through which the main KSHV tethering protein regulates essential gene expression in PEL.


Assuntos
Herpesvirus Humano 8 , Sarcoma de Kaposi , Humanos , Herpesvirus Humano 8/fisiologia , Estudo de Associação Genômica Ampla , Antígenos Virais/genética , Antígenos Virais/metabolismo , Regiões Promotoras Genéticas/genética , Regulação da Expressão Gênica , Latência Viral
5.
Bull Exp Biol Med ; 176(3): 354-358, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38342808

RESUMO

The influence of SARS-CoV-2 antigen on the cytokine-producing function of immune cells was studied. We observed suppression of the production of proinflammatory cytokines by 11-46% relative to the spontaneous level under the influence of SARS-CoV-2 antigen vaccine simulator, as well as when it was co-administered with cortisol (IL-6 by 1.8 times and IFNγ by 1.57 times) compared with control samples. IL-8 production was reduced by 1.72 times relative to its spontaneous level. IL-8 production was reduced by 1.72 times relative to its spontaneous level. Under conditions of SARS-CoV-2 stimulation with the vaccine antigen in vitro, an increase in the relative scaled expression of the VEGFA gene by 2.16 times relative to the spontaneous level was observed, which can be regarded as a model "cytokine storm" scenario. The obtained experimental data verify the ideas about the pathogenetic mechanisms of the COVID-19 and can contribute to the development of new approaches to the correction of its complications.


Assuntos
COVID-19 , Vacinas , Humanos , Vacinas contra COVID-19 , SARS-CoV-2/genética , Citocinas/genética , Interleucina-8 , COVID-19/prevenção & controle , Antígenos Virais/genética , Fator A de Crescimento do Endotélio Vascular/genética
6.
J Virol ; 98(2): e0174223, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38193694

RESUMO

The HIV-1 Envelope (Env) protein cytoplasmic tail (CT) recently has been shown to assemble an unusual trimeric baseplate structure that locates beneath Env ectodomain trimers. Mutations at linchpin residues that help organize the baseplate impair virus replication in restrictive T cell lines but not in permissive cell lines. We have identified and characterized a second site suppressor of these baseplate mutations, located at residue 34 in the viral matrix (MA) protein, that rescues viral replication in restrictive cells. The suppressor mutation was dependent on the CT to exert its activity and did not appear to affect Env protein traffic or fusion functions in restrictive cells. Instead, the suppressor mutation increased Env incorporation into virions 3-fold and virus infectivity in single-round infections 10-fold. We also found that a previously described suppressor of Env-incorporation defects that stabilizes the formation of MA trimers was ineffective at rescuing Env baseplate mutations. Our results support an interpretation in which changes at MA residue 34 induce conformational changes that stabilize MA lattice trimer-trimer interactions and/or direct MA-CT associations.IMPORTANCEHow HIV-1 Env trimers assemble into virus particles remains incompletely understood. In restrictive cells, viral incorporation of Env is dependent on the Env CT and on the MA protein, which assembles lattices composed of hexamers of trimers in immature and mature viruses. Recent evidence indicates that CT assembles trimeric baseplate structures that require membrane-proximal residues to interface with trimeric transmembrane domains and C-terminal helices in the CT. We found that mutations of these membrane-proximal residues impaired replication in restrictive cells. This defect was countered by a MA mutation that does not localize to any obvious interprotein regions but was only inefficiently suppressed by a MA mutation that stabilizes MA trimers and has been shown to suppress other CT-dependent Env defects. Our results suggest that efficient suppression of baseplate mutations involves stabilization of MA inter-trimer contacts and/or direct MA-CT associations. These observations shed new light on how Env assembles into virions.


Assuntos
Produtos do Gene env , HIV-1 , Produtos do Gene env do Vírus da Imunodeficiência Humana , Antígenos Virais/genética , Linhagem Celular , Produtos do Gene env/química , Produtos do Gene env/genética , HIV-1/fisiologia , Mutação , Domínios Proteicos , Proteínas da Matriz Viral/metabolismo , Replicação Viral/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética
7.
PLoS Pathog ; 20(1): e1011907, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38232124

RESUMO

Kaposi's sarcoma herpesvirus (KSHV) is a leading cause of malignancy in AIDS and current therapies are limited. Like all herpesviruses, KSHV infection can be latent or lytic. KSHV latency-associated nuclear antigen (LANA) is essential for viral genome persistence during latent infection. LANA also maintains latency by antagonizing expression and function of the KSHV lytic switch protein, RTA. Here, we find LANA null KSHV is not capable of lytic replication, indicating a requirement for LANA. While LANA promoted both lytic and latent gene expression in cells partially permissive for lytic infection, it repressed expression in non-permissive cells. Importantly, forced RTA expression in non-permissive cells led to induction of lytic infection and LANA switched to promote, rather than repress, most lytic viral gene expression. When basal viral gene expression levels were high, LANA promoted expression, but repressed expression at low basal levels unless RTA expression was forcibly induced. LANA's effects were broad, but virus gene specific, extending to an engineered, recombinant viral GFP under control of host EF1α promoter, but not to host EF1α. Together, these results demonstrate that, in addition to its essential role in genome maintenance, LANA broadly regulates viral gene expression, and is required for high levels of lytic gene expression during lytic infection. Strategies that target LANA are expected to abolish KSHV infection.


Assuntos
Herpesvirus Humano 8 , Proteínas Nucleares , Sarcoma de Kaposi , Humanos , Herpesvirus Humano 8/fisiologia , Latência Viral/genética , Antígenos Virais/genética , Antígenos Virais/metabolismo , Expressão Gênica , Regulação Viral da Expressão Gênica , Replicação Viral
8.
J Virol ; 98(2): e0138623, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38240593

RESUMO

The Kaposi's sarcoma-associated herpesvirus (KSHV) genome consists of an approximately 140-kb unique coding region flanked by 30-40 copies of a 0.8-kb terminal repeat (TR) sequence. A gene enhancer recruits transcription-related enzymes by having arrays of transcription factor binding sites. Here, we show that KSHV TR possesses transcription regulatory function with latency-associated nuclear antigen (LANA). Cleavage under targets and release using nuclease demonstrated that TR fragments were occupied by LANA-interacting histone-modifying enzymes in naturally infected cells. The TR was enriched with histone H3K27 acetylation (H3K27Ac) and H3K4 tri-methylation (H3K4me3) modifications and also expressed nascent RNAs. The sites of H3K27Ac and H3K4me3 modifications were also conserved in the KSHV unique region among naturally infected primary effusion lymphoma cells. KSHV origin of lytic replication (Ori-Lyt) showed similar protein and histone modification occupancies with that of TR. In the Ori-Lyt region, the LANA and LANA-interacting proteins colocalized with an H3K27Ac-modified nucleosome along with paused RNA polymerase II. The KSHV transactivator KSHV replication and transcription activator (K-Rta) recruitment sites franked the LANA-bound nucleosome, and reactivation evicted the LANA-bound nucleosome. Including TR fragments in reporter plasmid enhanced inducible viral gene promoter activities independent of the orientations. In the presence of TR in reporter plasmids, K-Rta transactivation was drastically increased, while LANA acquired the promoter repression function. KSHV TR, therefore, functions as an enhancer for KSHV inducible genes. However, in contrast to cellular enhancers bound by multiple transcription factors, perhaps the KSHV enhancer is predominantly regulated by the LANA nuclear body.IMPORTANCEEnhancers are a crucial regulator of differential gene expression programs. Enhancers are the cis-regulatory sequences determining target genes' spatiotemporal and quantitative expression. Here, we show that Kaposi's sarcoma-associated herpesvirus (KSHV) terminal repeats fulfill the enhancer definition for KSHV inducible gene promoters. The KSHV enhancer is occupied by latency-associated nuclear antigen (LANA) and its interacting proteins, such as CHD4. Neighboring terminal repeat (TR) fragments to lytic gene promoters drastically enhanced KSHV replication and transcription activator and LANA transcription regulatory functions. This study, thus, proposes a new latency-lytic switch model in which TR accessibility to the KSHV gene promoters regulates viral inducible gene expression.


Assuntos
Herpesvirus Humano 8 , Proteínas Imediatamente Precoces , Sarcoma de Kaposi , Humanos , Herpesvirus Humano 8/fisiologia , Histonas/genética , Histonas/metabolismo , Nucleossomos , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Latência Viral/genética , Antígenos Virais/genética , Antígenos Virais/metabolismo , Sequências Repetidas Terminais/genética , Regulação Viral da Expressão Gênica
9.
mBio ; 15(1): e0277423, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38095447

RESUMO

IMPORTANCE: Hypoxia can induce the reactivation of Kaposi sarcoma-associated virus (KSHV), which necessitates the synthesis of critical structural proteins. Despite the unfavorable energetic conditions of hypoxia, KSHV utilizes mechanisms to prevent the degradation of essential cellular machinery required for successful reactivation. Our study provides new insights on strategies employed by KSHV-infected cells to maintain steady-state transcription by overcoming hypoxia-mediated metabolic stress to enable successful reactivation. Our discovery that the interaction of latency-associated nuclear antigen with HIF1α and NEDD4 inhibits its polyubiquitination activity, which blocks the degradation of RNA Pol II during hypoxia, is a significant contribution to our understanding of KSHV biology. This newfound knowledge provides new leads in the development of novel therapies for KSHV-associated diseases.


Assuntos
Herpesvirus Humano 8 , Sarcoma de Kaposi , Humanos , Herpesvirus Humano 8/fisiologia , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Latência Viral/genética , Antígenos Virais/genética , Hipóxia/metabolismo , Replicação Viral
10.
Viruses ; 15(12)2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38140679

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) establishes life-long latent infection and is linked to several human malignancies. Latency-associated nuclear antigen (LANA) is highly expressed during latency, and is responsible for the replication and maintenance of the viral genome. The expression of LANA is regulated at transcriptional/translational levels through multiple mechanisms, including the secondary structures in the mRNA sequence. LANA mRNA has multiple G-quadruplexes (G4s) that are bound by multiple proteins to stabilize/destabilize these secondary structures for regulating LANA. In this manuscript, we demonstrate the role of Nucleolin (NCL) in regulating LANA expression through its interaction with G-quadruplexes of LANA mRNA. This interaction reduced LANA's protein expression through the sequestration of mRNA into the nucleus, demonstrated by the colocalization of G4-carrying mRNA with NCL. Furthermore, the downregulation of NCL, by way of a short hairpin, showed an increase in LANA translation following an alteration in the levels of LANA mRNA in the cytoplasm. Overall, the data presented in this manuscript showed that G-quadruplexes-mediated translational control could be regulated by NCL, which can be exploited for controlling KSHV latency.


Assuntos
Quadruplex G , Herpesvirus Humano 8 , Humanos , Herpesvirus Humano 8/fisiologia , Nucleolina , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Antígenos Virais/genética , Latência Viral/genética
11.
Vopr Virusol ; 68(4): 291-301, 2023 Sep 21.
Artigo em Russo | MEDLINE | ID: mdl-38156586

RESUMO

INTRODUCTION: The discovery of two types of Epstein-Barr virus (EBV) (EBV-1 and EBV-2) that have different biological properties stimulated the search for neoplasms associated with each type of the virus. The aim of the work is to study the nature of the association of nasopharyngeal cancer (NPC) with EBV-1 and EBV-2, serological activity for each viral type and the concentration of EBV DNA in the blood plasma of two gender, age and ethnic groups of NPC patients that represent geographically and climatically different regions of Russia,. MATERIALS AND METHODS: In the blood plasma of patients with NPC and other non- EBV associated tumors of oral cavity (OTOCEBV-) from the North Caucasian (NCFD) and Central (CFD) Federal Districts of Russia, the types of EBV and the concentration of viral DNA were determined using respectively «nested¼ and real time PCR; titers of IgG and IgA antibodies to viral capsid antigen (VCA) were measured in indirect immunofluorescence assay. RESULTS: The blood plasma samples testing showed that NPC and OTOCEBV- patients were infected with both types of EBV in approximately equal proportions. In two groups of NPC patients infected with one of the virus types only, EBV-1 or EBV-2, respectively, no statistically significant differences were found between the geometric mean values of IgG and IgA anti-EBV antibody titers and viral DNA concentrations in blood plasma. The distribution of virus types was not affected by either patient gender or ethnogeographic origin. The difference was found only between age groups: EBV-2 dominated in NPC patients up to 60 years, and EBV-1 was prevalent in patients over 60 years. CONCLUSION: The lack of the predominance of one of EBV types in NPC patients that are the representatives of different ethnic groups from geographically and climatically different regions, suggests that none of these factors play an important role in the NPC carcinogenesis. Evidently, each type of EBV, EBV-1 or EBV-2, if the necessary conditions arise, are able to exhibit its oncogenic potential to initiate tumor development.


Assuntos
Infecções por Vírus Epstein-Barr , Lymphocryptovirus , Neoplasias Nasofaríngeas , Humanos , Herpesvirus Humano 4/genética , Carcinoma Nasofaríngeo/epidemiologia , Neoplasias Nasofaríngeas/epidemiologia , Lymphocryptovirus/genética , DNA Viral/genética , Biomarcadores , Antígenos Virais/genética , Anticorpos Antivirais , Imunoglobulina A , Imunoglobulina G
12.
J Med Virol ; 95(11): e29224, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37970759

RESUMO

Previous studies have demonstrated strong associations between host genetic factors and Epstein-Barr virus (EBV) VCA-IgA with the risk of nasopharyngeal carcinoma (NPC). However, the specific interplay between host genetics and EBV VCA-IgA on NPC risk is not well understood. In this two-stage case-control study (N = 4804), we utilized interaction and mediation analysis to investigate the interplay between host genetics (genome-wide association study-derived polygenic risk score [PRS]) and EBV VCA-IgA antibody level in the NPC risk. We employed a four-way decomposition analysis to assess the extent to which the genetic effect on NPC risk is mediated by or interacts with EBV VCA-IgA. We consistently found a significant interaction between the PRS and EBV VCA-IgA on NPC risk (discovery population: synergy index [SI] = 2.39, 95% confidence interval [CI] = 1.85-3.10; replication population: SI = 3.10, 95% CI = 2.17-4.44; all pinteraction < 0.001). Moreover, the genetic variants included in the PRS demonstrated similar interactions with EBV VCA-IgA antibody. We also observed an obvious dose-response relationship between the PRS and EBV VCA-IgA antibody on NPC risk (all ptrend < 0.001). Furthermore, our decomposition analysis revealed that a substantial proportion (approximately 90%) of the genetic effects on NPC risk could be attributed to host genetic-EBV interaction, while the risk effects mediated by EBV VCA-IgA antibody were weak and statistically insignificant. Our study provides compelling evidence for an interaction between host genetics and EBV VCA-IgA antibody in the development of NPC. These findings emphasize the importance of implementing measures to control EBV infection as a crucial strategy for effectively preventing NPC, particularly in individuals at high genetic risk.


Assuntos
Infecções por Vírus Epstein-Barr , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/genética , Herpesvirus Humano 4/genética , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/genética , Neoplasias Nasofaríngeas/genética , Estudos de Casos e Controles , Estudo de Associação Genômica Ampla , Anticorpos Antivirais/genética , Proteínas do Capsídeo/genética , Antígenos Virais/genética , Imunoglobulina A
13.
J Med Virol ; 95(8): e29030, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37565734

RESUMO

Enterovirus A71 (EV-A71) is a highly contagious virus that poses a major threat to global health, representing the primary etiological agent for hand-foot and mouth disease (HFMD) and neurological complications. It has been established that interferon signaling is critical to establishing a robust antiviral state in host cells, mainly mediated through the antiviral effects of numerous interferon-stimulated genes (ISGs). The host restriction factor SHFL is a novel ISG with broad antiviral activity against various viruses through diverse underlying molecular mechanisms. Although SHFL is widely acknowledged for its broad-spectrum antiviral activity, it remains elusive whether SHFL inhibits EV-A71. In this work, we validated that EV-A71 triggers the upregulation of SHFL both in cell lines and in a mouse model. Knockdown and overexpression of SHFL in EVA71-infected cells suggested that this factor could markedly suppress EV-A71 replication. Our findings further revealed an intriguing mechanism of SHFL that it could interact with the nonstructural proteins 3Dpol of EV-A71 and promoted the degradation of 3Dpol through the ubiquitin-proteasome pathway. Furthermore, the zinc-finger domain and the 36 amino acids (164-199) of SHFL were crucial to the interaction between SHFL and EV-A71 3Dpol . Overall, these findings broadened our understanding of the pivotal roles of SHFL in the interaction between the host and EV-A71.


Assuntos
Enterovirus Humano A , Infecções por Enterovirus , Enterovirus , Doença de Mão, Pé e Boca , Animais , Camundongos , Enterovirus Humano A/genética , Complexo de Endopeptidases do Proteassoma , Produtos do Gene pol , Antígenos Virais/genética , Antivirais , Interferons , Ubiquitinas
14.
Emerg Microbes Infect ; 12(2): 2233643, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37401832

RESUMO

African swine fever (ASF) is an acute and highly contagious lethal infectious disease in swine that severely threatens the global pig industry. At present, a safe and efficacious vaccine is urgently required to prevent and control the disease. In this study, we evaluated the safety and immunogenicity of replication-incompetent type-2 adenoviruses carrying African swine fever virus (ASFV) antigens, namely CP204L (p30), E183L (p54), EP402R (CD2v), B646L (p72), and B602L (p72 chaperone). A vaccine cocktail delivered by simultaneous intramuscular (IM) and intranasal (IN) administration robustly elicited both systemic and mucosal immune responses against AFSV in mice and swine and provided highly effective protection against the circulating ASFV strain in farmed pigs. This multi-antigen cocktail vaccine was well tolerated in the vaccinated animals. No significant interference among antigens was observed. The combined IM and IN vaccination using this adenovirus-vectored antigen cocktail vaccine warrants further evaluation for providing safe and effective protection against ASFV infection and transmission.


Assuntos
Infecções por Adenoviridae , Vacinas contra Adenovirus , Vírus da Febre Suína Africana , Febre Suína Africana , Vacinas Virais , Suínos , Animais , Camundongos , Vírus da Febre Suína Africana/genética , Febre Suína Africana/prevenção & controle , Adenoviridae/genética , Antígenos Virais/genética , Vacinação
15.
Curr Opin Virol ; 61: 101336, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37331160

RESUMO

Kaposi sarcoma-associated herpesvirus (KSHV), or human herpesvirus-8, is an oncogenic herpesvirus. Its latency-associated nuclear antigen (LANA) is essential for the persistence of KSHV in latently infected cells. LANA mediates replication of the latent viral genome during the S phase of a dividing cell and partitions episomes to daughter cells by attaching them to mitotic chromosomes. It also mediates the establishment of latency in newly infected cells through epigenetic mechanisms and suppresses the activation of the productive replication cycle. Furthermore, LANA promotes the proliferation of infected cell by acting as a transcriptional regulator and by modulating the cellular proteome through the recruitment of several cellular ubiquitin ligases. Finally, LANA interferes with the innate and adaptive immune system to facilitate the immune escape of infected cells.


Assuntos
Herpesvirus Humano 8 , Sarcoma de Kaposi , Humanos , Herpesvirus Humano 8/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Antígenos Virais/genética , Latência Viral/genética
16.
Arch Virol ; 168(6): 160, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37169986

RESUMO

In India, studies on the epidemiological and genetic characteristics of enteric viruses in adults with acute gastroenteritis (AGE) are lacking. In this study, fecal samples (n = 110) from adults with acute gastroenteritis in Pune, Western India, were tested for six enteric viruses, and the prevalence of these viruses was as follows: rotavirus A (RVA), 38.5%; enterovirus (EV), 23.1%; astrovirus (AstV), 23.1%; adenovirus (AdV), 7.7%; human bocavirus (HBoV), 7.7%; norovirus (NoV), 0%. Circulation of the RVA G1P[8], G3P[8], G9P[4], CVA-10, echovirus E13, EVC-116, AstV-5, AstV-2, HBoV-1, and AdVC-2 types was observed. When compared to the RotaTeq, Rotarix, and RotaVac vaccine strains, antigenic changes were found in the A, B, C, and F regions of the RVA strains. The circulation of genetically diverse, unusual enteric virus strains, reported here for the first time in adults with acute gastroenteritis, warrants multi-center hospital-based surveillance studies across the country.


Assuntos
Astroviridae , Infecções por Enterovirus , Enterovirus , Gastroenterite , Bocavirus Humano , Infecções por Rotavirus , Rotavirus , Vírus , Adulto , Humanos , Lactente , Índia/epidemiologia , Gastroenterite/epidemiologia , Rotavirus/genética , Vírus/genética , Infecções por Enterovirus/epidemiologia , Antígenos Virais/genética , Fezes , Genótipo , Filogenia
17.
Tumour Virus Res ; 15: 200259, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36863485

RESUMO

Kaposi's Sarcoma (KS) is a heterogenous, multifocal vascular malignancy caused by the human herpesvirus 8 (HHV8), also known as Kaposi's Sarcoma-Associated Herpesvirus (KSHV). Here, we show that KS lesions express iNOS/NOS2 broadly throughout KS lesions, with enrichment in LANA positive spindle cells. The iNOS byproduct 3-nitrotyrosine is also enriched in LANA positive tumor cells and colocalizes with a fraction of LANA-nuclear bodies. We show that iNOS is highly expressed in the L1T3/mSLK tumor model of KS. iNOS expression correlated with KSHV lytic cycle gene expression, which was elevated in late-stage tumors (>4 weeks) but to a lesser degree in early stage (1 week) xenografts. Further, we show that L1T3/mSLK tumor growth is sensitive to an inhibitor of nitric oxide, L-NMMA. L-NMMA treatment reduced KSHV gene expression and perturbed cellular gene pathways relating to oxidative phosphorylation and mitochondrial dysfunction. These finding suggest that iNOS is expressed in KSHV infected endothelial-transformed tumor cells in KS, that iNOS expression depends on tumor microenvironment stress conditions, and that iNOS enzymatic activity contributes to KS tumor growth.


Assuntos
Herpesvirus Humano 8 , Sarcoma de Kaposi , Animais , Humanos , Camundongos , Antígenos Virais/genética , Herpesvirus Humano 8/genética , ômega-N-Metilarginina , Sarcoma de Kaposi/genética , Microambiente Tumoral
18.
Viruses ; 15(3)2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36992403

RESUMO

In recent years, the prevalence of hand, foot, and mouth disease (HFMD) caused by enteroviruses other than enterovirus A71 (EV-A71) and coxsackievirus A16 (CVA16) has gradually increased. The throat swab specimens of 2701 HFMD cases were tested, the VP1 regions of CVA10 RNA were amplified using RT-PCR, and phylogenetic analysis of CVA10 was performed. Children aged 1-5 years accounted for the majority (81.65%) and boys were more than girls. The positivity rates of EV-A71, CVA16, and other EVs were 15.22% (219/1439), 28.77% (414/1439), and 56.01% (806/1439), respectively. CVA10 is one of the important viruses of other EVs. A total of 52 CVA10 strains were used for phylogenetic analysis based on the VP1 region, 31 were from this study, and 21 were downloaded from GenBank. All CVA10 sequences could be assigned to seven genotypes (A, B, C, D, E, F, and G), and genotype C was further divided into C1 and C2 subtypes, only one belonged to subtype C1 and the remaining 30 belonged to C2 in this study. This study emphasized the importance of strengthening the surveillance of HFMD to understand the mechanisms of pathogen variation and evolution, and to provide a scientific basis for HFMD prevention, control, and vaccine development.


Assuntos
Infecções por Enterovirus , Enterovirus , Doença de Mão, Pé e Boca , Masculino , Criança , Feminino , Humanos , Doença de Mão, Pé e Boca/epidemiologia , Filogenia , Enterovirus/genética , Antígenos Virais/genética , China/epidemiologia
19.
Elife ; 122023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36995951

RESUMO

T-cell receptors (TCRs) are formed by stochastic gene rearrangements, theoretically generating >1019 sequences. They are selected during thymopoiesis, which releases a repertoire of about 108 unique TCRs per individual. How evolution shaped a process that produces TCRs that can effectively handle a countless and evolving set of infectious agents is a central question of immunology. The paradigm is that a diverse enough repertoire of TCRs should always provide a proper, though rare, specificity for any given need. Expansion of such rare T cells would provide enough fighters for an effective immune response and enough antigen-experienced cells for memory. We show here that human thymopoiesis releases a large population of clustered CD8+ T cells harboring α/ß paired TCRs that (i) have high generation probabilities and (ii) a preferential usage of some V and J genes, (iii) which CDR3 are shared between individuals, and (iv) can each bind and be activated by multiple unrelated viral peptides, notably from EBV, CMV, and influenza. These polyspecific T cells may represent a first line of defense that is mobilized in response to infections before a more specific response subsequently ensures viral elimination. Our results support an evolutionary selection of polyspecific α/ß TCRs for broad antiviral responses and heterologous immunity.


Assuntos
Antígenos Virais , Linfócitos T CD8-Positivos , Humanos , Antígenos Virais/genética , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T/genética , Peptídeos
20.
Viruses ; 14(12)2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36560739

RESUMO

OBJECTIVES: Recently, histo-blood group antigens (HBGAs) have been identified as receptors or attachment factors of several viral pathogens. Among rotaviruses, HBGAs interact with the outer viral protein, VP4, which has been identified as a potential susceptibility factor, although the findings are inconsistent throughout populations due to HBGA polymorphisms. We investigated the association between HBGA phenotypes and rotavirus infection in children with acute gastroenteritis in northern Pretoria, South Africa. METHODS: Paired diarrheal stool and saliva samples were collected from children aged ≤ 59 months (n = 342) with acute moderate to severe diarrhea, attending two health care facilities. Rotaviruses in the stool samples were detected by commercial EIA and the rotavirus strains were characterized by RT-PCR targeting the outer capsid VP7 (G-type) and VP4 (P-type) antigens for genotyping. Saliva-based ELISAs were performed to determine A, B, H, and Lewis antigens for blood group typing. RESULTS: Blood type O was the most common blood group (62.5%) in this population, followed by groups A (26.0%), B (9.3%), and AB (2.2%). The H1-based secretors were common (82.7%) compared to the non-secretors (17.3%), and the Lewis antigen positive phenotypes (Le(a+b+)) were predominant (54.5%). Blood type A children were more likely to be infected by rotavirus (38.8%) than any other blood types. P[4] rotaviruses (21/49; 42.9%) infected only secretor individuals, whereas P[6] rotaviruses (3/49; 6.1%) only infected Le(a-b-), although the numbers were very low. On the contrary, P[8] rotaviruses infected children with a wide range of blood group phenotypes, including Le(a-b-) and non-secretors. CONCLUSIONS: Our findings demonstrated that Lewis antigens, or the lack thereof, may serve as susceptibility factors to rotaviral infection by specific VP4 genotypes as observed elsewhere. Potentially, the P[8] strains remain the predominant human VP4 genotype due to their ability to bind to a variety of HBGA phenotypes.


Assuntos
Antígenos de Grupos Sanguíneos , Infecções por Rotavirus , Rotavirus , Pré-Escolar , Humanos , Antígenos Virais/genética , Antígenos Virais/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Diarreia , Genótipo , Antígenos do Grupo Sanguíneo de Lewis/genética , África do Sul/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA