Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 68(1): 20-32, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17449096

RESUMO

An in vitro steroidogenesis assay using H295R human adenocarcinoma cells has been suggested as a possible alternative to gonad explant assays for use as a Tier I screening assay to detect endocrine active chemicals capable of modulating steroid hormone synthesis. This study is one of the first to investigate the utility of the H295R assay for predicting effects and/or understanding mechanisms of action across species and tissues. Six chemicals, including one selective aromatase inhibitor (fadrozole), four fungicides (fenarimol, ketoconazole, prochloraz, and vinclozolin), and one herbicide (prometon), were tested in both the H295R steroidogenesis assay, and an in vitro steroidogenesis assay using fathead minnow ovary explants. All six chemicals caused significant alterations in 17beta-estradiol (E2) and/or testosterone (T) production in vitro. Effects of ketoconazole, prochloraz, and prometon were similar in both assays. However, there were differences in the profile of responses for T for fadrozole and fenarimol, and for T and E2 for vinclozolin. In terms of sensitivity, steroid production in the H295R assay was most sensitive for detecting the effects of fadrozole, fenarimol, and prochloraz, but was less sensitive than the fathead minnow ovary explant assay to the effects of ketoconazole and vinclozolin. The H295R assay was consistently less variable (among replicates) than the fathead minnow ovary explant assay. However, the ovary explant assay was more predictive of in vivo effects of the six chemicals on fathead minnows than the H295R system. Further characterization of autoregulatory capacities, interaction of steroid-hormone receptor pathways with steroidogenesis, and metabolic capabilities of each system are needed for either system to provide clear and informative insights regarding a chemical's mechanism of action. Overall, however, results of this study suggest that both the H295R and fathead minnow ovary explant assays have utility for identifying endocrine-active chemicals in screening-type applications.


Assuntos
Adenocarcinoma/tratamento farmacológico , Neoplasias das Glândulas Suprarrenais/tratamento farmacológico , Cyprinidae , Estradiol/biossíntese , Antagonistas de Hormônios/toxicidade , Ovário/efeitos dos fármacos , Testosterona/biossíntese , Adenocarcinoma/metabolismo , Neoplasias das Glândulas Suprarrenais/metabolismo , Alternativas aos Testes com Animais , Animais , Bioensaio , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Feminino , Antagonistas de Hormônios/classificação , Humanos , Técnicas de Cultura de Órgãos , Ovário/metabolismo , Reprodutibilidade dos Testes
2.
Toxicol Sci ; 84(2): 249-59, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15635150

RESUMO

The endocrine-disrupting activities of bisphenol A (BPA) and 19 related compounds were comparatively examined by means of different in vitro and in vivo reporter assays. BPA and some related compounds exhibited estrogenic activity in human breast cancer cell line MCF-7, but there were remarkable differences in activity. Tetrachlorobisphenol A (TCBPA) showed the highest activity, followed by bisphenol B, BPA, and tetramethylbisphenol A (TMBPA); 2,2-bis(4-hydroxyphenyl)-1-propanol, 1,1-bis(4-hydroxyphenyl)propionic acid and 2,2-diphenylpropane showed little or no activity. Anti-estrogenic activity against 17beta-estradiol was observed with TMBPA and tetrabromobisphenol A (TBBPA). TCBPA, TBBPA, and BPA gave positive responses in the in vivo uterotrophic assay using ovariectomized mice. In contrast, BPA and some related compounds showed significant inhibitory effects on the androgenic activity of 5alpha-dihydrotestosterone in mouse fibroblast cell line NIH3T3. TMBPA showed the highest antagonistic activity, followed by bisphenol AF, bisphenol AD, bisphenol B, and BPA. However, TBBPA, TCBPA, and 2,2-diphenylpropane were inactive. TBBPA, TCBPA, TMBPA, and 3,3'-dimethylbisphenol A exhibited significant thyroid hormonal activity towards rat pituitary cell line GH3, which releases growth hormone in a thyroid hormone-dependent manner. However, BPA and other derivatives did not show such activity. The results suggest that the 4-hydroxyl group of the A-phenyl ring and the B-phenyl ring of BPA derivatives are required for these hormonal activities, and substituents at the 3,5-positions of the phenyl rings and the bridging alkyl moiety markedly influence the activities.


Assuntos
Poluentes Ocupacionais do Ar/toxicidade , Estrogênios não Esteroides/toxicidade , Antagonistas de Hormônios/toxicidade , Fenóis/toxicidade , Animais , Compostos Benzidrílicos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Estrogênios não Esteroides/química , Estrogênios não Esteroides/classificação , Feminino , Hormônio do Crescimento/metabolismo , Antagonistas de Hormônios/química , Antagonistas de Hormônios/classificação , Humanos , Camundongos , Células NIH 3T3/efeitos dos fármacos , Células NIH 3T3/metabolismo , Fenóis/química , Fenóis/classificação , Hipófise/efeitos dos fármacos , Hipófise/metabolismo , Relação Estrutura-Atividade
3.
ILAR J ; 45(4): 494-501, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15454688

RESUMO

The public and scientific concern that chemicals present in the human diet and the environment and their ability to disrupt the normal hormonal milieu in humans and wildlife have become a high-profile international issue. In 1998, the Endocrine Disruptor Screening and Testing Advisory Committee (EDSTAC) convened by the Environmental Protection Agency (EPA) recommended a tiered testing approach for the evaluation of estrogen, androgen, and thyroid-related effects of some 87,000 commercial chemicals and environmental contaminants. The function of this committee concluded with its final report, and the further implementation of the recommended testing strategy has now been carried forward with the assistance of the Endocrine Disruptor Methods Validation Subcommittee. The function of this body is to provide advice to the EPA on scientific and technical issues related specifically to the conduct of studies required for the validation of assays proposed by the EDSTAC as part of the tiered screening program. The EDSTAC recommended and alternative screening batteries encompass four in vitro mammalian assays. The current methodologies and validation status of the proposed in vitro EDSTAC assays are discussed and consist of estrogen/androgen receptor binding, estrogen/androgen gene transactivation, and minced testis, and one alternate (placental aromatase) in vitro screening assay.


Assuntos
Alternativas aos Testes com Animais/métodos , Células Cultivadas/efeitos dos fármacos , Glândulas Endócrinas/efeitos dos fármacos , Antagonistas de Hormônios/toxicidade , Testes de Toxicidade/métodos , Animais , Células Cultivadas/patologia , Glândulas Endócrinas/patologia , Glândulas Endócrinas/fisiopatologia , Exposição Ambiental/efeitos adversos , Feminino , Antagonistas de Hormônios/classificação , Humanos , Técnicas In Vitro , Masculino , Estados Unidos , United States Environmental Protection Agency
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA