Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Cell Death Dis ; 13(12): 1071, 2022 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-36566214

RESUMO

Glioma is the most common type of primary malignant tumor in the central nervous system with limited treatment satisfaction. Finding new therapeutic targets has remained a major challenge. Ferroptosis is a novel and distinct type of programmed cell death, playing a regulatory role in the progression of tumors. However, the role of ferroptosis or ferroptosis-related genes (FRGs) in glioma progression has not been extensively studied. In our study, a novel ferroptosis-related prognostic model, including 7 genes, was established, in which patients classified into the high-risk group had more immuno-suppressive status and worse prognosis. Among these 7 genes, we screened solute carrier family 1 member 5 (SLC1A5), an FRG, as a possible new target for glioma treatment. Our results showed that the expression of SLC1A5 was significantly upregulated in glioblastoma tissues compared with the low-grade gliomas. In addition, SLC1A5 knockdown could significantly inhibit glioma cell proliferation and invasion, and reduce the sensitivity of ferroptosis via the GPX4-dependent pathway. Furthermore, SLC1A5 was found to be related to immune response and SLC1A5 knockdown decreased the infiltration and M2 polarization of tumor-associated macrophages. Pharmacological inhibition of SLC1A5 by V9302 was confirmed to promote the efficacy of anti-PD-1 therapy. Overall, we developed a novel prognostic model for glioma based on the seven-FRGs signature, which could apply to glioma prognostic and immune status prediction. Besides, SLC1A5 in the model could regulate the proliferation, invasion, ferroptosis and immune state in glioma, and be applied as a prognostic biomarker and potential therapeutic target for glioma.


Assuntos
Sistema ASC de Transporte de Aminoácidos , Neoplasias Encefálicas , Ferroptose , Glioma , Antígenos de Histocompatibilidade Menor , Microambiente Tumoral , Humanos , Sistema ASC de Transporte de Aminoácidos/genética , Sistema ASC de Transporte de Aminoácidos/fisiologia , Apoptose/genética , Ferroptose/genética , Glioblastoma/genética , Glioblastoma/imunologia , Glioblastoma/patologia , Glioma/genética , Glioma/imunologia , Glioma/patologia , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/fisiologia , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia
2.
PLoS One ; 17(12): e0279584, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36548354

RESUMO

Mesenchymal stem cells (MSC) can differentiate into chondrocytes. Epstein-Barr virus-induced gene 3 (EBI3) is differentially expressed during chondrogenic differentiation and can be produced by MSC. EBI3 is also a subunit of interleukin (IL)-27 and IL-35, and it accumulates in the endoplasmic reticulum (ER) when its partners, such as IL-27 p28 and IL-35 p35, are insufficient. ER stress induced by protein accumulation is responsible for chondrogenic differentiation. However, the role of EBI3 and its relevance to the ER stress in chondrogenic differentiation of MSC have never been addressed. Here, we demonstrate that EBI3 protein is expressed in the early stage of chondrogenic differentiation of MSC. Additionally, knockdown, overexpression, or induction of EBI3 through IL-1ß inhibits chondrogenesis. We show that EBI3 localizes and accumulates in the ER of MSC after overexpression or induction by IL-1ß and TNF-α, whereas ER stress inhibitor 4-phenylbutyric acid decreases its accumulation in MSC. Moreover, EBI3 modulates ER stress sensor inositol-requiring enzyme 1 α (IRE1α) after induced by IL-1ß, and MSC-like cells coexpress EBI3 and IRE1α in rheumatoid arthritis (RA) synovial tissue. Altogether, these data demonstrate that intracellular EBI3 commits to chondrogenic differentiation by regulating ER stress sensor IRE1α.


Assuntos
Diferenciação Celular , Condrócitos , Condrogênese , Estresse do Retículo Endoplasmático , Interleucinas , Células-Tronco Mesenquimais , Antígenos de Histocompatibilidade Menor , Humanos , Condrócitos/citologia , Estresse do Retículo Endoplasmático/genética , Endorribonucleases/genética , Endorribonucleases/metabolismo , Interleucinas/genética , Interleucinas/fisiologia , Células-Tronco Mesenquimais/citologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/fisiologia , Diferenciação Celular/genética , Condrogênese/genética
3.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34845016

RESUMO

Unlike conventional αß T cells, γδ T cells typically recognize nonpeptide ligands independently of major histocompatibility complex (MHC) restriction. Accordingly, the γδ T cell receptor (TCR) can potentially recognize a wide array of ligands; however, few ligands have been described to date. While there is a growing appreciation of the molecular bases underpinning variable (V)δ1+ and Vδ2+ γδ TCR-mediated ligand recognition, the mode of Vδ3+ TCR ligand engagement is unknown. MHC class I-related protein, MR1, presents vitamin B metabolites to αß T cells known as mucosal-associated invariant T cells, diverse MR1-restricted T cells, and a subset of human γδ T cells. Here, we identify Vδ1/2- γδ T cells in the blood and duodenal biopsy specimens of children that showed metabolite-independent binding of MR1 tetramers. Characterization of one Vδ3Vγ8 TCR clone showed MR1 reactivity was independent of the presented antigen. Determination of two Vδ3Vγ8 TCR-MR1-antigen complex structures revealed a recognition mechanism by the Vδ3 TCR chain that mediated specific contacts to the side of the MR1 antigen-binding groove, representing a previously uncharacterized MR1 docking topology. The binding of the Vδ3+ TCR to MR1 did not involve contacts with the presented antigen, providing a basis for understanding its inherent MR1 autoreactivity. We provide molecular insight into antigen-independent recognition of MR1 by a Vδ3+ γδ TCR that strengthens an emerging paradigm of antibody-like ligand engagement by γδ TCRs.


Assuntos
Antígenos de Histocompatibilidade Classe I/metabolismo , Linfócitos Intraepiteliais/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Adulto , Apresentação de Antígeno , Feminino , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/fisiologia , Humanos , Linfócitos Intraepiteliais/fisiologia , Ligantes , Masculino , Antígenos de Histocompatibilidade Menor/química , Antígenos de Histocompatibilidade Menor/fisiologia , Células T Invariantes Associadas à Mucosa/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/fisiologia , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/fisiologia
4.
Front Immunol ; 12: 757669, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34603342

RESUMO

The interleukin-6 (IL-6)/IL-12 family of cytokines plays critical roles in the induction and regulation of innate and adaptive immune responses. Among the various cytokines, only this family has the unique characteristic of being composed of two distinct subunits, α- and ß-subunits, which form a heterodimer with subunits that occur in other cytokines as well. Recently, we found a novel intracellular role for one of the α-subunits, Epstein-Barr virus-induced gene 3 (EBI3), in promoting the proper folding of target proteins and augmenting its expression at the protein level by binding to its target protein and a well-characterized lectin chaperone, calnexin, presumably through enhancing chaperone activity. Because calnexin is ubiquitously and constitutively expressed but EBI3 expression is inducible, these results could open an avenue to establish a new paradigm in which EBI3 plays an important role in further increasing the expression of target molecules at the protein level in collaboration with calnexin under inflammatory conditions. This theory well accounts for the heterodimer formation of EBI3 with p28, and probably with p35 and p19 to produce IL-27, IL-35, and IL-39, respectively. In line with this concept, another ß-subunit, p40, plays a critical role in the assembly-induced proper folding of p35 and p19 to produce IL-12 and IL-23, respectively. Thus, chaperone-like activities in proper folding and maturation, which allow the secretion of biologically active heterodimeric cytokines, have recently been highlighted. This review summarizes the current understanding of chaperone-like activities of EBI3 to form heterodimers and other associations together with their possible biological implications.


Assuntos
Calnexina/fisiologia , Inflamação/metabolismo , Interleucinas/fisiologia , Antígenos de Histocompatibilidade Menor/fisiologia , Chaperonas Moleculares/fisiologia , Dimerização , Glicoproteínas/química , Humanos , Interleucinas/química , Proteínas de Membrana/fisiologia , Proteínas de Neoplasias/fisiologia , Neoplasias/metabolismo , Neoplasias/patologia , Dobramento de Proteína , Mapeamento de Interação de Proteínas , Subunidades Proteicas , Receptores de Interleucina/química
5.
Life Sci ; 286: 120054, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34662550

RESUMO

AIMS: Type 2 diabetes mellitus (T2DM) is a risk factor for breast cancer initiation and progression. Glutamine (GLN) is a critical nutrient for cancer cells. The aim of this study was to investigate the effect of T2DM-associated compounds upon GLN uptake by breast cancer cells. MAIN METHODS: The in vitro uptake of 3H-GLN by breast cancer (MCF-7 and MDA-MB-231) and non-tumorigenic (MCF-12A) cell lines was measured. KEY FINDINGS: 3H-GLN uptake in the three cell lines is mainly Na+-dependent and sensitive to the ASCT2 inhibitor GPNA. IFN-γ increased total and Na+-dependent 3H-GLN uptake in the two breast cancer cell lines, and insulin increased total and Na+-dependent 3H-GLN uptake in the non-tumorigenic cell line. GPNA abolished the increase in 3H-GLN uptake promoted by these T2DM-associated compounds. ASCT2 knockdown confirmed that the increase in 3H-GLN uptake caused by IFN-γ (in breast cancer cells) and by insulin (in non-tumorigenic cells) is ASCT2-dependent. IFN-γ (in MDA-MB-231 cells) and insulin (in MCF-12A cells) increased ASCT2 transcript and protein levels. Importantly, the pro-proliferative effect of IFN-γ in breast cancer cell lines was associated with an increase in 3H-GLN uptake which was GPNA-sensitive, blocked by ASCT2 knockdown and mediated by activation of the PI3K-, STAT3- and STAT1 intracellular signalling pathways. SIGNIFICANCE: IFN-γ and insulin possess pro-proliferative effects in breast cancer and non-cancer cell lines, respectively, which are dependent on an increase in ASCT2-mediated glutamine transport. Thus, an effective inhibition of ASCT2-mediated glutamine uptake may be a therapeutic strategy against human breast cancer in T2DM patients.


Assuntos
Sistema ASC de Transporte de Aminoácidos/metabolismo , Neoplasias da Mama/metabolismo , Interferon gama/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Sistema ASC de Transporte de Aminoácidos/fisiologia , Apoptose/efeitos dos fármacos , Transporte Biológico , Neoplasias da Mama/imunologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Complicações do Diabetes/fisiopatologia , Diabetes Mellitus/fisiopatologia , Feminino , Glutamina/metabolismo , Humanos , Interferon gama/imunologia , Interferon gama/fisiologia , Antígenos de Histocompatibilidade Menor/fisiologia , Fatores de Risco , Transdução de Sinais/efeitos dos fármacos , Sódio
6.
SLAS Discov ; 26(9): 1148-1163, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34269129

RESUMO

The SLC1 family includes seven members divided into two groups, namely, EAATs and ASCTs, that share similar 3D architecture; the first one includes high-affinity glutamate transporters, and the second one includes SLC1A4 and SLC1A5, known as ASCT1 and ASCT2, respectively, responsible for the traffic of neutral amino acids across the cell plasma membrane. The physiological role of ASCT1 and ASCT2 has been investigated over the years, revealing different properties in terms of substrate specificities, affinities, and regulation by physiological effectors and posttranslational modifications. Furthermore, ASCT1 and ASCT2 are involved in pathological conditions, such as neurodegenerative disorders and cancer. This has driven research in the pharmaceutical field aimed to find drugs able to target the two proteins.This review focuses on structural, functional, and regulatory aspects of ASCT1 and ASCT2, highlighting similarities and differences.


Assuntos
Sistema ASC de Transporte de Aminoácidos/fisiologia , Antígenos de Histocompatibilidade Menor/fisiologia , Sistema ASC de Transporte de Aminoácidos/química , Suscetibilidade a Doenças , Humanos , Antígenos de Histocompatibilidade Menor/química , Família Multigênica , Relação Estrutura-Atividade
7.
PLoS One ; 16(2): e0247489, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33630943

RESUMO

The gene SON is on human chromosome 21 (21q22.11) and is thought to be associated with hematopoietic disorders that accompany Down syndrome. Additionally, SON is an RNA splicing factor that plays a role in the transcription of leukemia-associated genes. Previously, we showed that mutations in SON cause malformations in human and zebrafish spines and brains during early embryonic development. To examine the role of SON in normal hematopoiesis, we reduced expression of the zebrafish homolog of SON in zebrafish at the single-cell developmental stage with specific morpholinos. In addition to the brain and spinal malformations we also observed abnormal blood cell levels upon son knockdown. We then investigated how blood production was altered when levels of son were reduced. Decreased levels of son resulted in lower amounts of red blood cells when visualized with lcr:GFP transgenic fish. There were also reduced thrombocytes seen with cd41:GFP fish, and myeloid cells when mpx:GFP fish were examined. We also observed a significant decrease in the quantity of T cells, visualized with lck:GFP fish. However, when we examined their hematopoietic stem and progenitor cells (HSPCs), we saw no difference in colony-forming capability. These studies indicate that son is essential for the proper differentiation of the innate and adaptive immune system, and further investigation determining the molecular pathways involved during blood development should elucidate important information about vertebrate HSPC generation, proliferation, and differentiation.


Assuntos
Embrião não Mamífero/citologia , Hematopoese , Peixe-Zebra/embriologia , Animais , Animais Geneticamente Modificados/embriologia , Diferenciação Celular , Proliferação de Células , Proteínas de Ligação a DNA/fisiologia , Doenças Hematológicas/metabolismo , Células-Tronco Hematopoéticas/citologia , Humanos , Antígenos de Histocompatibilidade Menor/fisiologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/fisiologia
8.
PLoS Pathog ; 17(2): e1009281, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33524065

RESUMO

Intrinsic resistance is a crucial line of defense against virus infections, and members of the Tripartite Ring Interaction Motif (TRIM) family of proteins are major players in this system, such as cytoplasmic TRIM5α or nuclear promyelocytic leukemia (PML/TRIM19) protein. Previous reports on the antiviral function of another TRIM protein, TRIM22, emphasized its innate immune role as a Type I and Type II interferon-stimulated gene against RNA viruses. This study shows that TRIM22 has an additional intrinsic role against DNA viruses. Here, we report that TRIM22 is a novel restriction factor of HSV-1 and limits ICP0-null virus replication by increasing histone occupancy and heterochromatin, thereby reducing immediate-early viral gene expression. The corresponding wild-type equivalent of the virus evades the TRIM22-specific restriction by a mechanism independent of ICP0-mediated degradation. We also demonstrate that TRIM22 inhibits other DNA viruses, including representative members of the ß- and γ- herpesviruses. Allelic variants in TRIM22 showed different degrees of anti-herpesviral activity; thus, TRIM22 genetic variability may contribute to the varying susceptibility to HSV-1 infection in humans. Collectively, these results argue that TRIM22 is a novel restriction factor and expand the list of restriction factors functioning in the infected cell nucleus to counter DNA virus infection.


Assuntos
Epigênese Genética , Inativação Gênica , Genes Precoces , Herpesvirus Humano 1/fisiologia , Antígenos de Histocompatibilidade Menor/fisiologia , Proteínas Repressoras/fisiologia , Proteínas com Motivo Tripartido/fisiologia , Linhagem Celular , Suscetibilidade a Doenças/imunologia , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/imunologia , Heterocromatina/metabolismo , Histonas/metabolismo , Humanos , Antígenos de Histocompatibilidade Menor/imunologia , Proteínas Repressoras/imunologia , Proteínas com Motivo Tripartido/imunologia , Replicação Viral/genética
9.
Cancer Chemother Pharmacol ; 87(4): 447-464, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33464409

RESUMO

Cancer cells are metabolically reprogrammed to support their high rates of proliferation, continuous growth, survival, invasion, metastasis, and resistance to cancer treatments. Among changes in cancer cell bioenergetics, the role of glutamine metabolism has been receiving increasing attention. Increased glutaminolysis in cancer cells is associated with increased expression of membrane transporters that mediate the cellular uptake of glutamine. ASCT2 (Alanine, Serine, Cysteine Transporter 2) is a Na+-dependent transmembrane transporter overexpressed in cancer cells and considered to be the primary transporter for glutamine in these cells. The possibility of inhibiting ASCT2 for antineoplastic therapy is currently under investigation. In this article, we will present the pharmacological agents currently known to act on ASCT2, which have been attracting attention in antineoplastic therapy research. We will also address the impact of ASCT2 inhibition on the prognosis of some cancers. We conclude that ASCT2 inhibition and combination of ASCT2 inhibitors with other anti-tumor therapies may be a promising antineoplastic strategy. However, more research is needed in this area.


Assuntos
Sistema ASC de Transporte de Aminoácidos/antagonistas & inibidores , Glutamina/metabolismo , Neoplasias/tratamento farmacológico , Sistema ASC de Transporte de Aminoácidos/fisiologia , Animais , Anticorpos Monoclonais/uso terapêutico , Humanos , Antígenos de Histocompatibilidade Menor/fisiologia , Neoplasias/metabolismo , Estresse Oxidativo
10.
Front Immunol ; 11: 1576, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32793222

RESUMO

In the human genome, the aminopeptidases ERAP1, ERAP2 and LNPEP lie contiguously on chromosome 5. They share sequence homology, functions and associations with immune-mediated diseases. By analyzing their multifaceted activities as well as their expression in the zoological scale, we suggest here that the progenitor of the three aminopeptidases might be LNPEP from which the other two aminopeptidases could have derived by gene duplications. We also propose that their functions are partially redundant. More precisely, the evolutionary story of the three aminopeptidases might have been dictated by their role in regulating the renin-angiotensin system, which requires their controlled and coordinated expression. This hypothesis is supported by the many species that lack one or the other gene as well as by the lack of ERAP2 in rodents and a null expression in 25% of humans. Finally, we speculate that their role in antigen presentation has been acquired later on during evolution. They have therefore been diversified between those residing in the ER, ERAP1 and ERAP2, whose role is to refine the MHC-I peptidomes, and LNPEP, mostly present in the endosomal vesicles where it can contribute to antigen cross-presentation or move to the cell membrane as receptor for angiotensin IV. Their association with autoinflammatory/autoimmune diseases can therefore be two-fold: as "contributors" to the shaping of the immune-peptidomes as well as to the regulation of the vascular response.


Assuntos
Aminopeptidases/fisiologia , Cistinil Aminopeptidase/fisiologia , Antígenos de Histocompatibilidade Menor/fisiologia , Aminopeptidases/genética , Aminopeptidases/imunologia , Animais , Apresentação de Antígeno , Doenças Autoimunes/genética , Doenças Autoimunes/imunologia , Cistinil Aminopeptidase/genética , Cistinil Aminopeptidase/imunologia , Evolução Molecular , Humanos , Inflamação , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/imunologia , Sistema Renina-Angiotensina
11.
Epigenomics ; 12(13): 1123-1138, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32618200

RESUMO

Background: Castration-resistant prostate cancer (CRPC) is an incurable malignancy. Long noncoding RNAs (lncRNAs) play key roles in drug resistance. Materials & methods: LncRNA HORAS5 role in cabazitaxel resistance (i.e., cell-count, IC50 and caspase activity) was studied via lentiviral-mediated overexpression and siRNA-based knockdown. Genes expression was analyzed with RNA-sequencing, reverse transcription quantitative PCR (RT-qPCR) and western blot. HORAS5 expression was queried in clinical database. Results: Cabazitaxel increased HORAS5 expression that upregulated BCL2A1, thereby protecting CRPC cells from cabazitaxel-induced apoptosis. BCL2A1 knockdown decreased cell-count and increased apoptosis in CRPC cells. HORAS5-targeting antisense oligonucleotide decreased cabazitaxel IC50. In CRPC clinical samples, HORAS5 expression increased upon taxane treatment. Conclusion:HORAS5 stimulates the expression of BCL2A1 thereby decreasing apoptosis and enhancing cabazitaxel resistance in CRPC cells.


Assuntos
Antineoplásicos/farmacologia , Regulação Neoplásica da Expressão Gênica , Antígenos de Histocompatibilidade Menor/genética , Neoplasias de Próstata Resistentes à Castração/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , RNA Longo não Codificante/metabolismo , Taxoides/farmacologia , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Masculino , Antígenos de Histocompatibilidade Menor/biossíntese , Antígenos de Histocompatibilidade Menor/fisiologia , Oligonucleotídeos Antissenso , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Proteínas Proto-Oncogênicas c-bcl-2/fisiologia , RNA Longo não Codificante/antagonistas & inibidores , RNA Longo não Codificante/biossíntese
12.
Nat Metab ; 1(3): 390-403, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-31535081

RESUMO

Amino acid (AA) metabolism is involved in diverse cellular functions, including cell survival and growth, however it remains unclear how it regulates normal hematopoiesis versus leukemogenesis. Here, we report that knockout of Slc1a5 (ASCT2), a transporter of neutral AAs, especially glutamine, results in mild to moderate defects in bone marrow and mature blood cell development under steady state conditions. In contrast, constitutive or induced deletion of Slc1a5 decreases leukemia initiation and maintenance driven by the oncogene MLL-AF9 or Pten deficiency. Survival of leukemic mice is prolonged following Slc1a5 deletion, and pharmacological inhibition of ASCT2 also decreases leukemia development and progression in xenograft models of human acute myeloid leukemia. Mechanistically, loss of ASCT2 generates a global effect on cellular metabolism, disrupts leucine influx and mTOR signaling, and induces apoptosis in leukemic cells. Given the substantial difference in reliance on ASCT2-mediated AA metabolism between normal and malignant blood cells, this in vivo study suggests ASCT2 as a promising therapeutic target for the treatment of leukemia.


Assuntos
Sistema ASC de Transporte de Aminoácidos/fisiologia , Aminoácidos/metabolismo , Leucemia Mieloide Aguda/metabolismo , Antígenos de Histocompatibilidade Menor/fisiologia , Sistema ASC de Transporte de Aminoácidos/genética , Animais , Linhagem Celular Tumoral , Progressão da Doença , Hematopoese/genética , Xenoenxertos , Humanos , Leucemia Mieloide Aguda/patologia , Camundongos , Antígenos de Histocompatibilidade Menor/genética
13.
Nat Rev Immunol ; 19(10): 643-657, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31308521

RESUMO

Mucosal-associated invariant T (MAIT) cells are unique innate-like T cells that bridge innate and adaptive immunity. They are activated by conserved bacterial ligands derived from vitamin B biosynthesis and have important roles in defence against bacterial and viral infections. However, they can also have various deleterious and protective functions in autoimmune, inflammatory and metabolic diseases. MAIT cell involvement in a large spectrum of pathological conditions makes them attractive targets for potential therapeutic approaches.


Assuntos
Células T Invariantes Associadas à Mucosa/imunologia , Apoptose , Antígenos de Histocompatibilidade Classe I/fisiologia , Humanos , Infecções/imunologia , Inflamação/imunologia , Interleucina-17/fisiologia , Antígenos de Histocompatibilidade Menor/fisiologia , Neoplasias/imunologia
14.
Nat Commun ; 10(1): 3304, 2019 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-31341163

RESUMO

The Hedgehog (Hh) pathway is essential for embryonic development and tissue homeostasis. Aberrant Hh signaling may occur in a wide range of human cancers, such as medulloblastoma, the most common brain malignancy in childhood. Here, we identify endoplasmic reticulum aminopeptidase 1 (ERAP1), a key regulator of innate and adaptive antitumor immune responses, as a previously unknown player in the Hh signaling pathway. We demonstrate that ERAP1 binds the deubiquitylase enzyme USP47, displaces the USP47-associated ßTrCP, the substrate-receptor subunit of the SCFßTrCP ubiquitin ligase, and promotes ßTrCP degradation. These events result in the modulation of Gli transcription factors, the final effectors of the Hh pathway, and the enhancement of Hh activity. Remarkably, genetic or pharmacological inhibition of ERAP1 suppresses Hh-dependent tumor growth in vitro and in vivo. Our findings unveil an unexpected role for ERAP1 in cancer and indicate ERAP1 as a promising therapeutic target for Hh-driven tumors.


Assuntos
Aminopeptidases/fisiologia , Antígenos de Histocompatibilidade Menor/fisiologia , Proteases Específicas de Ubiquitina/metabolismo , Proteínas Contendo Repetições de beta-Transducina/metabolismo , Aminopeptidases/genética , Aminopeptidases/metabolismo , Animais , Carcinogênese/genética , Proteínas Hedgehog/metabolismo , Camundongos , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/metabolismo , Células NIH 3T3 , Estabilidade Proteica , Proteólise , Transdução de Sinais
15.
Cell Rep ; 27(12): 3657-3671.e4, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31216482

RESUMO

IL-17-producing γδ T cells express oligoclonal Vγ4+ and Vγ6+ TCRs, mainly develop in the prenatal thymus, and later persist as long-lived self-renewing cells in all kinds of tissues. However, their exchange between tissues and the mechanisms of their tissue-specific adaptation remain poorly understood. Here, single-cell RNA-seq profiling identifies IL-17-producing Vγ6+ T cells as a highly homogeneous Scart1+ population in contrast to their Scart2+ IL-17-producing Vγ4+ T cell counterparts. Parabiosis demonstrates that Vγ6+ T cells are fairly tissue resident in the thymus, peripheral lymph nodes, and skin. There, Scart1+ Vγ6+ T cells display tissue-specific gene expression signatures in the skin, characterized by steady-state production of the cytokines IL-17A and amphiregulin as well as by high expression of the anti-apoptotic Bcl2a1 protein family. Together, this study demonstrates how Scart1+ Vγ6+ T cells undergo tissue-specific functional adaptation to persist as effector cells in their skin habitat.


Assuntos
Antígenos de Histocompatibilidade Menor/fisiologia , Proteínas Proto-Oncogênicas c-bcl-2/fisiologia , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Receptores de Superfície Celular/metabolismo , Análise de Célula Única/métodos , Pele/imunologia , Subpopulações de Linfócitos T/imunologia , Transcriptoma , Animais , Sobrevivência Celular , Células Cultivadas , Interleucina-17/genética , Interleucina-17/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Superfície Celular/genética , Pele/metabolismo , Pele/patologia
16.
Curr Med Chem ; 26(15): 2715-2729, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-29446724

RESUMO

Endoplasmic Reticulum aminopeptidase 1 and 2 are two homologous enzymes that help generate peptide ligands for presentation by Major Histocompatibility Class I molecules. Their enzymatic activity influences the antigenic peptide repertoire and indirectly controls adaptive immune responses. Accumulating evidence suggests that these two enzymes are tractable targets for the regulation of immune responses with possible applications ranging from cancer immunotherapy to treating inflammatory autoimmune diseases. Here, we review the state-of-the-art in the development of inhibitors of ERAP1 and ERAP2 as well as their potential and limitations for clinical applications.


Assuntos
Aminopeptidases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Aminopeptidases/química , Aminopeptidases/genética , Aminopeptidases/fisiologia , Animais , Autoimunidade/fisiologia , Domínio Catalítico , Linhagem Celular Tumoral , Desenho de Fármacos , Inibidores Enzimáticos/química , Antígenos de Histocompatibilidade/imunologia , Antígenos de Histocompatibilidade/metabolismo , Humanos , Imunidade Inata/fisiologia , Antígenos de Histocompatibilidade Menor/química , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/fisiologia , Neoplasias/enzimologia , Neoplasias/imunologia , Polimorfismo de Nucleotídeo Único
17.
Cell ; 175(1): 101-116.e25, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30220459

RESUMO

IDH1 mutations are common in low-grade gliomas and secondary glioblastomas and cause overproduction of (R)-2HG. (R)-2HG modulates the activity of many enzymes, including some that are linked to transformation and some that are probably bystanders. Although prior work on (R)-2HG targets focused on 2OG-dependent dioxygenases, we found that (R)-2HG potently inhibits the 2OG-dependent transaminases BCAT1 and BCAT2, likely as a bystander effect, thereby decreasing glutamate levels and increasing dependence on glutaminase for the biosynthesis of glutamate and one of its products, glutathione. Inhibiting glutaminase specifically sensitized IDH mutant glioma cells to oxidative stress in vitro and to radiation in vitro and in vivo. These findings highlight the complementary roles for BCATs and glutaminase in glutamate biosynthesis, explain the sensitivity of IDH mutant cells to glutaminase inhibitors, and suggest a strategy for maximizing the effectiveness of such inhibitors against IDH mutant gliomas.


Assuntos
Glioma/metabolismo , Ácido Glutâmico/biossíntese , Transaminases/fisiologia , Linhagem Celular Tumoral , Glioma/fisiopatologia , Ácido Glutâmico/efeitos dos fármacos , Glutaratos/metabolismo , Glutaratos/farmacologia , Homeostase/efeitos dos fármacos , Humanos , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/fisiologia , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/fisiologia , Mutação , Oxirredução/efeitos dos fármacos , Proteínas da Gravidez/genética , Proteínas da Gravidez/fisiologia , Transaminases/antagonistas & inibidores , Transaminases/genética
18.
Eur J Pharmacol ; 837: 81-87, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30025811

RESUMO

Reorganization of cellular metabolism is one of the hallmarks of cancer and many tumors show high glucose uptake and glutamine addiction. Glutamine is imported by the SLC family transporters from the microenvironment, and ASCT2 (encoded by the SLC1A5 gene) is recognized as a primary transporter. Of note, ASCT2 is overexpressed in different cancers and is closely related to poor prognosis. Nonetheless, the mechanisms regulating ASCT2 activity has not been elucidated. Moreover, several inhibitors of ASCT2 have emerged and shown a surprising antitumor effect. In conclusion, this review describes the function, regulatory mechanism, and inhibitors of ASCT2 in cancer, suggesting that high expression of ASCT2 is a promising prognostic marker and a potential drug target.


Assuntos
Sistema ASC de Transporte de Aminoácidos/fisiologia , Antígenos de Histocompatibilidade Menor/fisiologia , Neoplasias/etiologia , Sistema ASC de Transporte de Aminoácidos/antagonistas & inibidores , Proteínas de Ligação a DNA/fisiologia , Dipeptídeos/uso terapêutico , Humanos , MicroRNAs/fisiologia , Neoplasias/tratamento farmacológico , Proteínas Proto-Oncogênicas c-myc/fisiologia , Ubiquitina-Proteína Ligases/fisiologia
19.
Oncol Res Treat ; 41(3): 111-115, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29485413

RESUMO

BACKGROUND AND AIM: So far, the understanding of the role of Epstein-Barr virus-induced gene 3 (EBI3) in breast cancer has been limited. This study uncovers the functional role and clinical significance of EBI3 in breast cancer patients. PATIENTS AND METHODS: The expression levels of EBI3, IL-27p28, and IL-12p35 were measured by quantitative real-time reverse transcription (RT)-polymerase chain reaction (PCR). Correlations of EBI3 expression with IL-27p28 and IL-12p35 expression were analyzed using Pearson's correlation assay. The prognostic performance of EBI3 was assessed via Kaplan-Meier survival assay and Cox regression analysis. RESULTS: EBI3 expression was increased in cancerous tissues compared with the controls (P < 0.05). This overexpression of EBI3 was correlated with lymph node metastasis and clinical stage (both P < 0.05). Besides, elevated expression of EBI3 was usually found in patients with positive lymph node metastasis (P < 0.05), and similar results were obtained in advanced clinical-stage breast cancer cases (P < 0.05). Increases in both IL-27p28 and IL-12p35 expression were identified in breast cancer tissues (all P < 0.05), and IL-12p35 expression was found to be associated with EBI3 expression (R = 0.888, P < 0.001). Survival curves revealed that high EBI3 expression was correlated with poor overall survival (log-rank P < 0.05). The Cox analysis indicated that EBI3 was an independent prognostic factor in breast cancer. CONCLUSION: Taken together, overexpression of EBI3 was associated with poor prognosis and might be involved in the progression of breast cancer.


Assuntos
Neoplasias da Mama/patologia , Interleucinas/fisiologia , Antígenos de Histocompatibilidade Menor/fisiologia , Adulto , Idoso , Neoplasias da Mama/mortalidade , Progressão da Doença , Feminino , Humanos , Interleucinas/análise , Pessoa de Meia-Idade , Antígenos de Histocompatibilidade Menor/análise , Modelos de Riscos Proporcionais , Regulação para Cima
20.
Zhonghua Wei Chang Wai Ke Za Zhi ; 20(4): 450-454, 2017 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-28440528

RESUMO

OBJECTIVE: To investigate the effect of ASCT2 gene (glutamine transporter) knock-down by shRNA on biological behaviors of colorectal cancer cells. METHODS: shRNA was transfected into colorectal cancer cells Lovo and SW480 to knockdown ASCT2 mediated by Lipofectamine 2000. Reverse transcription-PCR and Western blot were used to examine the mRNA and protein expression of ASCT2. MTT and transwell assay were used to determine the proliferation and invasiveness of Lovo and SW480 cells. Radioactive-tracer was used to detect the uptake of glutamine. RESULTS: ASCT2 mRNA and protein levels were significantly down-regulated by shRNA in Lovo and SW480 cells(P<0.01). MTT and transwell assays showed that ASCT2 knock-down could significantly inhibit the proliferation of Lovo and SW480 cells (A490) and decrease the number of invasive Lovo and SW480 cells from the membrane (both P<0.01). The number of membrane Lovo cells in shASCT group and control group was 46.3±5.9 and 197.7±9.1, respectively while the number of membrane SW480 cells in shASCT group and control group was 29.7±3.8 and 139.0±9.5, respectively. Radioactive-tracer showed that shASCT2 transfection could significantly reduce the uptake of glutamine, with an inhibition rate of 79.15% in Lovo and 67.22% in SW480 cells (both P<0.01). CONCLUSIONS: ASCT2 plays an oncogenic role in colonic cancer, and its promotion mechanism may be associated with glutamine metabolism. ASCT2 may be a novel therapeutic target of colonic cancer.


Assuntos
Sistema ASC de Transporte de Aminoácidos/efeitos dos fármacos , Sistema ASC de Transporte de Aminoácidos/genética , Sistema ASC de Transporte de Aminoácidos/fisiologia , Proliferação de Células/genética , Neoplasias Colorretais/genética , Glutamina/efeitos dos fármacos , Antígenos de Histocompatibilidade Menor/efeitos dos fármacos , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/fisiologia , Invasividade Neoplásica/genética , Invasividade Neoplásica/fisiopatologia , Linhagem Celular Tumoral/fisiologia , Neoplasias Colorretais/fisiopatologia , Regulação para Baixo/efeitos dos fármacos , Técnicas de Silenciamento de Genes/métodos , Glutamina/genética , Glutamina/fisiologia , Humanos , Oncogenes/efeitos dos fármacos , Oncogenes/genética , RNA Mensageiro/fisiologia , RNA Interferente Pequeno/farmacologia , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA