Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 717
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Molecules ; 29(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38675657

RESUMO

Triple-negative breast cancer (TNBC) is a malignant breast cancer. There is an urgent need for effective drugs to be developed for TNBC. Tubocapsicum anomalum (T. anomalum) has been reported to have an anti-tumor effect, and six novel withanolides were isolated from it and designated as TAMEWs. However, its anti-TNBC effect is still unknown. The results of an MTT assay indicated a higher sensitivity of TNBC cells to TAMEWs compared to other cells. TAMEWs induced apoptosis via mitochondrial dysfunction. They caused increased levels of lipid ROS and Fe2+, with downregulation of GSH and cystine uptake, and it has been confirmed that TAMEWs induced ferroptosis. Additionally, the results of Western blotting indicate that TAMEWs significantly decrease the expressions of ferroptosis-related proteins. Through further investigation, it was found that the knockdown of the p53 gene resulted in a significant reversal of ferroptosis and the expressions of its associated proteins SLC7A11, ASCT2, and GPX4. In vivo, TAMEWs suppressed TNBC growth with no obvious damage. The IHC results also showed that TAMEWs induced apoptosis and ferroptosis in vivo. Our findings provide the first evidence that TAMEWs suppress TNBC growth through apoptosis and ferroptosis.


Assuntos
Sistema y+ de Transporte de Aminoácidos , Apoptose , Ferroptose , Neoplasias de Mama Triplo Negativas , Proteína Supressora de Tumor p53 , Vitanolídeos , Ferroptose/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Humanos , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Vitanolídeos/farmacologia , Vitanolídeos/química , Apoptose/efeitos dos fármacos , Feminino , Sistema y+ de Transporte de Aminoácidos/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Animais , Linhagem Celular Tumoral , Camundongos , Antígenos de Histocompatibilidade Menor/metabolismo , Antígenos de Histocompatibilidade Menor/genética , Espécies Reativas de Oxigênio/metabolismo , Proliferação de Células/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Blood ; 143(18): 1856-1872, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38427583

RESUMO

ABSTRACT: Allogeneic stem cell transplantation (alloSCT) is a curative treatment for hematological malignancies. After HLA-matched alloSCT, antitumor immunity is caused by donor T cells recognizing polymorphic peptides, designated minor histocompatibility antigens (MiHAs), that are presented by HLA on malignant patient cells. However, T cells often target MiHAs on healthy nonhematopoietic tissues of patients, thereby inducing side effects known as graft-versus-host disease. Here, we aimed to identify the dominant repertoire of HLA-I-restricted MiHAs to enable strategies to predict, monitor or modulate immune responses after alloSCT. To systematically identify novel MiHAs by genome-wide association screening, T-cell clones were isolated from 39 transplanted patients and tested for reactivity against 191 Epstein-Barr virus transformed B cell lines of the 1000 Genomes Project. By discovering 81 new MiHAs, we more than doubled the antigen repertoire to 159 MiHAs and demonstrated that, despite many genetic differences between patients and donors, often the same MiHAs are targeted in multiple patients. Furthermore, we showed that one quarter of the antigens are cryptic, that is translated from unconventional open reading frames, for example long noncoding RNAs, showing that these antigen types are relevant targets in natural immune responses. Finally, using single cell RNA-seq data, we analyzed tissue expression of MiHA-encoding genes to explore their potential role in clinical outcome, and characterized 11 new hematopoietic-restricted MiHAs as potential targets for immunotherapy. In conclusion, we expanded the repertoire of HLA-I-restricted MiHAs and identified recurrent, cryptic and hematopoietic-restricted antigens, which are fundamental to predict, follow or manipulate immune responses to improve clinical outcome after alloSCT.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Antígenos de Histocompatibilidade Classe I , Antígenos de Histocompatibilidade Menor , Humanos , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/genética , Neoplasias Hematológicas/imunologia , Neoplasias Hematológicas/terapia , Neoplasias Hematológicas/genética , Linfócitos T/imunologia , Estudo de Associação Genômica Ampla , Transplante Homólogo , Feminino , Masculino
3.
Nat Commun ; 15(1): 2370, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499542

RESUMO

Antiviral DNA cytosine deaminases APOBEC3A and APOBEC3B are major sources of mutations in cancer by catalyzing cytosine-to-uracil deamination. APOBEC3A preferentially targets single-stranded DNAs, with a noted affinity for DNA regions that adopt stem-loop secondary structures. However, the detailed substrate preferences of APOBEC3A and APOBEC3B have not been fully established, and the specific influence of the DNA sequence on APOBEC3A and APOBEC3B deaminase activity remains to be investigated. Here, we find that APOBEC3B also selectively targets DNA stem-loop structures, and they are distinct from those subjected to deamination by APOBEC3A. We develop Oligo-seq, an in vitro sequencing-based method to identify specific sequence contexts promoting APOBEC3A and APOBEC3B activity. Through this approach, we demonstrate that APOBEC3A and APOBEC3B deaminase activity is strongly regulated by specific sequences surrounding the targeted cytosine. Moreover, we identify the structural features of APOBEC3B and APOBEC3A responsible for their substrate preferences. Importantly, we determine that APOBEC3B-induced mutations in hairpin-forming sequences within tumor genomes differ from the DNA stem-loop sequences mutated by APOBEC3A. Together, our study provides evidence that APOBEC3A and APOBEC3B can generate distinct mutation landscapes in cancer genomes, driven by their unique substrate selectivity.


Assuntos
Neoplasias , Proteínas , Humanos , Mutação , Neoplasias/genética , Citidina Desaminase/genética , Citidina Desaminase/química , DNA , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/química , Citosina
4.
Methods Cell Biol ; 182: 313-327, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38359985

RESUMO

The APOBEC3 family of cytosine deaminases, which target single-stranded DNA and RNA of viruses and retroelements as part of the innate immune defense, generate mutations in many human cancers. Although the APOBEC3A paralog is a major endogenous source of these mutations, low APOBEC3A mRNA levels and protein abundance have hampered functional characterization. Extensive homology across APOBEC3 paralogs have further challenged the development of specific detection reagents. Here, we describe the isolation and use of monoclonal antibodies with specificity for APOBEC3A and the APOBEC3A/APOBEC3B/APOBEC3G proteins. We provide protocols and technical advice for detection and measurement of APOBEC3A protein across human cancer cell lines using standard immunoblotting and immunofluorescence protocols.


Assuntos
Neoplasias , Proteínas , Humanos , Proteínas/genética , Neoplasias/genética , Linhagem Celular , Mutação , Citidina Desaminase/genética , Antígenos de Histocompatibilidade Menor/genética
5.
Adv Ther ; 41(3): 885-890, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38198042

RESUMO

Immune checkpoint inhibitors (ICI) have emerged as an important therapeutic approach for patients with cancers including bladder cancer (BC). This commentary describes a recent study that demonstrated that the loss of Y chromosome (LOY) and/or loss of specific genes on Y chromosome confers an aggressive phenotype to BC because of T cell dysfunction resulting in CD8+T cell exhaustion. Loss of expression of Y chromosome genes KDM5D and UTY was similarly associated with an unfavorable prognosis in patients with BC as these genes were partially responsible for the impaired anti-tumor immunity in LOY tumors. From a clinical perspective, the study showed that tumors with LOY may be susceptible to treatment with ICIs.


Assuntos
Cromossomos Humanos Y , Neoplasias da Bexiga Urinária , Humanos , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Fenótipo , Prognóstico , Imunoterapia , Antígenos de Histocompatibilidade Menor/genética , Histona Desmetilases/genética
6.
Nat Genet ; 56(1): 60-73, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38049664

RESUMO

In this study, the impact of the apolipoprotein B mRNA-editing catalytic subunit-like (APOBEC) enzyme APOBEC3B (A3B) on epidermal growth factor receptor (EGFR)-driven lung cancer was assessed. A3B expression in EGFR mutant (EGFRmut) non-small-cell lung cancer (NSCLC) mouse models constrained tumorigenesis, while A3B expression in tumors treated with EGFR-targeted cancer therapy was associated with treatment resistance. Analyses of human NSCLC models treated with EGFR-targeted therapy showed upregulation of A3B and revealed therapy-induced activation of nuclear factor kappa B (NF-κB) as an inducer of A3B expression. Significantly reduced viability was observed with A3B deficiency, and A3B was required for the enrichment of APOBEC mutation signatures, in targeted therapy-treated human NSCLC preclinical models. Upregulation of A3B was confirmed in patients with NSCLC treated with EGFR-targeted therapy. This study uncovers the multifaceted roles of A3B in NSCLC and identifies A3B as a potential target for more durable responses to targeted cancer therapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Mutação , Regulação para Cima/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Citidina Desaminase/genética , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/metabolismo
7.
Mutagenesis ; 39(1): 24-31, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-37471265

RESUMO

DNA oxidation is a serious threat to genome integrity and is involved in mutations and cancer initiation. The G base is most frequently damaged, and 8-oxo-7,8-dihydroguanine (GO, 8-hydroxyguanine) is one of the predominant damaged bases. In human cells, GO causes a G:C→T:A transversion mutation at the modified site, and also induces untargeted substitution mutations at the G bases of 5'-GpA-3' dinucleotides (action-at-a-distance mutations). The 5'-GpA-3' sequences are complementary to the 5'-TpC-3' sequences, the preferred substrates for apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3 (APOBEC3) cytosine deaminases, and thus their contribution to mutagenesis has been considered. In this study, APOBEC3B, the most abundant APOBEC3 protein in human U2OS cells, was knocked down in human U2OS cells, and a GO-shuttle plasmid was then transfected into the cells. The action-at-a-distance mutations were reduced to ~25% by the knockdown, indicating that GO-induced action-at-a-distance mutations are highly dependent on APOBEC3B in this cell line.


Assuntos
DNA , Guanina , Guanina/análogos & derivados , Humanos , Mutação , Mutagênese , Guanina/metabolismo , Citidina Desaminase/genética , Antígenos de Histocompatibilidade Menor/genética
8.
Chin Med J (Engl) ; 137(4): 431-440, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-37690994

RESUMO

BACKGROUND: Findings on the association of genetic factors and colorectal cancer (CRC) survival are limited and inconsistent, and revealing the mechanism underlying their prognostic roles is of great importance. This study aimed to explore the relationship between functional genetic variations and the prognosis of CRC and further reveal the possible mechanism. METHODS: We first systematically performed expression quantitative trait locus (eQTL) analysis using The Cancer Genome Atlas (TCGA) dataset. Then, the Kaplan-Meier analysis was used to filter out the survival-related eQTL target genes of CRC patients in two public datasets (TCGA and GSE39582 dataset from the Gene Expression Omnibus database). The seven most potentially functional eQTL single nucleotide polymorphisms (SNPs) associated with six survival-related eQTL target genes were genotyped in 907 Chinese CRC patients with clinical prognosis data. The regulatory mechanism of the survival-related SNP was further confirmed by functional experiments. RESULTS: The rs71630754 regulating the expression of endoplasmic reticulum aminopeptidase 1 ( ERAP1 ) was significantly associated with the prognosis of CRC (additive model, hazard ratio [HR]: 1.43, 95% confidence interval [CI]: 1.08-1.88, P = 0.012). The results of dual-luciferase reporter assay and electrophoretic mobility shift assay showed that the A allele of the rs71630754 could increase the binding of transcription factor 3 (TCF3) and subsequently reduce the expression of ERAP1 . The results of bioinformatic analysis showed that lower expression of ERAP1 could affect the tumor immune microenvironment and was significantly associated with severe survival outcomes. CONCLUSION: The rs71630754 could influence the prognosis of CRC patients by regulating the expression of the immune-related gene ERAP1 . TRIAL REGISTRATION: No. NCT00454519 ( https://clinicaltrials.gov/ ).


Assuntos
Neoplasias Colorretais , Polimorfismo de Nucleotídeo Único , Humanos , Prognóstico , Genótipo , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas , Microambiente Tumoral , Aminopeptidases/genética , Aminopeptidases/metabolismo , Antígenos de Histocompatibilidade Menor/genética
9.
Biochim Biophys Acta Mol Basis Dis ; 1870(2): 166941, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37926361

RESUMO

OBJECTIVE: Branched-chain amino acid (BCAA) metabolism is involved in the development of colorectal cancer (CRC); however, the underlying mechanism remains unclear. Therefore, this study investigates the role of BCAA metabolism in CRC progression. METHODS: Dietary BCAA was administered to both azoxymethane-induced and azoxymethane/dextran sodium sulfate-induced CRC mouse models. The expression of genes related to BCAA metabolism was determined using RNA sequencing. Adjacent tissue samples, obtained from 58 patients with CRC, were subjected to quantitative real-time PCR and immunohistochemical analysis. Moreover, the suppressive role of branched-chain aminotransferase 2 (BCAT2) in cell proliferation, apoptosis, and xenograft mouse models was investigated. Alterations in BCAAs and activation of downstream pathways were also assessed using metabolic analysis and western blotting. RESULTS: High levels of dietary BCAA intake promoted CRC tumorigenesis in chemical-induced CRC and xenograft mouse models. Both the mRNA and protein levels of BCAT2 were decreased in tumor tissues of patients with CRC compared to those in normal tissues. Proliferation assays and xenograft models confirmed the suppressive role of BCAT2 in CRC progression. Furthermore, the accumulation of BCAAs caused by BCAT2 deficiency facilitated the chronic activation of mTORC1, thereby mediating the oncogenic effect of BCAAs. CONCLUSION: BCAT2 deficiency promotes CRC progression through inhibition of BCAAs metabolism and chronic activation of mTORC1.


Assuntos
Neoplasias Colorretais , Proteínas da Gravidez , Humanos , Camundongos , Animais , Aminoácidos de Cadeia Ramificada/metabolismo , RNA Mensageiro , Alvo Mecanístico do Complexo 1 de Rapamicina , Azoximetano , Neoplasias Colorretais/induzido quimicamente , Neoplasias Colorretais/genética , Transaminases/genética , Transaminases/metabolismo , Proteínas da Gravidez/metabolismo , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/metabolismo
10.
Immunology ; 171(1): 131-145, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37858978

RESUMO

Endoplasmic reticulum aminopeptidase 1 (ERAP1) belongs to the oxytocinase subfamily of M1 aminopeptidases (M1APs), which are a diverse family of metalloenzymes involved in a wide range of functions and have been implicated in various chronic and infectious diseases of humans. ERAP1 trims antigenic precursors into correct sizes (8-10 residues long) for Major Histocompatibility Complex (MHC) presentation, by a unique molecular ruler mechanism in which it makes concurrent bindings to substrate N- and C-termini. We have previously determined four crystal structures of ERAP1 C-terminal regulatory domain (termed ERAP1_C domain) in complex with peptide carboxyl (PC)-ends that carry various anchor residues, and identified a specificity subsite for recognizing the PC anchor side chain, denoted as the SC subsite to follow the conventional notations: S1 site for P1, S2 site for P2, and so forth. In this study, we report studies on structure-guided mutational and hydrolysis kinetics, and peptide trimming assays to further examine the functional roles of this SC subsite. Most strikingly, a point mutation V737R results in a change of substrate preference from a hydrophobic to a negatively charged PC anchor residue; the latter is presumed to be a poor substrate for WT ERAP1. These studies validate the crystallographic observations that this SC subsite is directly involved in binding and recognition of the substrate PC anchor and presents a potential target to modulate MHC-restricted immunopeptidomes.


Assuntos
Aminopeptidases , Antígenos , Humanos , Aminopeptidases/genética , Aminopeptidases/química , Aminopeptidases/metabolismo , Antígenos/metabolismo , Peptídeos/metabolismo , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/metabolismo , Apresentação de Antígeno
11.
Discov Med ; 35(179): 995-1014, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38058065

RESUMO

BACKGROUND: Hypoxia is a pivotal factor influencing cellular gene expression and contributing to the malignant progression of tumors. Metabolic anomalies under hypoxic conditions are predominantly mediated by mitochondria. Nonetheless, the exploration of hypoxia-induced long noncoding RNAs (lncRNAs) associated with mitochondria remains largely uncharted. METHODS: We established hypoxia cell models using primary human hepatocytes (PHH) and hepatocellular carcinoma (HCC) cell lines. We isolated mitochondria for high-throughput sequencing to investigate the roles of candidate lncRNAs in HCC progression. We employed in vitro and in vivo assays to evaluate the functions of solute carrier family 1 member 5 antisense lncRNA (SLC1A5-AS). RNA-seq was utilized to scrutinize the comprehensive genome profile regulated by SLC1A5-AS in HCC. Subsequently, quantitative real-time polymerase chain reaction (qRT-PCR) and western blot analysis were utilized to validate the expression of alanine-serine-cysteine transporter 2 (ASCT2, encoded by the SLC1A5 gene), and a glutamine uptake assay was employed to estimate the glutamine uptake capacity of Huh-7 cells after SLC1A5-AS overexpression. To delve into the mechanisms governing the regulation of SLC1A5 expression by SLC1A5-AS, we employed a biotin-labeled SLC1A5-AS probe in conjunction with a western blot assay to confirm the interactions between SLC1A5-AS and candidate transcription factors. Luciferase reporter assays and chromatin immunoprecipitation (ChIP) were utilized to authenticate the effects of the predicted transcription factors on SLC1A5 promoter activity. RESULTS: Following the screening, we identified CTB-147N14.6, derived from the antisense strand of the SLC1A5 gene, which we have named SLC1A5-AS. SLC1A5-AS exhibited significantly elevated expression levels in HCC tissue and was associated with poor prognosis in HCC patients. In vitro and in vivo assays revealed that the overexpression of SLC1A5-AS significantly heightened cell invasion and metastasis. RNA-seq data unveiled SLC1A5-AS involvement in glutamine metabolism, left-handed amino (L-amino) acid transmembrane transporter activity, and the nuclear factor kappa-B (NF-κB) signaling pathway. Overexpression of SLC1A5-AS markedly increased ASCT2 mRNA/protein levels, thereby enhancing glutamine uptake and promoting the growth and metastasis of HCC cells. Mechanistically, higher RNA levels of SLC1A5-AS directly bound with myeloid zinc finger 1 (MZF1), acting as a transcriptional repressor, thus diminishing its binding to the SLC1A5 promoter region. CONCLUSIONS: Our findings unveil a novel role for the lncRNA SLC1A5-AS in glutamine metabolism, suggesting that targeting SLC1A5-AS/MZF1, in conjunction with ASCT2 inhibitor treatment, could be a potential therapeutic strategy for this disease.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , RNA Longo não Codificante , Humanos , Carcinoma Hepatocelular/patologia , RNA Longo não Codificante/genética , Neoplasias Hepáticas/patologia , Glutamina/genética , Glutamina/metabolismo , Glutamina/farmacologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/farmacologia , Hipóxia/genética , Proliferação de Células , Linhagem Celular Tumoral , MicroRNAs/metabolismo , Regulação Neoplásica da Expressão Gênica , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/metabolismo , Antígenos de Histocompatibilidade Menor/farmacologia , Sistema ASC de Transporte de Aminoácidos/genética , Sistema ASC de Transporte de Aminoácidos/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição Kruppel-Like/farmacologia
12.
PLoS Genet ; 19(11): e1011043, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38033156

RESUMO

A prominent source of mutation in cancer is single-stranded DNA cytosine deamination by cellular APOBEC3 enzymes, which results in signature C-to-T and C-to-G mutations in TCA and TCT motifs. Although multiple enzymes have been implicated, reports conflict and it is unclear which protein(s) are responsible. Here we report the development of a selectable system to quantify genome mutation and demonstrate its utility by comparing the mutagenic activities of three leading candidates-APOBEC3A, APOBEC3B, and APOBEC3H. The human cell line, HAP1, is engineered to express the thymidine kinase (TK) gene of HSV-1, which confers sensitivity to ganciclovir. Expression of APOBEC3A and APOBEC3B, but not catalytic mutant controls or APOBEC3H, triggers increased frequencies of TK mutation and similar TC-biased cytosine mutation profiles in the selectable TK reporter gene. Whole genome sequences from independent clones enabled an analysis of thousands of single base substitution mutations and extraction of local sequence preferences with APOBEC3A preferring YTCW motifs 70% of the time and APOBEC3B 50% of the time (Y = C/T; W = A/T). Signature comparisons with breast tumor whole genome sequences indicate that most malignancies manifest intermediate percentages of APOBEC3 signature mutations in YTCW motifs, mostly between 50 and 70%, suggesting that both enzymes contribute in a combinatorial manner to the overall mutation landscape. Although the vast majority of APOBEC3A- and APOBEC3B-induced single base substitution mutations occur outside of predicted chromosomal DNA hairpin structures, whole genome sequence analyses and supporting biochemical studies also indicate that both enzymes are capable of deaminating the single-stranded loop regions of DNA hairpins at elevated rates. These studies combine to help resolve a long-standing etiologic debate on the source of APOBEC3 signature mutations in cancer and indicate that future diagnostic and therapeutic efforts should focus on both APOBEC3A and APOBEC3B.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Mutação , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , Linhagem Celular , DNA/metabolismo , Antígenos de Histocompatibilidade Menor/genética , Citosina/metabolismo
13.
Genome Biol ; 24(1): 267, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38001542

RESUMO

BACKGROUND: RNA editing has been described as promoting genetic heterogeneity, leading to the development of multiple disorders, including cancer. The cytosine deaminase APOBEC3B is implicated in tumor evolution through DNA mutation, but whether it also functions as an RNA editing enzyme has not been studied. RESULTS: Here, we engineer a novel doxycycline-inducible mouse model of human APOBEC3B-overexpression to understand the impact of this enzyme in tissue homeostasis and address a potential role in C-to-U RNA editing. Elevated and sustained levels of APOBEC3B lead to rapid alteration of cellular fitness, major organ dysfunction, and ultimately lethality in mice. Importantly, RNA-sequencing of mouse tissues expressing high levels of APOBEC3B identifies frequent UCC-to-UUC RNA editing events that are not evident in the corresponding genomic DNA. CONCLUSIONS: This work identifies, for the first time, a new deaminase-dependent function for APOBEC3B in RNA editing and presents a preclinical tool to help understand the emerging role of APOBEC3B as a driver of carcinogenesis.


Assuntos
Neoplasias , Edição de RNA , Humanos , Animais , Camundongos , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , Mutação , Neoplasias/patologia , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/metabolismo , DNA/metabolismo
14.
Cell Rep Med ; 4(10): 101211, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37797615

RESUMO

The antiviral DNA cytosine deaminase APOBEC3B has been implicated as a source of mutation in many cancers. However, despite years of work, a causal relationship has yet to be established in vivo. Here, we report a murine model that expresses tumor-like levels of human APOBEC3B. Animals expressing full-body APOBEC3B appear to develop normally. However, adult males manifest infertility, and older animals of both sexes show accelerated rates of carcinogenesis, visual and molecular tumor heterogeneity, and metastasis. Both primary and metastatic tumors exhibit increased frequencies of C-to-T mutations in TC dinucleotide motifs consistent with the established biochemical activity of APOBEC3B. Enrichment for APOBEC3B-attributable single base substitution mutations also associates with elevated levels of insertion-deletion mutations and structural variations. APOBEC3B catalytic activity is required for all of these phenotypes. Together, these studies provide a cause-and-effect demonstration that human APOBEC3B is capable of driving both tumor initiation and evolution in vivo.


Assuntos
Neoplasias , Adulto , Humanos , Animais , Camundongos , Mutação , Neoplasias/genética , Transformação Celular Neoplásica , Citidina Desaminase/genética , Antígenos de Histocompatibilidade Menor/genética
15.
Nat Genet ; 55(10): 1721-1734, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37735199

RESUMO

The single-stranded DNA cytosine-to-uracil deaminase APOBEC3B is an antiviral protein implicated in cancer. However, its substrates in cells are not fully delineated. Here APOBEC3B proteomics reveal interactions with a surprising number of R-loop factors. Biochemical experiments show APOBEC3B binding to R-loops in cells and in vitro. Genetic experiments demonstrate R-loop increases in cells lacking APOBEC3B and decreases in cells overexpressing APOBEC3B. Genome-wide analyses show major changes in the overall landscape of physiological and stimulus-induced R-loops with thousands of differentially altered regions, as well as binding of APOBEC3B to many of these sites. APOBEC3 mutagenesis impacts genes overexpressed in tumors and splice factor mutant tumors preferentially, and APOBEC3-attributed kataegis are enriched in RTCW motifs consistent with APOBEC3B deamination. Taken together with the fact that APOBEC3B binds single-stranded DNA and RNA and preferentially deaminates DNA, these results support a mechanism in which APOBEC3B regulates R-loops and contributes to R-loop mutagenesis in cancer.


Assuntos
Neoplasias , Estruturas R-Loop , Humanos , DNA de Cadeia Simples/genética , Estudo de Associação Genômica Ampla , Mutagênese , Neoplasias/genética , Neoplasias/patologia , Citidina Desaminase/genética , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/metabolismo
16.
CRISPR J ; 6(5): 430-446, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37672599

RESUMO

Precision genome editing has become a reality with the discovery of base editors. Cytosine base editor (CBE) technologies are improving rapidly but are mostly optimized for TC dinucleotide targets. Here, we report the development and implementation of APOBEC Reporter Systems for Evaluating diNucleotide Editing Levels (ARSENEL) in living cells. The ARSENEL panel is comprised of four constructs that quantitatively report editing of each of the four dinucleotide motifs (AC/CC/GC/TC) through real-time accumulation of eGFP fluorescence. Editing rates of APOBEC3Bctd and AIDΔC CBEs reflect established mechanistic preferences with intrinsic biases to TC and GC, respectively. Twelve different (new and established) base editors are tested here using this system with a full-length APOBEC3B CBE showing the greatest on-target TC specificity and an APOBEC3A construct showing the highest editing efficiency. In addition, ARSENEL enables real-time assessment of natural and synthetic APOBEC inhibitors with the most potent to-date being the large subunit of the Epstein-Barr virus ribonucleotide reductase. These reporters have the potential to play important roles in research and development as precision genome engineering technologies progress toward achieving maximal specificity and efficiency.


Assuntos
Infecções por Vírus Epstein-Barr , Edição de Genes , Humanos , Sistemas CRISPR-Cas/genética , Herpesvirus Humano 4 , Citidina Desaminase/genética , Antígenos de Histocompatibilidade Menor/genética
17.
Genome Res ; 33(9): 1568-1581, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37532520

RESUMO

The cytidine deaminases APOBEC3A (A3A) and APOBEC3B (A3B) are prominent mutators of human cancer genomes. However, tumor-specific genetic modulators of APOBEC-induced mutagenesis are poorly defined. Here, we used a screen to identify 61 gene deletions that increase A3B-induced mutations in yeast. We also determined whether each deletion was epistatic with Ung1 loss, which indicated whether the encoded factors participate in the homologous recombination (HR)-dependent bypass of A3B/Ung1-dependent abasic sites or suppress A3B-catalyzed deamination by protecting against aberrant formation of single-stranded DNA (ssDNA). We found that the mutation spectra of A3B-induced mutations revealed genotype-specific patterns of strand-specific ssDNA formation and nucleotide incorporation across APOBEC-induced lesions. Combining these three metrics, we were able to establish a multifactorial signature of APOBEC-induced mutations specific to (1) failure to remove H3K56 acetylation, (2) defective CTF18-RFC complex function, and (3) defective HR-mediated bypass of APOBEC-induced lesions. We extended these results by analyzing mutation data for human tumors and found BRCA1/2-deficient breast cancers display three- to fourfold more APOBEC-induced mutations. Mirroring our results in yeast, Rev1-mediated C-to-G substitutions are mainly responsible for increased APOBEC-signature mutations in BRCA1/2-deficient tumors, and these mutations associate with lagging strand synthesis during replication. These results identify important factors that influence DNA replication dynamics and likely the abundance of APOBEC-induced mutation during tumor progression. They also highlight a novel role for BRCA1/2 during HR-dependent lesion bypass of APOBEC-induced lesions during cancer cell replication.


Assuntos
Proteína BRCA1 , Neoplasias da Mama , Humanos , Feminino , Proteína BRCA1/genética , Saccharomyces cerevisiae/genética , Proteína BRCA2/genética , Mutagênese , Mutação , Citidina Desaminase/genética , Neoplasias da Mama/genética , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/metabolismo
18.
J Virol ; 97(8): e0078123, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37565748

RESUMO

The APOBEC3 family of DNA cytosine deaminases comprises an important arm of the innate antiviral defense system. The gamma-herpesviruses Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus and the alpha-herpesviruses herpes simplex virus (HSV)-1 and HSV-2 have evolved an efficient mechanism to avoid APOBEC3 restriction by directly binding to APOBEC3B and facilitating its exclusion from the nuclear compartment. The only viral protein required for APOBEC3B relocalization is the large subunit of the ribonucleotide reductase (RNR). Here, we ask whether this APOBEC3B relocalization mechanism is conserved with the beta-herpesvirus human cytomegalovirus (HCMV). Although HCMV infection causes APOBEC3B relocalization from the nucleus to the cytoplasm in multiple cell types, the viral RNR (UL45) is not required. APOBEC3B relocalization occurs rapidly following infection suggesting the involvement of an immediate early or early (IE/E) viral protein. In support of this possibility, genetic (IE1 mutant) and pharmacologic (cycloheximide) strategies that prevent the expression of IE/E viral proteins also block APOBEC3B relocalization. In comparison, the treatment of infected cells with phosphonoacetic acid, which interferes with viral late protein expression, still permits A3B relocalization. These results combine to indicate that the beta-herpesvirus HCMV uses an RNR-independent, yet phenotypically similar, molecular mechanism to antagonize APOBEC3B. IMPORTANCE Human cytomegalovirus (HCMV) infections can range from asymptomatic to severe, particularly in neonates and immunocompromised patients. HCMV has evolved strategies to overcome host-encoded antiviral defenses to achieve lytic viral DNA replication and dissemination and, under some conditions, latency and long-term persistence. Here, we show that HCMV infection causes the antiviral factor, APOBEC3B, to relocalize from the nuclear compartment to the cytoplasm. This overall strategy resembles that used by related herpesviruses. However, the HCMV relocalization mechanism utilizes a different viral factor(s) and available evidence suggests the involvement of at least one protein expressed at the early stages of infection. This knowledge is important because a greater understanding of this mechanism could lead to novel antiviral strategies that enable APOBEC3B to naturally restrict HCMV infection.


Assuntos
Infecções por Vírus Epstein-Barr , Infecções por Herpesviridae , Herpesvirus Humano 1 , Ribonucleotídeo Redutases , Humanos , Recém-Nascido , Citidina Desaminase/metabolismo , Citomegalovirus/genética , Replicação do DNA , DNA Viral/metabolismo , Herpesvirus Humano 1/genética , Herpesvirus Humano 4/genética , Proteínas Imediatamente Precoces/metabolismo , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/metabolismo , Ribonucleotídeo Redutases/genética , Ribonucleotídeo Redutases/metabolismo , Proteínas Virais/metabolismo , Replicação Viral
19.
Int J Mol Sci ; 24(16)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37628752

RESUMO

We investigated the association between methylenetetrahydrofolate reductase (gene MTHFR 677C>T, rs1801133), 5-methyltetrahydrofolate-homocysteine methyltransferase (MTR 2756A>G, rs1805087), and methylenetetrahydrofolate dehydrogenase, cyclohydrolase and formyltetrahydrofolate synthetase 1 (gene MTHFD1 1958G>A, rs2236225)-well-studied functional variants involved in one-carbon metabolism-and gynecologic cancer risk, and the interaction between these polymorphisms and depression. A total of 200 gynecologic cancer cases and 240 healthy controls were recruited to participate in this study. Three single-nucleotide variants (SNVs) (rs1801133, rs1805087, rs2236225) were genotyped using the PCR-restriction fragment length polymorphism method. Depression was assessed in all patients using the Hamilton Depression Scale. Depression was statistically significantly more frequent in women with gynecologic cancers (69.5% vs. 34.2% in controls, p < 0.001). MTHFD1 rs2236225 was associated with an increased risk of gynecologic cancers (in dominant OR = 1.53, p = 0.033, and in log-additive models OR = 1.37, p = 0.024). Moreover, an association was found between depression risk and MTHFR rs1801133 genotypes in the controls but not in women with gynecologic cancers (in codominant model CC vs. TT: OR = 3.39, 95%: 1.49-7.74, p = 0.011). Cancers of the female reproductive system are associated with the occurrence of depression, and ovarian cancer may be associated with the rs2236225 variant of the MTHFD1 gene. In addition, in healthy aging women in the Polish population, the rs1801133 variant of the MTHFR gene is associated with depression.


Assuntos
Formiato-Tetra-Hidrofolato Ligase , Neoplasias dos Genitais Femininos , Feminino , Humanos , Formiato-Tetra-Hidrofolato Ligase/genética , Metilenotetra-Hidrofolato Desidrogenase (NADP)/genética , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Depressão , Neoplasias dos Genitais Femininos/genética , Carbono , Antígenos de Histocompatibilidade Menor/genética , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase
20.
Int J Mol Sci ; 24(11)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37298259

RESUMO

Although the APOBEC3 family of single-stranded DNA cytosine deaminases is well-known for its antiviral factors, these enzymes are rapidly gaining attention as prominent sources of mutation in cancer. APOBEC3's signature single-base substitutions, C-to-T and C-to-G in TCA and TCT motifs, are evident in over 70% of human malignancies and dominate the mutational landscape of numerous individual tumors. Recent murine studies have established cause-and-effect relationships, with both human APOBEC3A and APOBEC3B proving capable of promoting tumor formation in vivo. Here, we investigate the molecular mechanism of APOBEC3A-driven tumor development using the murine Fah liver complementation and regeneration system. First, we show that APOBEC3A alone is capable of driving tumor development (without Tp53 knockdown as utilized in prior studies). Second, we show that the catalytic glutamic acid residue of APOBEC3A (E72) is required for tumor formation. Third, we show that an APOBEC3A separation-of-function mutant with compromised DNA deamination activity and wildtype RNA-editing activity is defective in promoting tumor formation. Collectively, these results demonstrate that APOBEC3A is a "master driver" that fuels tumor formation through a DNA deamination-dependent mechanism.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/genética , Desaminação , Neoplasias Hepáticas/genética , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , DNA/metabolismo , Antígenos de Histocompatibilidade Menor/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA