RESUMO
BACKGROUND: Surprisingly, IgE cross-reactivity between the major peanut allergens Ara h 1, 2, and 3 has been reported despite very low sequence identities. OBJECTIVE: We investigated the unexpected cross-reactivity between peanut major allergens. METHODS: Cross-contamination of purified natural Ara h 1, 2, 3, and 6 was assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), Western blot test, liquid chromatography-tandem mass spectrometry (LC-MS/MS), and sandwich enzyme-linked immunosorbent assay (ELISA). IgE cross-reactivity was studied with sera of peanut-allergic patients (n = 43) by ELISA and ImmunoCAP inhibition using both intact natural and recombinant allergens and synthetic peptides representing postulated Ara h 1 and Ara h 2 cross-reactive epitopes. RESULTS: Both purified nAra h 1 and nAra h 3 were demonstrated to contain small but significant amounts of Ara h 2 and Ara h 6 (<1%) by sandwich ELISA, SDS-PAGE/Western blot analysis, and LC-MS/MS. IgE cross-inhibition between both 2S albumins and Ara h 1 and Ara h 3 was only observed when using natural purified allergens, not recombinant allergens or synthetic peptides. Apparent cross-reactivity was lost when purified nAra h 1 was pretreated under reducing conditions, suggesting that Ara h 2 and Ara h 6 contaminations may be covalently bound to Ara h 1 via disulfide interactions. CONCLUSION: True cross-reactivity of both peanut 2S albumins with Ara h 1 and Ara h 3 could not be demonstrated. Instead, cross-contamination with small quantities was shown to be sufficient to cause significant cross-inhibition that can be misinterpreted as molecular cross-reactivity. Diagnostic tests using purified nAra h 1 and nAra h 3 can overestimate their importance as major allergens as a result of the presence of contaminating 2S albumins, making recombinant Ara h 1 and Ara h 3 a preferred alternative.
Assuntos
Alérgenos , Hipersensibilidade a Amendoim , Humanos , Alérgenos/química , Proteínas de Plantas/química , Arachis , Antígenos de Plantas/metabolismo , Cromatografia Líquida , Imunoglobulina E , Espectrometria de Massas em Tandem , Albuminas 2S de Plantas , Peptídeos/metabolismo , Albuminas/metabolismo , Hipersensibilidade a Amendoim/diagnósticoRESUMO
Linear IgE epitopes play essential roles in persistent allergies, including peanut and tree nut allergies. Using chemically synthesized peptides attached to membranes and microarray experiments is one approach for determining predominant epitopes that has seen success. However, the overall expense of this approach and the inherent challenges in scaling up the production and purification of synthetic peptides precludes the general application of this approach. To overcome this problem, we have constructed a plasmid vector for expressing peptides sandwiched between an N-terminal His-tag and a trimeric protein. The vector was used to make overlapping peptides derived from peanut allergens Ara h 2. All the peptides were successfully expressed and purified. The resulting peptides were applied to identify IgE binding epitopes of Ara h 2 using four sera samples from individuals with known peanut allergies. New and previously defined dominant IgE binding epitopes of Ara h 2 were identified. This system may be readily applied to produce agents for component- and epitope-resolved food allergy diagnosis.
Assuntos
Hipersensibilidade Alimentar , Proteínas de Plantas , Humanos , Mapeamento de Epitopos , Proteínas de Plantas/metabolismo , Antígenos de Plantas/genética , Antígenos de Plantas/metabolismo , Sequência de Aminoácidos , Glicoproteínas , Epitopos , Peptídeos , Alérgenos , Arachis , Imunoglobulina E/metabolismoRESUMO
BACKGROUND: Acid and thermal stabilities are important properties for the preparation of acidic protein beverage. It is an important method for enzymatic modification to improve the functional properties of protein. Irpex lacteus protease showed a selective hydrolysis to soy proteins. The purpose of this study was to investigate the mechanism of enzymatic hydrolysis and its effects on acid and thermal stabilities of soy proteins. RESULTS: The I. lacteus protease selectively hydrolyzed the α and α' subunits of the native soybean ß-conglycinin (7S globulin) to produce products that presented as the 55 kDa band upon sodium dodecyl sulfate polyacrylamide gel electrophoresis. The amino acid sequences of 55 kDa polypeptides were analyzed in gel multi-enzyme digestion followed by liquid chromatography-mass spectrometry. By matching the multi-enzyme digestion peptides with the published polypeptide chain sequences of the α and α' subunits, it was confirmed that the 55 kDa polypeptides were formed by eliminating amino acid residues on both sides of the N- and C-terminals. From the published protein structure database (https://www.uniprot.org/), it is known that the cleaved peptide bonds were in extension regions. Non-selective enzyme hydrolysis of both ß-conglycinin (7S globulin) and glycinin (11S globulin), with corresponding drastic increases in the degree of hydrolysis, was observed when the substrates were preheated to the denaturation degree of 40% and above. However, 55 kDa hydrolyzed products and B polypeptides showed some extent of resistance to the proteolysis by I. lacteus protease even if denaturation degree was 100%. Both selective and non-selective hydrolysis of soy proteins by I. lacteus protease improved the acid and heat stabilities under the same hydrolysis conditions (enzyme/substrate ratio, time, and temperature). CONCLUSION: Enzymatic hydrolysis of soybean proteins by the I. lacteus protease can effectively improve the acid and thermal stabilities of proteins. This discovery is significant to avoid aggregation during processing in the beverage industry. In the near future, the protease has potential application value for modification of other proteins. © 2022 Society of Chemical Industry.
Assuntos
Globulinas , Proteínas de Soja , Proteínas de Soja/química , Peptídeo Hidrolases/metabolismo , Farinha , Glycine max/química , Antígenos de Plantas/metabolismo , Proteínas de Armazenamento de Sementes/metabolismo , Peptídeos/química , Endopeptidases/metabolismo , Globulinas/químicaRESUMO
This study explores utilization of a sustainable soybean by-product (okara) based on in silico approach. In silico approaches, as well as the BIOPEP database, PeptideRanker database, Peptide Calculator database (Pepcalc), ToxinPred database, and AllerTop database, were employed to evaluate the potential of glycinin and conglycinin derived peptides as a potential source of bioactive peptides. These major protein precursors have been found as protein in okara as a soybean by-product. Furthermore, primary structure, biological potential, and physicochemical, sensory, and allergenic characteristics of the theoretically released antioxidant peptides were predicted in this research. Glycinin and α subunits of ß-conglycinin were selected as potential precursors of bioactive peptides based on in silico analysis. The most notable among these are antioxidant peptides. First, the potential of protein precursors for releasing bioactive peptides was evaluated by determining the frequency of occurrence of fragments with a given activity. Through the BIOPEP database analysis, there are several antioxidant bioactive peptides in glycinin and ß and α subunits of ß-conglycinin sequences. Then, an in silico proteolysis using selected enzymes (papain, bromelain) to obtain antioxidant peptides was investigated and then analyzed using PeptideRanker and Pepcalc. Allergenic analysis using the AllerTop revealed that all in silico proteolysis-derived antioxidant peptides are probably nonallergenic peptides. We also performed molecular docking against MPO (myeloperoxidases) for this peptide. Overall, the present study highlights that glycinin and ß and α subunits of ß-conglycinin could be promising precursors of bioactive peptides that have an antioxidant peptide for developing several applications.
Assuntos
Globulinas , Glycine max , Glycine max/química , Papaína , Bromelaínas , Antioxidantes/farmacologia , Simulação de Acoplamento Molecular , Globulinas/metabolismo , Proteínas de Soja/metabolismo , Proteínas de Armazenamento de Sementes/metabolismo , Antígenos de Plantas/metabolismo , Peptídeos , Precursores de ProteínasRESUMO
We investigated the effects of low and high doses of ß-conglycinin and the ameliorative effects of sodium butyrate (based on high-dose ß-conglycinin) on the growth performance, serum immunity, distal intestinal histopathology, and gene, protein expression related to intestinal health in hybrid grouper (Epinephelus fuscoguttatus â × E. lanceolatus â). The results revealed that the instantaneous growth rate (IGR) of grouper significantly increased, decreased, and increased in the low-dose ß-conglycinin (bL), high-level ß-conglycinin (bH) and high-level ß-conglycinin plus sodium butyrate (bH-NaB), respectively. The feed coefficient ratio (FCR) was significantly increased in the bH and bH-NaB, serum levels of IFN-γ, IL-1ß, and TNF-α were upregulated in the bH. The intestinal diameter/fold height ratio was significantly increased in the bH. Furthermore, there were increases in nitric oxide (NO), total nitric oxide synthase (total NOS), and peroxynitrite anion (ONOO-) in the bH, and decreases in total NOS and ONOO- in the bH-NaB. In the distal intestine, IL-1ß and TGF-ß1 mRNA levels were downregulated and upregulated, respective in the bL. The mRNA levels of TNF-α and IL-6 were upregulated in the bH, and downregulated in the bH-NaB, respectively. Occludin, claudin3 and ZO-3 mRNA levels were upregulated in the bL, downregulated in the bH and then upregulated in the bH-NaB. No significant differences were observed in the mRNA levels of IFN-γ and jam4. And the p-PI3K p85Tyr458/total PI3K p85 value was significantly increased in the bH and then decreased in the bH-NaB, and the total Akt value was significantly increased in the bH. These indicate ß-conglycinin has a regulatory effect on serum immunity and affect distal intestinal development by modulating distal intestinal injury-related parameters. Within the distal intestinal tract, low- and high-dose ß-conglycinin differentially affect immune responses and tight junctions in the distal intestine, which eventually manifests as a reduction in growth performance. Supplementing feed with sodium butyrate might represent an effective approach for enhancing serum immunity, and protects the intestines from damage caused by high-dose ß-conglycinin.
Assuntos
Antígenos de Plantas/química , Ácido Butírico/química , Suplementos Nutricionais/análise , Globulinas/química , Proteínas de Armazenamento de Sementes/química , Proteínas de Soja/química , Ração Animal , Animais , Antígenos de Plantas/metabolismo , Bass , Ácido Butírico/metabolismo , Claudina-3/genética , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica , Globulinas/metabolismo , Humanos , Imunidade Inata , Interleucina-6/genética , Intestinos , RNA Mensageiro , Proteínas de Armazenamento de Sementes/metabolismo , Transdução de Sinais , Proteínas de Soja/metabolismo , Fator de Necrose Tumoral alfa/genética , Proteínas da Zônula de Oclusão/genéticaRESUMO
Ber e 1, a major Brazil nut allergen, has been successfully produced in the yeast Pichia pastoris expression system as homogenous recombinant Ber e 1 (rBer e 1) with similar physicochemical properties and identical immunoreactivity to its native counterpart, nBer e 1. However, O-linked glycans was detected on the P.pastoris-derived rBer e 1, which is not naturally present in nBer e 1, and may contribute to the allergic sensitisation. In this study, we addressed the glycosylation differences between P. pastoris-derived recombinant Ber e 1 and its native counterparts. We also determined whether this fungal glycosylation could affect the antigenicity and immunogenicity of the rBer e 1 by using dendritic cells (DC) as an immune cell model due to their role in modulating the immune response. We identified that the glycosylation occurs at Ser96, Ser101 and Ser110 on the large chain and Ser19 on the small polypeptide chain of rBer e 1 only. The glycosylation on rBer e 1 was shown to elicit varying degree of antigenicity by binding to different combination of human leukocyte antigens (HLA) at different frequencies compared to nBer e 1 when tested using human DC-T cell assay. However, both forms of Ber e 1 are weak immunogens based from their low response indexes (RI). Glycans present on rBer e 1 were shown to increase the efficiency of the protein recognition and internalization by murine bone marrow-derived dendritic cells (bmDC) via C-type lectin receptors, particularly the mannose receptor (MR), compared to the non-glycosylated nBer e 1 and SFA8, a weak allergenic 2S albumin protein from sunflower seed. Binding of glycosylated rBer e 1 to MR alone was found to not induce the production of IL-10 that modulates bmDC to polarise Th2 cell response by suppressing IL-12 production and DC maturation. Our findings suggest that the O-linked glycosylation by P. pastoris has a small but measurable effect on the in vitro antigenicity of the rBer e 1 compared to its non-glycosylated counterpart, nBer e 1, and thus may influence its applications in diagnostics and immunotherapy.
Assuntos
Albuminas 2S de Plantas/imunologia , Alérgenos/imunologia , Antígenos de Plantas/imunologia , Células Dendríticas/metabolismo , Albuminas 2S de Plantas/genética , Albuminas 2S de Plantas/metabolismo , Alérgenos/genética , Alérgenos/metabolismo , Animais , Antígenos de Plantas/genética , Antígenos de Plantas/metabolismo , Bertholletia/metabolismo , Células da Medula Óssea/citologia , Células Dendríticas/imunologia , Endocitose , Feminino , Hipersensibilidade Alimentar/diagnóstico , Hipersensibilidade Alimentar/terapia , Glicosilação , Humanos , Imunoterapia , Interleucina-12/metabolismo , Lectinas Tipo C/metabolismo , Receptor de Manose , Lectinas de Ligação a Manose/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Pichia/metabolismo , Ligação Proteica , Receptores de Superfície Celular/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação , Células Th2/citologia , Células Th2/imunologia , Células Th2/metabolismoRESUMO
Plant AMPs are usually cysteine-rich, and can be classified in several classes, including lipid transfer proteins (LTPs). LTPs are small plant cationic peptides, and can be classified in two subclasses, LTP1 (9-10 kDa) and LTP2 (7 kDa). They have been identified and isolated from various plant species and can be involved in a number of processes, including responses against several phytopathogens. LTP1 presents 4 parallel α- helices and a 310-helix fragment. These structures form a tunnel with large and small entrances. LTP2 presents 3 parallel α- helices, which form a cavity with triangular structure. Both LTP subclasses present a hydrophobic cavity, which makes interaction with different lipids and general hydrophobic molecules possible. Several studies report a broad spectrum of activity of plant LTPs, including antibacterial, antifungal, antiviral, antitumoral, and insecticidal activity. Thus, these molecules can be employed in human and animal health as an alternative to the conventional treatment of disease, well as providing the source of novel drugs. However, employing peptides in human health can present challenges, such as the toxicity of peptides, the difference between the results found in in vitro assays and in pre-clinical or clinical tests and their low efficiency against Gram-negative bacteria. In this context, plant LTPs can be an interesting alternative means by which to bypass such challenges. This review addresses the versatility of plant LTPs, their broad spectrum of activities and their potential applications in human and animal health and in agricultural production, and examines challenges in their biotechnological application.
Assuntos
Anti-Infecciosos/farmacologia , Antígenos de Plantas/metabolismo , Antineoplásicos/farmacologia , Biotecnologia/métodos , Proteínas de Transporte/metabolismo , Proteínas de Plantas/metabolismo , Animais , Antígenos de Plantas/química , Antígenos de Plantas/farmacologia , Proteínas de Transporte/química , Proteínas de Transporte/farmacologia , Humanos , Modelos Moleculares , Proteínas de Plantas/química , Proteínas de Plantas/farmacologia , Conformação ProteicaRESUMO
BACKGROUND: The interaction of allergens and allergen-specific IgE initiates the allergic cascade after crosslinking of receptors on effector cells. Antibodies of other isotypes may modulate such a reaction. Receptor crosslinking requires binding of antibodies to multiple epitopes on the allergen. Limited information is available on the complexity of the epitope structure of most allergens. OBJECTIVES: We sought to allow description of the complexity of IgE, IgG4, and IgG epitope recognition at a global, allergome-wide level during allergen-specific immunotherapy (AIT). METHODS: We generated an allergome-wide microarray comprising 731 allergens in the form of more than 172,000 overlapping 16-mer peptides. Allergen recognition by IgE, IgG4, and IgG was examined in serum samples collected from subjects undergoing AIT against pollen allergy. RESULTS: Extensive induction of linear peptide-specific Phl p 1- and Bet v 1-specific humoral immunity was demonstrated in subjects undergoing a 3-year-long AIT against grass and birch pollen allergy, respectively. Epitope profiles differed between subjects but were largely established already after 1 year of AIT, suggesting that dominant allergen-specific antibody clones remained as important contributors to humoral immunity following their initial establishment during the early phase of AIT. Complex, subject-specific patterns of allergen isoform and group cross-reactivities in the repertoires were observed, patterns that may indicate different levels of protection against different allergen sources. CONCLUSIONS: The study highlights the complexity and subject-specific nature of allergen epitopes recognized following AIT. We envisage that epitope deconvolution will be an important aspect of future efforts to describe and analyze the outcomes of AIT in a personalized manner.
Assuntos
Alérgenos/metabolismo , Antígenos de Plantas/metabolismo , Dessensibilização Imunológica/métodos , Epitopos de Linfócito B/metabolismo , Peptídeos/metabolismo , Proteínas de Plantas/metabolismo , Pólen/imunologia , Rinite Alérgica Sazonal/imunologia , Adulto , Alérgenos/imunologia , Antígenos de Plantas/imunologia , Betula , Mapeamento de Epitopos , Epitopos de Linfócito B/imunologia , Feminino , Humanos , Imunoglobulina E/metabolismo , Isotipos de Imunoglobulinas/metabolismo , Masculino , Análise em Microsséries , Pessoa de Meia-Idade , Peptídeos/imunologia , Proteínas de Plantas/imunologia , Poaceae , Rinite Alérgica Sazonal/terapiaRESUMO
Immunoglobulin E (IgE) is pivotal for manifestation and persistence of most immediate-type allergies and some asthma phenotypes. Consequently, IgE represents a crucial target for both, diagnostic purposes as well as therapeutic approaches. In fact, allergen-specific immunotherapy - aiming to re-route an IgE-based inflammatory response into an innocuous immune reaction against the allergen - is the only curative approach for IgE-mediated allergic diseases known so far. However, this requires the cognate allergen to be known. Unfortunately, even in well-characterized allergics or asthmatics, often just a small fraction of total IgE can be assigned to specific target allergens. To overcome this knowledge gap, we have devised an analytical platform for unbiased IgE target epitope detection. The system relies on chemically produced random peptide libraries immobilized on polystyrene beads ("one-bead-one-compound (OBOC) libraries") capable to present millions of different peptide motifs simultaneously to immunoglobulins from biological samples. Beads binding IgE are highlighted with a fluorophore-labeled anti-IgE antibody allowing fluorescence-based detection and isolation of positives, which then can be characterized by peptide sequencing. Setting-up this platform required an elaborate optimization process including proper choice of background suppressants, secondary antibody and fluorophore label as well as incubation conditions. For optimal performance our procedure involves a sophisticated pre-adsorption step to eliminate beads that react nonspecifically with anti-IgE secondary antibodies. This step turned out to be important for minimizing detection of "false positive" motifs that otherwise would erroneously be classified as IgE epitopes. In validation studies we were able to retrieve artificial test-peptide beads spiked into our library by using IgE directed against those test-peptides at physiological concentrations (≤20 IU/ml of specific IgE), and disease-relevant bead-bound epitopes of the major peanut allergen Ara h 2 by screening with sera from peanut allergics. Thus, we established a platform with which one can find and validate new immunoglobulin targets using patient material which displays a largely unknown immunoglobulin repertoire.
Assuntos
Dessensibilização Imunológica/métodos , Mapeamento de Epitopos/métodos , Epitopos de Linfócito B/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Imunoglobulina E/metabolismo , Hipersensibilidade a Amendoim/diagnóstico , Albuminas 2S de Plantas/genética , Albuminas 2S de Plantas/metabolismo , Adsorção , Antígenos de Plantas/genética , Antígenos de Plantas/metabolismo , Humanos , Microesferas , Biblioteca de Peptídeos , Peptídeos/genética , Peptídeos/metabolismo , Ligação ProteicaRESUMO
ATP sulfurylase, an enzyme which catalyzes the conversion of sulfate to adenosine 5'-phosphosulfate (APS), plays a significant role in controlling sulfur metabolism in plants. In this study, we have expressed soybean plastid ATP sulfurylase isoform 1 in transgenic soybean without its transit peptide under the control of the 35S CaMV promoter. Subcellular fractionation and immunoblot analysis revealed that ATP sulfurylase isoform 1 was predominantly expressed in the cell cytoplasm. Compared with that of untransformed plants, the ATP sulfurylase activity was about 2.5-fold higher in developing seeds. High-resolution 2-D gel electrophoresis and immunoblot analyses revealed that transgenic soybean seeds overexpressing ATP sulfurylase accumulated very low levels of the ß-subunit of ß-conglycinin. In contrast, the accumulation of the cysteine-rich Bowman-Birk protease inhibitor was several fold higher in transgenic soybean plants when compared to the non-transgenic wild-type seeds. The overall protein content of the transgenic seeds was lowered by about 3% when compared to the wild-type seeds. Metabolite profiling by LC-MS and GC-MS quantified 124 seed metabolites out of which 84 were present in higher amounts and 40 were present in lower amounts in ATP sulfurylase overexpressing seeds compared to the wild-type seeds. Sulfate, cysteine, and some sulfur-containing secondary metabolites accumulated in higher amounts in ATP sulfurylase transgenic seeds. Additionally, ATP sulfurylase overexpressing seeds contained significantly higher amounts of phospholipids, lysophospholipids, diacylglycerols, sterols, and sulfolipids. Importantly, over expression of ATP sulfurylase resulted in 37-52% and 15-19% increases in the protein-bound cysteine and methionine content of transgenic seeds, respectively. Our results demonstrate that manipulating the expression levels of key sulfur assimilatory enzymes could be exploited to improve the nutritive value of soybean seeds.
Assuntos
Aminoácidos/metabolismo , Antígenos de Plantas/metabolismo , Globulinas/metabolismo , Glycine max/metabolismo , Proteínas de Armazenamento de Sementes/metabolismo , Proteínas de Soja/metabolismo , Sulfato Adenililtransferase/genética , Inibidor da Tripsina de Soja de Bowman-Birk/metabolismo , Aminoácidos Sulfúricos/genética , Aminoácidos Sulfúricos/metabolismo , Antígenos de Plantas/genética , Regulação da Expressão Gênica de Plantas , Globulinas/genética , Plantas Geneticamente Modificadas , Proteínas de Armazenamento de Sementes/genética , Sementes/genética , Sementes/metabolismo , Proteínas de Soja/genética , Glycine max/genética , Sulfato Adenililtransferase/metabolismo , Inibidor da Tripsina de Soja de Bowman-Birk/genéticaRESUMO
Natural rubber (NR), principally comprising cis-1,4-polyisoprene, is an industrially important natural hydrocarbon polymer because of its unique physical properties, which render it suitable for manufacturing items such as tires. Presently, industrial NR production depends solely on latex obtained from the Pará rubber tree, Hevea brasiliensis. In latex, NR is enclosed in rubber particles, which are specialized organelles comprising a hydrophobic NR core surrounded by a lipid monolayer and membrane-bound proteins. The similarity of the basic carbon skeleton structure between NR and dolichols and polyprenols, which are found in most organisms, suggests that the NR biosynthetic pathway is related to the polyisoprenoid biosynthetic pathway and that rubber transferase, which is the key enzyme in NR biosynthesis, belongs to the cis-prenyltransferase family. Here, we review recent progress in the elucidation of molecular mechanisms underlying NR biosynthesis through the identification of the enzymes that are responsible for the formation of the NR backbone structure.
Assuntos
Hemiterpenos/biossíntese , Hevea/metabolismo , Látex/biossíntese , Proteínas de Plantas/química , Borracha/química , Transferases/química , Antígenos de Plantas/genética , Antígenos de Plantas/metabolismo , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Hemiterpenos/química , Hemiterpenos/metabolismo , Hevea/química , Hevea/genética , Látex/química , Látex/metabolismo , Modelos Moleculares , Compostos Organofosforados/química , Compostos Organofosforados/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Borracha/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Terpenos/química , Terpenos/metabolismo , Transferases/genética , Transferases/metabolismoRESUMO
Plant lipid transfer proteins (LTPs) are small basic proteins that play important roles in the regulation of various plant biological processes as well as the response to biotic and abiotic stresses. However, knowledge is limited on how this family of proteins is regulated in response to nematode infection in cucumber. In the present study, a total of 39 CsLTP_2 genes were identified by querying databases for cucumber-specific LTP_2 using a Hidden Markov Model approach and manual curation. The family has a five-cysteine motif (5CM) with the basic form CC-Xn-CXC-Xn-C, which differentiates it from typical nsLTPs. The members of CsLTP_2 were grouped into six families according to their structure and their phylogenetic relationships. Expression data of CsLTP_2 genes in 10 cucumber tissues indicated that they were tissue-specific genes. Two genes showed significant expression change in roots of resistant and susceptible lines during nematode infection, indicating their involvement in response to Meloidogyne incognita. This systematic analysis provides a foundation of knowledge for future studies of the biological roles of CsLTP_2 genes in cucumber in response to nematode infection and may help in the efforts to improve M. incognita-resistance breeding in cucumber.
Assuntos
Antígenos de Plantas/metabolismo , Proteínas de Transporte/metabolismo , Cucumis sativus/genética , Resistência à Doença/genética , Genoma de Planta/genética , Doenças das Plantas/imunologia , Proteínas de Plantas/metabolismo , Tylenchoidea/fisiologia , Motivos de Aminoácidos , Animais , Antígenos de Plantas/genética , Proteínas de Transporte/genética , Cucumis sativus/imunologia , Cucumis sativus/parasitologia , Perfilação da Expressão Gênica , Especificidade de Órgãos , Filogenia , Doenças das Plantas/virologia , Proteínas de Plantas/genética , Alinhamento de Sequência , SinteniaRESUMO
BACKGROUND: Non-specific lipid transfer proteins (LTPs) are important allergens in fruits, pollen, vegetables, nuts and latex. Due to their compact structure, LTPs are highly resistant to heat treatment. Here, Art v 3 from mugwort pollen and Pru p 3 from peach were used as model allergens to in-depth investigate structural and immunological properties upon thermal treatment at different buffer conditions. METHODS: Recombinant Art v 3 and Pru p 3 were purified from E. coli and incubated at 95⯰C up to 120â¯min using sodium phosphate buffer pH 3.4 or 7.3. Physicochemical properties of allergens were analyzed in circular dichroism spectroscopy, Fourier transform infrared spectroscopy, dynamic light scattering, size exclusion chromatography, and mass spectrometry. The crystal structure of Art v 3.0201 was determined to 1.9â¯Å resolution. IgG and IgE binding was investigated in ELISA using murine and LTP allergic patients' sera. RESULTS: Highly pure and homogenous recombinant allergens were obtained from bacterial production. The crystal structure of Art v 3.0201 revealed an antiparallel four helix bundle with a C-terminal extension mediating an asymmetric, transient dimer interface and differently sized cavities. Both allergens showed high thermal stability at acidic conditions. In contrast, extensive heat treatment in neutral buffer induced irreversible structural changes due to lanthionine-based cysteine rearrangement. This fostered loss of the typical α-helical structure, increased molecular size and abrogation of IgG and IgE binding epitopes. Pru p 3 lost its structural integrity at shorter heat stress duration than Art v 3, which did however only partially affect the molecule's IgE binding epitopes. CONCLUSION: During thermal treatment, susceptibility to structural changes of the LTP-fold is highly dependent on the surrounding environment but also on intrinsic features of individual LTPs. This is a crucial fact to consider when processing LTP-containing food or food products as this will directly influence their allergenic potential.
Assuntos
Alanina/análogos & derivados , Antígenos de Plantas/metabolismo , Proteínas de Transporte/metabolismo , Cisteína/metabolismo , Proteínas de Plantas/metabolismo , Sulfetos/metabolismo , Alanina/metabolismo , Sequência de Aminoácidos , Animais , Artemisia/metabolismo , Reações Cruzadas/fisiologia , Epitopos/metabolismo , Escherichia coli/metabolismo , Hipersensibilidade Alimentar/metabolismo , Humanos , Imunoglobulina E/metabolismo , Imunoglobulina G/metabolismo , Camundongos , Pólen/metabolismo , Prunus/metabolismoRESUMO
The noncovalent binding mechanisms between cyanidin-3-O-glucoside (C3G) and two main soy protein fractions: ß-conglycinin (7S) and glycinin (11S) at pHâ¯3.0 were investigated and compared. C3G modified the secondary structure of two fractions by increasing α-helix and random coil content while decreasing ß-sheet content. The binding of C3G also altered the tertiary structure and microenvironment of two fractions, demonstrated by synchronous and three-dimensional fluorescence spectra. Additionally, C3G binding reduced the surface hydrophobicity and thermostability of both 7S and 11S. Moreover, the fluorescence quenching results showed that the binding of C3G to two fractions were spontaneous complexation processes driven by electrostatic forces. The number of C3G bound per protein molecule (n) was near 1. The binding constant (Ka) was 2.41 (±0.42)â¯×â¯104â¯M-1 for 11S and 0.81 (±0.01)â¯×â¯104â¯M-1 for 7S at 298â¯K. 11S showed a stronger binding ability for C3G than 7S. These findings contribute to the knowledge of interactions between soy protein fractions and dietary polyphenols under acidic condition, and are beneficial for the application of soy protein-based products in foods.
Assuntos
Antocianinas/metabolismo , Antígenos de Plantas/metabolismo , Globulinas/metabolismo , Glucosídeos/metabolismo , Proteínas de Armazenamento de Sementes/metabolismo , Proteínas de Soja/metabolismo , Antígenos de Plantas/química , Globulinas/química , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Ligação Proteica , Estabilidade Proteica , Estrutura Secundária de Proteína , Proteínas de Armazenamento de Sementes/química , Proteínas de Soja/química , Espectrometria de Fluorescência , TermodinâmicaRESUMO
The potential for 42 different polyphenols found in Vaccinium fruits to bind to peanut allergen Ara h 2 and inhibit IgE binding epitopes was investigated using cheminformatics techniques. Out of 12 predicted binders, delphinidin-3-glucoside, cyanidin-3-glucoside, procyanidin C1, and chlorogenic acid were further evaluated in vitro. Circular dichroism, UV-Vis spectroscopy, and immunoblotting determined their capacity to (i) bind to Ara h 2, (ii) induce protein secondary structural changes, and (iii) inhibit IgE binding epitopes. UV-Vis spectroscopy clearly indicated that procyanidin C1 and chlorogenic acid interacted with Ara h 2, and circular dichroism results suggested that interactions with these polyphenols resulted in changes to Ara h 2 secondary structures. Immunoblotting showed that procyanidin C1 and chlorogenic acid bound to Ara h 2 significantly decreased the IgE binding capacity by 37% and 50%, respectively. These results suggest that certain polyphenols can inhibit IgE recognition of Ara h 2 by obstructing linear IgE epitopes.
Assuntos
Albuminas 2S de Plantas/metabolismo , Antígenos de Plantas/metabolismo , Arachis/metabolismo , Glicoproteínas/metabolismo , Polifenóis/metabolismo , Vaccinium/química , Albuminas 2S de Plantas/química , Albuminas 2S de Plantas/imunologia , Antígenos de Plantas/química , Antígenos de Plantas/imunologia , Biflavonoides/química , Biflavonoides/metabolismo , Sítios de Ligação , Catequina/química , Catequina/metabolismo , Ácido Clorogênico/química , Ácido Clorogênico/metabolismo , Dicroísmo Circular , Epitopos/química , Epitopos/metabolismo , Frutas/química , Frutas/metabolismo , Glicoproteínas/química , Glicoproteínas/imunologia , Humanos , Imunoglobulina E/química , Imunoglobulina E/metabolismo , Simulação de Acoplamento Molecular , Polifenóis/química , Proantocianidinas/química , Proantocianidinas/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Espectrofotometria , Vaccinium/metabolismoRESUMO
Soybean protein exhibits nutritional significance for the control of metabolic syndrome, and evidence suggests that gut microbiota are implicated in the control of metabolic disorders. This study aimed to investigate the modulation of pepsin-released peptides of soybean 7S globulin on gut microbiota and possible association between changes of gut microbiota composition and lipopolysaccharide (LPS)-peptide interaction. In vitro fermentation experiments showed that the extension region (ER) fragments of soybean 7S globulin selectively suppressed proinflammatory Gram-negative bacteria. ER peptides also promoted the highest production of short-chain fatty acids (SCFAs), which were associated with increase of the relative abundance of Lachnospiraceae and Lactobacillaceae. Isothermal titration calorimetry (ITC) and Langmuir monolayer studies demonstrated that ER peptides exhibited high affinity to LPS in the presence of Ca2+ and developed into ß-sheet-rich aggregate structures, thus weakening the stability of LPS monolayers. This finding supplies a possible explanation for improvement of the effects of soybean 7S globulin on metabolic disease.
Assuntos
Antígenos de Plantas/metabolismo , Microbioma Gastrointestinal , Globulinas/metabolismo , Lipopolissacarídeos/metabolismo , Peptídeos/metabolismo , Proteínas de Armazenamento de Sementes/metabolismo , Proteínas de Soja/metabolismo , Antígenos de Plantas/química , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Ácidos Graxos Voláteis/metabolismo , Fezes/microbiologia , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/microbiologia , Globulinas/química , Humanos , Lipopolissacarídeos/química , Peptídeos/química , Proteínas de Armazenamento de Sementes/química , Proteínas de Soja/químicaRESUMO
The study aimed at improving the antioxidant activity of ß-conglycinin to enhance the oxidative and physical stabilities of safflower oil-in-water emulsion stabilized by ß-conglycinin. Heating promoted binding affinity and antioxidant activity of ß-conglycinin. Catechin and chlorogenic acid showed higher binding affinities towards unheated (or heated) ß-conglycinin than caffeic acid and quercetin. The enhancement efficiencies of the phenolics on the antioxidant activity of unheated (or heated) ß-conglycinin decreased in the order of catechinâ¯>â¯quercetinâ¯>â¯chlorogenic acidâ¯>â¯caffeic acid. Hydrophobic force and hydrogen bonding were the important binding forces for the selected phenolics to ß-conglycinin. The complexation with catechin has no side effect on interfacial behavior and emulsifying property of ß-conglycinin. The use of heated ß-conglycinin-catechin complex as an emulsifier for preparing safflower oil emulsion effectively improved the oxidative and physical stabilities of the emulsion treated with lipoxygenase through inhibition of lipid oxidation, protein carbonyl formation and sulfhydryl loss.
Assuntos
Antígenos de Plantas/química , Antioxidantes/química , Catequina/química , Emulsões/química , Globulinas/química , Proteínas de Armazenamento de Sementes/química , Proteínas de Soja/química , Antígenos de Plantas/metabolismo , Catequina/metabolismo , Globulinas/metabolismo , Peroxidação de Lipídeos , Lipoxigenases/metabolismo , Oxirredução , Ligação Proteica , Carbonilação Proteica , Óleo de Cártamo/química , Proteínas de Armazenamento de Sementes/metabolismo , Proteínas de Soja/metabolismo , Espectrometria de Fluorescência , Compostos de Sulfidrila/química , Água/químicaRESUMO
Birch pollen allergy affects more than 20% of the European allergic population. On a molecular level, birch pollen allergy can be linked to the two dominant allergens Bet v 1 and Bet v 2. Bet v 2 belongs to the profilin family, which is abundant in the plant kingdom. Importantly, the homologous plant profilins have a conserved cysteine motif with a currently unknown functional relevance. In particular, it is unknown whether the motif is relevant for disulfide formation and to what extent it would affect the profilins' structural, functional and immunological properties. Here we present crystal structures of Bet v 2 in the reduced and the oxidized state, i.e., without and with a disulfide bridge. Despite overall structural similarity, the two structures distinctly differ at their termini which are stabilized to each other in the oxidized, i.e., disulfide-linked state. These structural differences translate into differences in their proteolytic resistance. Whereas the oxidized Bet v 2 is rather resistant towards the endolysosomal protease cathepsin S, it is rapidly degraded in the reduced form. By contrast, both Bet v 2 forms exhibit similar immunological properties as evidenced by their binding to IgE antibodies from birch pollen allergic patients and by their ability to trigger histamine release in a humanized rat basophilic leukemia cells (RBL) assay, independent of the presence or absence of the disulfide bridge. Taken together our findings suggest that the oxidized Bet v 2 conformation should be the relevant species, with a much longer retention time to trigger immune responses.
Assuntos
Antígenos de Plantas/química , Antígenos de Plantas/metabolismo , Catepsinas/metabolismo , Modelos Moleculares , Conformação Proteica , Antígenos de Plantas/genética , Clonagem Molecular , Endossomos/metabolismo , Lisossomos/metabolismo , Oxirredução , Proteólise , Soluções , Relação Estrutura-AtividadeRESUMO
Natural rubber (polyisoprene) from the rubber tree Hevea brasiliensis is synthesized by specialized cells called laticifers. It is not clear how rubber particles arise, although one hypothesis is that they derive from the endoplasmic reticulum (ER) membrane. Here we cloned the genes encoding four key proteins found in association with rubber particles and studied their intracellular localization by transient expression in Nicotiana benthamiana leaves. We show that, while the cis-prenyltransferase (CPT), responsible for the synthesis of long polyisoprene chains, is a soluble, cytosolic protein, other rubber particle proteins such as rubber elongation factor (REF), small rubber particle protein (SRPP) and Hevea rubber transferase 1-REF bridging protein (HRBP) are associated with the endoplasmic reticulum (ER). We also show that SRPP can recruit CPT to the ER and that interaction of CPT with HRBP leads to both proteins relocating to the plasma membrane. We discuss these results in the context of the biogenesis of rubber particles.
Assuntos
Antígenos de Plantas/metabolismo , Hevea/enzimologia , Proteínas de Plantas/metabolismo , Borracha/metabolismo , Transferases/metabolismo , Sequência de Aminoácidos , Antígenos de Plantas/genética , Citosol/enzimologia , Retículo Endoplasmático/metabolismo , Genes Reporter , Hevea/citologia , Hevea/genética , Modelos Biológicos , Folhas de Planta/citologia , Folhas de Planta/enzimologia , Folhas de Planta/genética , Proteínas de Plantas/genética , Alinhamento de Sequência , Nicotiana/citologia , Nicotiana/genética , Nicotiana/metabolismo , Transferases/genéticaRESUMO
Food allergies represent a serious problem affecting human health and soy proteins rank among the most allergenic proteins from food origin. The proteolytic enzymes produced by lactic acid bacteria (LAB) can hydrolyse the major allergens present in soybean, reducing their immunoreactivity. Many studies have reported the ability of LAB to ferment soy-based products; while the majority of them focus on the improvement of the sensory characteristics and functionality of soy proteins, a lack of information about the role of lactic fermentation in the reduction of immunoreactivity of these proteins exists. The aim of the present study was to evaluate the capability of the proteolytic strain Enterococcus faecalis VB43 to hydrolyse the main allergenic proteins present in soymilk and to determine the immunoreactivity of the obtained hydrolysates. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) results of fermented soymilk demonstrated complete hydrolysis of the ß-subunit from ß-conglycinin and the acidic polypeptide from glycinin. Reversed phase high performance liquid chromatography (RP-HPLC) analysis of the peptides released after hydrolysis revealed the appearance of new peptides and the disappearance of non-hydrolysed proteins, indicating extensive hydrolysis of the substrate. Results from competitive enzyme-linked immunosorbent assay (ELISA) tests clearly indicated a reduction in the immunoreactivity (more than one logarithmic unit) in the fermented sample as compared to the non-fermented control. Our results suggest that the soymilk fermented by E. faecalis VB43 may induce lower allergic responses in sensitive individuals. The strain E. faecalis VB43 may be considered as an excellent candidate to efficiently reduce the immunoreactivity of soymilk proteins.