Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Histochem Cell Biol ; 152(6): 423-437, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31630211

RESUMO

Wide application of gonadotropin-releasing hormone (GnRH) agonists and antagonists for clinical purposes determines their effects on ovarian signaling pathways. Our study aimed to determine the localization, expression levels of Wnt signaling members in the pubertal and adult mouse ovary and the impact of GnRH antagonist cetrorelix on these signaling members. 0.5 mg/kg of cetrorelix was injected to 3-and 6-week-old mice for 2 weeks. At the end of injection, ovaries from 5 (5Ce)- to 8-week (8Ce)-old mice were embedded in paraffin for immunohistochemistry and homogenized for western blot to compare with control (5C-8C) and sham groups (5S-8S). WNT2 and WNT4 showed higher expression in thecal and stromal cells in adult mouse ovaries and only WNT4 expression was affected by cetrorelix. FZD1 was localized mainly in oocytes of pubertal ovaries and granulosa cells and oocytes of adult ovaries. FZD1 was reduced by cetrorelix in pubertal ovaries. FZD4 was abundantly localized in thecal and stromal cells of all groups and protein level was not affected by cetrorelix. LRP-6 was expressed mainly in oocytes and stromal cells of pubertal, oocytes of adult ovaries and its expression was reduced by cetrorelix in adult ovaries. CTNNB1 intensity in granulosa cells was the lowest in pubertal and the highest in adult ovaries and its expression was decreased by cetrorelix in adult ovaries. Cetrorelix affected the expression of specific members of the Wnt signaling depending on the developmental stage of mice, pointing out its possible interaction with gonadotropins during pubertal and adult stages.


Assuntos
Hormônio Liberador de Gonadotropina/análogos & derivados , Hormônio Liberador de Gonadotropina/antagonistas & inibidores , Antagonistas de Hormônios/farmacologia , Oócitos/efeitos dos fármacos , Puberdade/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos , Animais , Feminino , Hormônio Liberador de Gonadotropina/administração & dosagem , Hormônio Liberador de Gonadotropina/química , Hormônio Liberador de Gonadotropina/metabolismo , Hormônio Liberador de Gonadotropina/farmacologia , Antagonistas de Hormônios/administração & dosagem , Antagonistas de Hormônios/química , Camundongos , Camundongos Endogâmicos BALB C , Oócitos/metabolismo , Puberdade/metabolismo
3.
J Med Chem ; 61(17): 7767-7784, 2018 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-30091920

RESUMO

The glucocorticoid receptor (GR) has been linked to therapy resistance across a wide range of cancer types. Preclinical data suggest that antagonists of this nuclear receptor may enhance the activity of anticancer therapy. The first-generation GR antagonist mifepristone is currently undergoing clinical evaluation in various oncology settings. Structure-based modification of mifepristone led to the discovery of ORIC-101 (28), a highly potent steroidal GR antagonist with reduced androgen receptor (AR) agonistic activity amenable for dosing in androgen receptor positive tumors and with improved CYP2C8 and CYP2C9 inhibition profile to minimize drug-drug interaction potential. Unlike mifepristone, 28 could be codosed with chemotherapeutic agents readily metabolized by CYP2C8 such as paclitaxel. Furthermore, 28 demonstrated in vivo antitumor activity by enhancing response to chemotherapy in the GR+ OVCAR5 ovarian cancer xenograft model. Clinical evaluation of safety and therapeutic potential of 28 is underway.


Assuntos
Descoberta de Drogas , Antagonistas de Hormônios/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Receptores de Glucocorticoides/antagonistas & inibidores , Animais , Feminino , Antagonistas de Hormônios/química , Antagonistas de Hormônios/farmacocinética , Humanos , Camundongos , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Ratos , Suínos , Porco Miniatura , Distribuição Tecidual , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Toxicol Sci ; 160(2): 205-216, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28973306

RESUMO

A broad range of pesticides have been reported to interfere with the normal function of the thyroid endocrine system. However, the precise mechanism(s) of action has not yet been thoroughly elucidated. In this study, 21 pesticides were assessed for their binding interactions and the potential to disrupt thyroid homeostasis. In the GH3 luciferase reporter gene assays, 5 of the pesticides tested had agonistic effects in the order of procymidone > imidacloprid > mancozeb > fluroxypyr > atrazine. 11 pesticides inhibited luciferase activity of T3 to varying degrees, demonstrating their antagonistic activity. And there are 4 pesticides showed mixed effects when treated with different concentrations. Surface plasmon resonance (SPR) biosensor technique was used to directly measure the binding interactions of these pesticides to the human thyroid hormone receptor (hTR). 13 pesticides were observed to bind directly with TR, with a KD ranging from 4.80E-08 M to 9.44E-07 M. The association and disassociation of the hTR/pesticide complex revealed 2 distinctive binding modes between the agonists and antagonists. At the same time, a different binding mode was displayed by the pesticides showed mix agonist and antagonist activity. In addition, the molecular docking simulation analyses indicated that the interaction energy calculated by CDOCKER for the agonists and antagonists correlated well with the KD values measured by the surface plasmon resonance assay. These results help to explain the differences of the TR activities of these tested pesticides.


Assuntos
Disruptores Endócrinos/toxicidade , Fungicidas Industriais/toxicidade , Herbicidas/toxicidade , Antagonistas de Hormônios/toxicidade , Inseticidas/toxicidade , Neoplasias Hipofisárias/metabolismo , Receptores alfa dos Hormônios Tireóideos/efeitos dos fármacos , Receptores beta dos Hormônios Tireóideos/efeitos dos fármacos , Animais , Sítios de Ligação , Técnicas Biossensoriais , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Disruptores Endócrinos/química , Disruptores Endócrinos/metabolismo , Fungicidas Industriais/química , Fungicidas Industriais/metabolismo , Herbicidas/química , Herbicidas/metabolismo , Antagonistas de Hormônios/química , Antagonistas de Hormônios/metabolismo , Humanos , Inseticidas/química , Inseticidas/metabolismo , Cinética , Ligantes , Luciferases de Vaga-Lume/biossíntese , Luciferases de Vaga-Lume/genética , Simulação de Acoplamento Molecular , Neoplasias Hipofisárias/genética , Ligação Proteica , Conformação Proteica , Ratos , Medição de Risco , Relação Estrutura-Atividade , Ressonância de Plasmônio de Superfície , Receptores alfa dos Hormônios Tireóideos/química , Receptores alfa dos Hormônios Tireóideos/genética , Receptores alfa dos Hormônios Tireóideos/metabolismo , Receptores beta dos Hormônios Tireóideos/química , Receptores beta dos Hormônios Tireóideos/genética , Receptores beta dos Hormônios Tireóideos/metabolismo , Transfecção
5.
Nat Commun ; 8(1): 741, 2017 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-28963450

RESUMO

Many drugs bind to and activate human pregnane X receptor (hPXR) to upregulate drug-metabolizing enzymes, resulting in decreased drug efficacy and increased resistance. This suggests that hPXR antagonists have therapeutic value. Here we report that SPA70 is a potent and selective hPXR antagonist. SPA70 inhibits hPXR in human hepatocytes and humanized mouse models and enhances the chemosensitivity of cancer cells, consistent with the role of hPXR in drug resistance. Unexpectedly, SJB7, a close analog of SPA70, is an hPXR agonist. X-ray crystallography reveals that SJB7 resides in the ligand-binding domain (LBD) of hPXR, interacting with the AF-2 helix to stabilize the LBD for coactivator binding. Differential hydrogen/deuterium exchange analysis demonstrates that SPA70 and SJB7 interact with the hPXR LBD. Docking studies suggest that the lack of the para-methoxy group in SPA70 compromises its interaction with the AF-2, thus explaining its antagonism. SPA70 is an hPXR antagonist and promising therapeutic tool.The xenobiotic-activated human pregnane X receptor (hPXR) regulates drug metabolism. Here the authors develop hPXR modulators, which are of potential therapeutic interest and functionally and structurally characterize the antagonist SPA70 and the structurally related agonist SJB7.


Assuntos
Antagonistas de Hormônios/farmacologia , Receptores de Esteroides/antagonistas & inibidores , Animais , Linhagem Celular , Resistência a Medicamentos , Células HEK293 , Antagonistas de Hormônios/química , Humanos , Camundongos Transgênicos , Modelos Moleculares , Receptor de Pregnano X , Receptores de Esteroides/química
6.
Biochemistry ; 55(31): 4255-8, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27431615

RESUMO

Amyloid formation of the 37-residue amylin is involved in the pathogenesis of type 2 diabetes and, potentially, diabetes-induced neurological deficits. Numerous flavonoids exhibit inhibitory effects against amylin amyloidosis, but the mechanisms of inhibition remain unclear. Screening a library of natural compounds uncovered a potent lead compound, the flavone baicalein. Baicalein inhibits amylin amyloid formation and reduces amylin-induced cytotoxicity. Analogue analyses demonstrated, for the first time, key roles of the vicinal hydroxyl groups on the A-ring. We provided mass spectrometric evidence that incubating baicalein and amylin leads to their conjugation, consistent with a Schiff base mechanism.


Assuntos
Flavanonas/farmacologia , Polipeptídeo Amiloide das Ilhotas Pancreáticas/antagonistas & inibidores , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Diabetes Mellitus Tipo 2/etiologia , Avaliação Pré-Clínica de Medicamentos , Flavanonas/química , Antagonistas de Hormônios/química , Antagonistas de Hormônios/farmacologia , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/ultraestrutura , Espectrometria de Massas , Microscopia Eletrônica de Transmissão , Relação Estrutura-Atividade
7.
J Pept Sci ; 21(7): 569-76, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25851250

RESUMO

To increase the selectivity of chemotherapeutic agents, receptor-mediated tumor-targeting approaches have been developed. Here, degarelix [Ac-D-Nal-D-Cpa-D-Pal-Ser-Aph(L-Hor)-D-Aph(Cbm)-Leu-ILys-Pro-D-Ala-NH2], a gonadotropin-releasing hormone antagonist, was employed as a targeting moiety for paclitaxel (PTX). Five PTX-degarelix conjugates were synthesized, in which PTX was attached via disulfide bond to the different position in the degarelix sequence. All of the PTX-degarelix conjugates exhibited a half-life greater than 10 h determined in human serum. A fluorometric imaging plate reader assay showed that the conjugates LK-MY-9 and LK-MY-10 had an antagonism efficacy similar to that of degarelix. The in vitro cytostatic effects of the conjugates were determined by a (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) (MTS) assay, and the 50% inhibitory concentration value of the conjugates on 3T3 mouse embryonic fibroblast cells were one order of magnitude higher than the 50% inhibitory concentration values of the conjugates on MCF-7 human breast cancer cells and HT-29 human colon cancer cells. Receptor saturation tests further demonstrated that pre-incubation of the cells with degarelix reduced the efficacy of LK-MY-10 in a concentration-dependent manner. In conclusion, degarelix is a valid and stable moiety that has great potential for targeting chemotherapy drugs.


Assuntos
Antineoplásicos Fitogênicos/química , Glicoconjugados/síntese química , Antagonistas de Hormônios/química , Oligopeptídeos/química , Paclitaxel/química , Receptores LHRH/antagonistas & inibidores , Animais , Antineoplásicos Fitogênicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Dissulfetos/química , Glicoconjugados/farmacologia , Células HT29 , Antagonistas de Hormônios/metabolismo , Antagonistas de Hormônios/farmacologia , Humanos , Concentração Inibidora 50 , Células MCF-7 , Camundongos , Terapia de Alvo Molecular , Células NIH 3T3 , Oligopeptídeos/metabolismo , Oligopeptídeos/farmacologia , Paclitaxel/farmacologia , Ligação Proteica , Receptores LHRH/química , Receptores LHRH/metabolismo
8.
Toxicol Sci ; 145(2): 283-95, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25752796

RESUMO

Off-target effects of drugs on nuclear hormone receptors (NHRs) may result in adverse effects in multiple organs/physiological processes. Reliable assessments of the NHR activities for drug candidates are therefore crucial for drug development. However, the highly permissive structures of NHRs for vastly different ligands make it challenging to predict interactions by examining the chemical structures of the ligands. Here, we report a detailed investigation on the agonistic and antagonistic activities of 615 known drugs or drug candidates against a panel of 6 NHRs: androgen, progesterone, estrogen α/ß, and thyroid hormone α/ß receptors. Our study revealed that 4.7 and 12.4% compounds have agonistic and antagonistic activities, respectively, against this panel of NHRs. Nonetheless, potent, unintended NHR hits are relatively rare among the known drugs, indicating that such interactions are perhaps not tolerated during drug development. However, we uncovered examples of compounds that unintentionally agonize or antagonize NHRs. In addition, a number of compounds showed multi-NHR activities, suggesting that the cross-talk between multiple NHRs co-operate to elicit in vivo effects. These data highlight the merits of counter screening drug candidate against NHRs during drug discovery/development.


Assuntos
Descoberta de Drogas/métodos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/etiologia , Disruptores Endócrinos/toxicidade , Antagonistas de Hormônios/toxicidade , Receptores Citoplasmáticos e Nucleares/efeitos dos fármacos , Sítios de Ligação , Ligação Competitiva , Linhagem Celular , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/metabolismo , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/prevenção & controle , Disruptores Endócrinos/química , Genes Reporter , Antagonistas de Hormônios/química , Humanos , Ligantes , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Medição de Risco , Espectrometria de Fluorescência , Transfecção
9.
Steroids ; 97: 45-53, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25204595

RESUMO

Since many estrogen derivatives exhibit anti-hormone or enzyme inhibition potential, a large number of steroidal derivatives have been synthesised from appropriate precursors, in order to obtain potential therapeutics for the treatment of hormone-dependent cancers. In molecular docking studies, based on X-ray crystallographic analysis, selected D-homo and D-seco estratriene derivatives were predicted to bind strongly to estrogen receptor α (ERα), aromatase and 17,20 lyase, suggesting they could be good starting compounds for antihormonal studies. Test results in vivo suggest that these compounds do not possess estrogenic activity, while some of them showed weak anti-estrogenic properties. In vitro anti-aromatase and anti-lyase assays showed partial inhibition of these two enzymes, while some compounds activated aromatase. Aromatase activators are capable of promoting estrogen synthesis for treatment of pathological conditions caused by estrogen depletion, e.g. osteopenia or osteoporosis.


Assuntos
Aromatase/metabolismo , Inibidores Enzimáticos/farmacologia , Estrenos/farmacologia , Homosteroides/farmacologia , Antagonistas de Hormônios/farmacologia , Secoesteroides/farmacologia , Esteroide 17-alfa-Hidroxilase/antagonistas & inibidores , Animais , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Estrenos/síntese química , Estrenos/química , Estrogênios/biossíntese , Feminino , Homosteroides/síntese química , Homosteroides/química , Antagonistas de Hormônios/síntese química , Antagonistas de Hormônios/química , Modelos Moleculares , Conformação Molecular , Ratos , Ratos Wistar , Secoesteroides/síntese química , Secoesteroides/química , Estereoisomerismo , Esteroide 17-alfa-Hidroxilase/metabolismo , Relação Estrutura-Atividade
10.
Curr Pharm Biotechnol ; 16(2): 187-93, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25391244

RESUMO

In this study, sustained-release of GnRH antagonist peptide LXT-101 was realized through oil formulation, and their releasing characteristics in vitro and in vivo were investigated. In this formulation, the static interaction between cationic charged peptide LXT-101 and the negative charged phospholipid led to the formation of the phospholipid-peptide complex, by which LXT-101 was completely dissolved in oils. This formulation was prepared by mixing an aqueous solution of LXT-101 and empty SUV (small unilamellar liposomes) containing EPC (phosphatidylcholine) and DPPG (1, 2-dipalmitog-sn-glycero-3- phosphoglycerol) at an appropriate ratio, the mixture was subsequently lyophilized, and the resultant was dissolved in the oil to form a clear oily solution containing solubilized peptide LXT-101. With atomic force microscopy combined with Langmuir-Blodgett technology, the morphology of the particles in the oily solution were examined to be oval-shaped and the mean particle size was 150 nm in diameter. In pure water at 37°C, about 70~90 % of LXT-101 was released slowly from the oily formulation over 7 days. An effective sustained suppression of testosterone in beagle dogs could be achieved over a period of seven days with this LXT-101 oily formulation, by i.m. at a dose of 0.2 mg/kg (2 mg/ml). This formulation dramatically improved the bioactivity of LXT-101 compared to its aqueous solution. It was also found that when the concentration of peptide LXT-101 was up to or over 10 mg/ml in aqueous solution, there was no significant difference between the oily formulation and aqueous solution. This fact meant that LXT-101 itself could conduct sustained release in vivo by self-assembly of nanofibers.


Assuntos
Antagonistas de Hormônios/administração & dosagem , Oligopeptídeos/administração & dosagem , Animais , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Cães , Hormônio Liberador de Gonadotropina/antagonistas & inibidores , Antagonistas de Hormônios/sangue , Antagonistas de Hormônios/química , Antagonistas de Hormônios/farmacocinética , Injeções , Lipossomos , Masculino , Ácido Oleico/química , Oligopeptídeos/sangue , Oligopeptídeos/química , Oligopeptídeos/farmacocinética , Fosfatidilcolinas/química , Fosfatidilgliceróis/química , Óleo de Soja/química , Testosterona/sangue , Triglicerídeos/química , Água/química
11.
Steroids ; 92: 45-55, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25174783

RESUMO

Antiprogestins with a 4' para imidazolylphenyl moiety were synthesized and their biochemical interactions with the progesterone and glucocorticoid receptor were investigated. Depending on the substitution pattern at the 17 position partial progesterone receptor (PR)-agonistic derivatives like compounds EC339 and EC336 or pure antagonists like compound EC317 were obtained. EC317 was investigated in vivo and found to be significantly more potent than RU 486 in cycling and pregnant guinea pigs. For testing the biological action progesterone receptor modulators (PRM), guinea pigs appears as a specific model when compare to pregnant human uterus. This model correlates to human conditions such as softening and widening of the cervix, the elevation of the uterine responsiveness to prostaglandins and oxytocin, and finally to induction of labor. The use of non-pregnant guinea pigs permitted the simultaneous assessment of PR-agonistic and PR-antagonistic properties and their physiological interactions with uterine and vaginal environment. These can histologically be presumed from the presence of estrogen or progesterone dominance in the genital tract tissues. The ovarian histology indicated the effects on ovulation. Corpora lutea in guinea pigs further reflects inhibitory effects of the progesterone-dependent uterine prostaglandin secretion. PRMs are initially synthesized as analogues of RU 486. They represent a heterogeneous group of compounds with different ratios of PR-agonistic and-antagonistic properties. PR-agonistic properties may be essential for uterine anti-proliferative effects. In various clinical studies these were also attributed to RU 486 or Ulipristal [1,2]. Adjusted PR-agonistic PRMs (EC312, EC313) [3] may be more effective in achieving a mitotically resting endometrium and superior uterine tumor inhibition. For the use in termination of pregnancy, progesterone-inhibitory effects are essentially needed. Even minor PR-agonistic properties compromise the therapeutic goals. Pure PR-antagonists, as EC317, clearly exceeded the gold standard RU 486 with respect to labor inducing effects. Mechanistically it is surprising that both types of compound may be potent inhibitors of ovulation.


Assuntos
Antagonistas de Hormônios/síntese química , Animais , Linhagem Celular , Feminino , Cobaias , Antagonistas de Hormônios/química , Antagonistas de Hormônios/farmacologia , Humanos , Mifepristona/química , Mifepristona/farmacologia , Modelos Moleculares , Gravidez , Progesterona/antagonistas & inibidores , Progestinas/antagonistas & inibidores , Útero/efeitos dos fármacos
12.
J Pept Sci ; 20(11): 868-75, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25053524

RESUMO

It is well known that GnRH analogs can self-assemble into amyloid fibrils and that the duration of action of GnRH analogs depends on the ability of the amyloid to slowly release active peptides. The aim of this study was to investigate the influence of the amino acid residues at position 7 of GnRH analogues on peptide self-assembly. It was found that the dominant shape of the nanostructure can be changed when the structures of the residues at position 7 differ significantly from that of leucine in Degarelix. When the backbone length was extended (peptide 9), or the side chain of the residue at position 7 was replaced by an aromatic ring (peptide 6), or the rotation of the amide bond was restricted (peptide 8), the nanostructure changed from fibrils to vesicles. The results also indicate that the increasing hydrophilicity had little influence on the nanostructure morphology. In addition, a suitable release rate was found to play a more important role for the duration of the peptide action by maintaining the equilibrium between the drug concentration and the persistent release time, while the nanostructure shape was found to exert little influence on the duration of the peptide action.


Assuntos
Hormônio Liberador de Gonadotropina/análogos & derivados , Sequência de Aminoácidos , Animais , Hormônio Liberador de Gonadotropina/química , Hormônio Liberador de Gonadotropina/farmacocinética , Antagonistas de Hormônios/química , Antagonistas de Hormônios/farmacocinética , Humanos , Interações Hidrofóbicas e Hidrofílicas , Masculino , Microscopia Eletrônica de Transmissão , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Oligopeptídeos/síntese química , Oligopeptídeos/química , Oligopeptídeos/farmacocinética , Neoplasias da Próstata/tratamento farmacológico , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade
13.
Int J Pharm ; 450(1-2): 138-44, 2013 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-23623791

RESUMO

LXT-101, a cationic peptide is a novel antagonist of gonadotropin-releasing hormone (GnRH) for prostate cancer treatment. However, effective delivery of peptide drugs into the body by the oral route remains a major challenge due to their origin properties with high molecular weights, strong polarity and low stability in the gastrointestinal (GI) tract. In this study, we have developed a novel oral delivery of oil-based formulation in which therapeutic peptide LXT-101 are solubilized in oils and with this solution as oil phase, an optimum formulation of self-microemulsifying drug delivery system (SMEDDS) was developed. The peptide stability with the SMEDDS formulation in artificial gastric and intestinal fluid was tested in vitro. On the other hand, the testosterone level and plasma concentration of LXT-101 in rats after oral administration of the SMEDDS formulation were investigated in vivo. The data in vitro indicated that LXT-101 in the SMEDDS formulation was stable over 8 h in artificial gastric and intestinal fluid. LXT-101 can be absorbed in vivo and suppression of testosterone maintained in castration level within 12 h can be achieved effectively after SMEDDS formulation administered orally at a dose of 3.5 mg/kg. The approach can provide a potential way for delivery peptides by oral.


Assuntos
Hormônio Liberador de Gonadotropina/antagonistas & inibidores , Antagonistas de Hormônios/administração & dosagem , Oligopeptídeos/administração & dosagem , Administração Oral , Animais , Óleo de Rícino/química , Castração , Antagonistas de Hormônios/química , Antagonistas de Hormônios/farmacocinética , Masculino , Oligopeptídeos/química , Oligopeptídeos/farmacocinética , Pancreatina/química , Pepsina A/química , Fosfatidilcolinas/química , Fosfatidilgliceróis/química , Propilenoglicol/química , Neoplasias da Próstata/tratamento farmacológico , Ratos , Ratos Wistar , Testosterona/sangue
14.
Anal Biochem ; 436(1): 1-9, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23333588

RESUMO

The pleiotropic cytokine hormone leptin, by activating its receptor OB-R, plays a major role in many biological processes, including energy homeostasis, immune function, and cell survival and proliferation. Abnormal leptin action is associated with obesity, autoimmune diseases, and cancer. The pharmacological characterization of OB-R and the development of synthetic OB-R ligands are still in their infancy because currently available binding assays are not compatible with ligand saturation binding experiments and high-throughput screening (HTS) approaches. We have developed here a novel homogeneous time-resolved fluorescence-based binding assay that overcomes these limitations. In this assay, fluorescently labeled leptin or leptin antagonist binds to the SNAP-tagged OB-R covalently labeled with terbium cryptate (Tb). Successful binding is monitored by measuring the energy transfer between the Tb energy donor and the fluorescently labeled leptin energy acceptor. Ligand binding saturation experiments revealed high-affinity dissociation constants in the subnanomolar range with an excellent signal-to-noise ratio. The assay performed in a 384-well format shows high specificity and reproducibility, making it perfectly compatible with HTS applications to identify new OB-R agonists or antagonists. In addition, fluorescently labeled leptin and SNAP-tagged OB-R will be valuable tools for monitoring leptin and OB-R trafficking in cells and tissues.


Assuntos
Fluorescência , Receptores para Leptina/metabolismo , Fosfatase Alcalina/química , Fosfatase Alcalina/metabolismo , Sítios de Ligação/efeitos dos fármacos , Células Cultivadas , Células HEK293 , Ensaios de Triagem em Larga Escala , Antagonistas de Hormônios/química , Antagonistas de Hormônios/metabolismo , Antagonistas de Hormônios/farmacologia , Humanos , Leptina/antagonistas & inibidores , Leptina/química , Leptina/metabolismo , Ligantes , Ligação Proteica , Receptores para Leptina/análise , Reprodutibilidade dos Testes , Fatores de Tempo
15.
J Clin Endocrinol Metab ; 97(12): 4287-92, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23019348

RESUMO

The physiological role of the TSH receptor (TSHR) as a major regulator of thyroid function is well understood, but TSHRs are also expressed in multiple normal extrathyroidal tissues, and the physiological roles of TSHRs in these tissues are unclear. Moreover, TSHRs play a major role in several pathological conditions including hyperthyroidism, hypothyroidism, and thyroid tumors. Small molecule, "drug-like" TSHR agonists, neutral antagonists, and inverse agonists may be useful as probes of TSHR function in extrathyroidal tissues and as leads to develop drugs for several diseases of the thyroid. In this Update, we review the most recent findings regarding the development and use of these small molecule TSHR ligands.


Assuntos
Descoberta de Drogas/tendências , Receptores da Tireotropina/agonistas , Receptores da Tireotropina/antagonistas & inibidores , Animais , Antitireóideos/química , Antitireóideos/farmacologia , Antitireóideos/uso terapêutico , Endocrinologia/tendências , Antagonistas de Hormônios/química , Antagonistas de Hormônios/farmacologia , Humanos , Ligantes , Modelos Biológicos , Modelos Moleculares , Receptores da Tireotropina/química , Receptores da Tireotropina/fisiologia , Doenças da Glândula Tireoide/tratamento farmacológico , Doenças da Glândula Tireoide/etiologia
16.
Expert Opin Ther Pat ; 22(6): 697-700, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22537050

RESUMO

The patent claims peptidic/nonpeptidic inhibitors of the ghrelin receptor, the growth hormone secretagogue receptor (GHSR) 1A. Among these compounds, it was disclosed that the addition in some compounds of a GlyMetAla tripeptide at the N-terminus of the ghrelin peptide agonists converts them into ghrelin receptor antagonists. One of these peptides, among the few that have been studied in vivo, was shown to be able to reduce food intake and body weight gain in rats.


Assuntos
Fármacos Antiobesidade/farmacologia , Desenho de Fármacos , Antagonistas de Hormônios/farmacologia , Peptídeos/farmacologia , Receptores de Grelina/antagonistas & inibidores , Animais , Fármacos Antiobesidade/química , Ingestão de Alimentos/efeitos dos fármacos , Feminino , Células HEK293 , Antagonistas de Hormônios/química , Humanos , Estrutura Molecular , Patentes como Assunto , Peptídeos/química , Ratos , Ratos Sprague-Dawley , Receptores de Grelina/química , Receptores de Grelina/genética , Receptores de Grelina/metabolismo , Relação Estrutura-Atividade , Transfecção , Aumento de Peso/efeitos dos fármacos
17.
Mol Cell Endocrinol ; 358(2): 232-43, 2012 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-22415029

RESUMO

Selective progesterone receptor modulators (SPRMs) have been developed since the late 70s when mifepristone was first described. They act through nuclear progesterone receptors and can have agonist or mixed agonist antagonist actions depending on the cell and tissue. Mifepristone has unique major antagonist properties allowing its use for pregnancy termination. Ulipristal acetate has been marketed in 2009 for emergency contraception and has been recently approved for preoperative myoma treatment. Further perspectives for SPRMs use include long term estrogen free contraception, endometriosis treatment. However long term applications will be possible only after confirmation of endometrial safety.


Assuntos
Ginecologia , Antagonistas de Hormônios/farmacologia , Obstetrícia , Anticoncepção , Feminino , Antagonistas de Hormônios/efeitos adversos , Antagonistas de Hormônios/química , Humanos , Mifepristona/efeitos adversos , Mifepristona/química , Mifepristona/farmacologia , Receptores de Progesterona/agonistas , Receptores de Progesterona/antagonistas & inibidores
18.
Bioorg Med Chem Lett ; 22(4): 1705-8, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22260770

RESUMO

Early studies led to the identification of 11ß-aryl-4',5'-dihydrospiro[estra-4,9-diene-17ß,4'-oxazole] analogs with potent and more selective antiprogestational activity compared to antiglucocorticoid activity than mifepristone. In the present study, we replaced the 4'-dimethylaminophenyl group of mifepristone with the benzoxazol group to give 5a-d. We also prepared the 17ß-formamido analogs 6a,b using a new synthetic strategy via the intermediate epoxide 21. These compounds were evaluated for their antagonist hormonal properties using the T47D cell-based alkaline phosphatase assay and the A549 cell-based functional assay. Compound 5c showed potent antagonist activity at GR with better selectivity for GR versus PR than mifepristone and is a promising lead for further development.


Assuntos
Antagonistas de Hormônios/síntese química , Antagonistas de Hormônios/farmacologia , Receptores de Glucocorticoides/antagonistas & inibidores , Receptores de Progesterona/antagonistas & inibidores , Esteroides/síntese química , Esteroides/farmacologia , Benzoxazóis/síntese química , Benzoxazóis/química , Benzoxazóis/farmacologia , Linhagem Celular Tumoral , Antagonistas de Hormônios/química , Humanos , Concentração Inibidora 50 , Mifepristona/química , Estrutura Molecular , Esteroides/química , Especificidade por Substrato/efeitos dos fármacos
19.
ChemMedChem ; 6(11): 2070-80, 2011 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-21953839

RESUMO

AG-045572 (CMPD1, 1 a) is a nonpeptidic gonadotropin-releasing hormone (GnRH) antagonist that has been investigated for the treatment of sex hormone-related diseases. In the context of systematic studies on sila-substituted drugs, the silicon analogue disila-AG-045572 (1 b) and its derivative 2 were prepared in multi-step syntheses and characterized by elemental analyses (C, H, N), NMR spectroscopic studies (1H, 13C, 29Si), and single-crystal X-ray diffraction. The pharmacological properties of compounds 1 a, 1 b, and 2 were compared in terms of their in vitro potency at cloned human and rat GnRH receptors. Compounds 1 a and 2 were also examined in regard to their pharmacokinetics and in vivo efficacy in both castrated rat (luteinizing hormone (LH) suppression) and intact rat (testosterone suppression) models. The efficacy and pharmacokinetic profiles of 1 a and its silicon-containing analogue 2 appear similar, indicating that replacement of the 5,6,7,8-tetrahydronaphthalene ring system by the 1,3-disilaindane skeleton led to retention of efficacy. Therefore, the silicon compound 2 represents a novel drug prototype for the design of potent, orally available GnRH antagonists suitable for once-daily dosing.


Assuntos
Furanos/química , Hormônio Liberador de Gonadotropina/antagonistas & inibidores , Antagonistas de Hormônios/química , Antagonistas de Hormônios/farmacologia , Tetra-Hidronaftalenos/química , Animais , Cristalografia por Raios X , Avaliação Pré-Clínica de Medicamentos , Furanos/farmacologia , Antagonistas de Hormônios/farmacocinética , Humanos , Hormônio Luteinizante/antagonistas & inibidores , Espectroscopia de Ressonância Magnética , Masculino , Estrutura Molecular , Orquiectomia , Ratos Wistar , Receptores LHRH/genética , Silício/química , Relação Estrutura-Atividade , Tetra-Hidronaftalenos/farmacologia
20.
J Pharm Pharmacol ; 63(7): 904-10, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21635255

RESUMO

OBJECTIVES: Multivesicular liposomes (MVLs) are often used as an appropriate carrier for delivering peptides due to high drug loading, relative stability and extended-release behaviour. However, when cationic amphipathic peptides are involved, some challenges may be encountered, including instability of multiple emulsions due to interaction between peptides and lipid membranes (electrostatic and hydrophobic interaction). LXT-101, a cationic amphipathic peptide, is a novel antagonist of gonadotropin-releasing hormone (GnRH) for prostate cancer treatment. The purpose of the current research was to explore simple methods of determining the interaction between peptide and lipid bilayer and to prepare MVLs of LXT-101 (DepoLXT-101) by the modified DepoFoam technique. METHODS: The anionic surfactants were added in the process of DepoLXT-101 preparation in order to minimize the effect of instability resulting from cationic peptides. KEY FINDINGS: DepoLXT-101 was obtained with good efficiency and reproduction. The integrity of encapsulated peptide was maintained as shown by RP-HPLC. DepoLXT-101 particles were characterized by morphology and particle size distribution and in-vitro release was also investigated. The release behaviour in vitro in medium of sodium chloride at 37°C showed that 70-90% of LXT-101 was released slowly from MVLparticles over 11 days. According to the fitting results of Ritgar-Pepps model, the in-vitro release of DepoLXT-101 was mainly governed by Fick's diffusion. CONCLUSIONS: The data obtained from in-vivo study indicated that a sustained anticancer effect can be achieved over a 7-day period with subcutaneous administration of DepoLXT-101 in rats.


Assuntos
Antineoplásicos/administração & dosagem , Portadores de Fármacos/administração & dosagem , Hormônio Liberador de Gonadotropina/antagonistas & inibidores , Antagonistas de Hormônios/administração & dosagem , Oligopeptídeos/administração & dosagem , Neoplasias da Próstata/tratamento farmacológico , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Cátions , Preparações de Ação Retardada , Difusão , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/uso terapêutico , Composição de Medicamentos , Estabilidade de Medicamentos , Antagonistas de Hormônios/química , Antagonistas de Hormônios/farmacocinética , Antagonistas de Hormônios/uso terapêutico , Interações Hidrofóbicas e Hidrofílicas , Masculino , Oligopeptídeos/química , Oligopeptídeos/farmacocinética , Oligopeptídeos/uso terapêutico , Tamanho da Partícula , Ratos , Ratos Wistar , Solubilidade , Tensoativos/química , Lipossomas Unilamelares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA