Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Biochem Pharmacol ; 222: 116046, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38341001

RESUMO

Patients with epilepsy require improved medications. Purinergic receptors were identified as late as 1976 and are slowly emerging as potential drug targets for the discovery of antiseizure medications. While compounds interacting with these receptors have been approved for use as medicines (e.g., gefapixant for cough) and continue to be explored for a number of diseases (e.g., pain, cancer), there have been no purinergic receptor antagonists that have been advanced for epilepsy. There are very few studies on the channel conducting receptors, P2X3 and P2X4, that suggest their possible role in seizure generation or control. However, the limited data available provides some compelling reasons to believe that they could be valuable antiseizure medication drug targets. The data implicating P2X3 and P2X4 receptors in epilepsy includes the role played by ATP in neuronal excitability and seizures, receptor localization, increased receptor expression in epileptic brain, the involvement of these receptors in seizure-associated inflammation, crosstalk between these purinergic receptors and neuronal processes involved in seizures (GABAergic and glutamatergic neurotransmission), and the significant attenuation of seizures and seizure-like activity with P2X receptor blockade. The discovery of new and selective antagonists for P2X3 and P2X4 receptors is ongoing, armed with new structural data to guide rational design. The availability of safe, brain-penetrant compounds will likely encourage the clinical exploration of epilepsy as a disease entity.


Assuntos
Epilepsia , Antagonistas do Receptor Purinérgico P2X , Humanos , Antagonistas do Receptor Purinérgico P2X/farmacologia , Antagonistas do Receptor Purinérgico P2X/uso terapêutico , Dor , Epilepsia/tratamento farmacológico , Receptores Purinérgicos P2X4 , Convulsões/tratamento farmacológico , Receptores Purinérgicos P2X3 , Trifosfato de Adenosina/metabolismo
2.
Neurochem Int ; 173: 105675, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211839

RESUMO

Epilepsy, a condition characterized by spontaneous recurrent epileptic seizures, is among the most prevalent neurological disorders. This disorder is estimated to affect approximately 70 million people worldwide. Although antiseizure medications are considered the first-line treatments for epilepsy, most of the available antiepileptic drugs are not effective in nearly one-third of patients. This calls for the development of more effective drugs. Evidence from animal models and epilepsy patients suggests that strategies that interfere with the P2X7 receptor by binding to adenosine triphosphate (ATP) are potential treatments for this patient population. This review describes the role of the P2X7 receptor signaling pathways in epileptogenesis. We highlight the genes, purinergic signaling, Pannexin1, glutamatergic signaling, adenosine kinase, calcium signaling, and inflammatory response factors involved in the process, and conclude with a synopsis of these key connections. By unraveling the intricate interplay between P2X7 receptors and epileptogenesis, this review provides ideas for designing potent clinical therapies that will revolutionize both prevention and treatment for epileptic patients.


Assuntos
Epilepsia , Receptores Purinérgicos P2X7 , Transdução de Sinais , Animais , Humanos , Trifosfato de Adenosina/metabolismo , Epilepsia/metabolismo , Antagonistas do Receptor Purinérgico P2X/farmacologia , Antagonistas do Receptor Purinérgico P2X/uso terapêutico , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/metabolismo , Convulsões/tratamento farmacológico
3.
Curr Med Chem ; 31(11): 1361-1403, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37013427

RESUMO

The purinergic P2X7 receptor (P2X7R), an ATP-gated non-selective cation channel, has emerged as a gatekeeper of inflammation that controls the release of proinflammatory cytokines. As a key player in initiating the inflammatory signaling cascade, the P2X7 receptor is currently under intense scrutiny as a target for the treatment of different pathologies, including chronic inflammatory disorders (rheumatoid arthritis and osteoarthritis), chronic neuropathic pain, mood disorders (depression and anxiety), neurodegenerative diseases, ischemia, cancer (leukemia), and many others. For these reasons, pharmaceutical companies have invested in discovering compounds able to modulate the P2X7R and filed many patent applications. This review article presents an account of P2X7R structure, function, and tissue distribution, emphasizing its role in inflammation. Next, we illustrate the different chemical classes of non-competitive P2X7R antagonists reported by highlighting their properties and qualities as clinical candidates for treating inflammatory disorders and neurodegenerative diseases. We also discuss the efforts to develop effective Positron Emission Tomography (PET) radioligands to progress the understanding of the pathomechanisms of neurodegenerative disorders, to provide evidence of drug-target engagement, and to assist clinical dose selection for novel drug therapies.


Assuntos
Neoplasias , Doenças Neurodegenerativas , Humanos , Antagonistas do Receptor Purinérgico P2X/farmacologia , Antagonistas do Receptor Purinérgico P2X/uso terapêutico , Neoplasias/tratamento farmacológico , Relação Estrutura-Atividade , Inflamação/tratamento farmacológico , Inflamação/patologia , Doenças Neurodegenerativas/tratamento farmacológico , Receptores Purinérgicos P2X7/uso terapêutico
4.
Biochem Pharmacol ; 219: 115959, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38052270

RESUMO

The elaborate mechanisms of depression have always been a research hotspot in recent years, and the pace of research has never ceased. The P2X7 receptor (P2X7R) belongs to one of the adenosine triphosphates (ATP)-gated cation channels that exist widely in brain tissues and play a prominent role in the regulation of depression-related pathology. To date, the role of purinergic P2X7R in the mechanisms underlying depression is not fully understood. In this review, we conclude that the purinergic receptor P2X7 is a potential therapeutic target for depression based on research results published over the past 5 years in Google Scholar and the National Library of Medicine (PubMed). Additionally, we introduced the functional characteristics of P2X7R and confirmed that excessive activation of P2X7R led to increased release of inflammatory cytokines, which eventually contributed to depression. Furthermore, the inhibition of P2X7R produced antidepressant-like effects in animal models of depression, further proving that P2X7R signalling mediates depression-like behaviours. Finally, we summarised related studies on drugs that exert antidepressant effects by regulating the expression of P2X7R. We hope that the conclusions of this review will provide information on the role of P2X7R in the neuropathophysiology of depression and novel therapeutic targets for the treatment of depression.


Assuntos
Depressão , Receptores Purinérgicos P2X7 , Animais , Depressão/tratamento farmacológico , Receptores Purinérgicos P2X7/metabolismo , Citocinas/metabolismo , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Transdução de Sinais , Trifosfato de Adenosina/metabolismo , Antagonistas do Receptor Purinérgico P2X/farmacologia , Antagonistas do Receptor Purinérgico P2X/uso terapêutico
5.
Br J Pharmacol ; 181(8): 1203-1220, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37921202

RESUMO

BACKGROUND AND PURPOSE: The P2X3 receptor, a trimeric ionotropic purinergic receptor, has emerged as a potential therapeutic target for refractory chronic cough (RCC). Nevertheless, gefapixant/AF-219, the only marketed P2X3 receptor antagonist, might lead taste disorders by modulating the human P2X2/3 (hP2X2/3) heterotrimer. Hence, in RCC drug development, compounds exhibiting strong affinity for the hP2X3 homotrimer and a weak affinity for the hP2X2/3 heterotrimer hold promise. An example of such a molecule is sivopixant/S-600918, a clinical Phase II RCC candidate with a reduced incidence of taste disturbance compared to gefapixant. Sivopixant and its analogue, (3-(4-([3-chloro-4-isopropoxyphenyl]amino)-3-(4-methylbenzyl)-2,6-dioxo-3,6-dihydro-1,3,5-triazin-1(2H)-yl)propanoic acid (DDTPA), exhibit both high affinity and high selectivity for hP2X3 homotrimers, compared with hP2X2/3 heterotrimers. The mechanism underlying the druggable site and its high selectivity remains unclear. EXPERIMENTAL APPROACH: To analyse mechanisms that distinguish this drug candidate from other inhibitors of the P2X3 receptors we used a combination of chimera construction, site covalent occupation, metadynamics, mutagenesis and whole-cell recording. KEY RESULTS: The high affinity and selectivity of sivopixant/DDTPA for hP2X3 receptors was determined by the tri-symmetric site located close to the upper vestibule. Substitution of only four amino acids inside the upper body domain of hP2X2 with those of hP2X3, enabled the hP2X2/3 heterotrimer to exhibit a similar level of apparent affinity for sivopixant/DDTPA as the hP2X3 homotrimer. CONCLUSION AND IMPLICATIONS: From the receptor-ligand recognition perspective, we have elucidated the molecular basis of novel RCC clinical candidates' cough-suppressing properties and reduced side effects, offering a promising approach to the discovery of novel drugs that specifically target P2X3 receptors.


Assuntos
Compostos de Anilina , Benzenossulfonamidas , Carcinoma de Células Renais , Neoplasias Renais , Pirimidinas , Triazinas , Humanos , Carcinoma de Células Renais/induzido quimicamente , Piridinas/uso terapêutico , Antagonistas do Receptor Purinérgico P2X/farmacologia , Antagonistas do Receptor Purinérgico P2X/uso terapêutico , Tosse/induzido quimicamente , Receptores Purinérgicos P2X3 , Sulfonamidas , Neoplasias Renais/induzido quimicamente , Receptores Purinérgicos P2X2
6.
Eur J Pharmacol ; 957: 175999, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37619787

RESUMO

Stimulation of the P2X7 receptor by extracellular adenosine 5'-triphosphate induces a series of responses in the organism, exceptionally protein cascades related to the proinflammatory process. This has made P2X7 a target for research on inflammatory diseases such as rheumatoid arthritis. Thus, the incessant search for new prototypes that aim to antagonize the action of P2X7 has been remarkable in recent decades, a factor that has already led to numerous clinical studies in humans. In this review, we present the key molecules developed over the years with potential inhibition of P2X7 and inflammation. In addition, an update with newly developed chemical classes with promising activity and results in clinical studies for human pathologies focusing on P2X7 inhibition.


Assuntos
Artrite Reumatoide , Antagonistas do Receptor Purinérgico P2X , Humanos , Antagonistas do Receptor Purinérgico P2X/farmacologia , Antagonistas do Receptor Purinérgico P2X/uso terapêutico , Química Farmacêutica , Trifosfato de Adenosina , Inflamação/tratamento farmacológico
7.
Med Res Rev ; 43(5): 1346-1373, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36924449

RESUMO

The P2X7 receptor is an exceptional member of the P2X purinergic receptor family, with its activation requiring high concentrations of extracellular adenosine 5'-triphosphate (ATP) that are often associated with tissue damage and inflammation. In the central nervous system (CNS), it is highly expressed in glial cells, particularly in microglia. In this review, we discuss the role and mechanisms of the P2X7 receptor in mediating neuroinflammation and other pathogenic events in a variety of traumatic CNS damage conditions, which lead to loss of neurological and cognitive functions. We raise the perspective on the steady progress in developing CNS-penetrant P2X7 receptor-specific antagonists that leverage the ATP-P2X7 receptor signaling axis as a potential therapeutic strategy to alleviate traumatic CNS damage and related complications.


Assuntos
Sistema Nervoso Central , Receptores Purinérgicos P2X7 , Humanos , Microglia , Antagonistas do Receptor Purinérgico P2X/farmacologia , Antagonistas do Receptor Purinérgico P2X/uso terapêutico , Trifosfato de Adenosina
8.
Mol Med Rep ; 27(3)2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36799169

RESUMO

The P2X7 purinergic receptor (P2X7R) is a non­selective cation channel activated by high levels of adenosine triphosphate that are commonly present in serious conditions. Activation of this purinergic receptor is closely related to the development of various disease states including inflammatory and neurodegenerative disorders, orthopedic diseases and types of cancer. Accumulating evidence has shown that the P2X7R plays a crucial role in the development of various heart diseases. For example, activation of P2X7Rs may alleviate myocardial ischemia­reperfusion injury by releasing endogenous cardiac protective substances. In contrast to these findings, activation of P2X7Rs can promote the development of acute myocardial infarction and myocarditis by inducing inflammatory responses. Activation of these receptors can also contribute to the development of different types of cardiomyopathies including diabetic cardiomyopathy, dilated cardiomyopathy and hypertrophic cardiomyopathy by inducing cardiac hypertrophy, fibrosis and apoptosis. Notably, inhibition of P2X7Rs can improve cardiac structure and function abnormalities following acute myocardial infarction, reduction of inflammatory responses following myocarditis and attenuation of the cardiomyopathy process. Furthermore, recent evidence has demonstrated that P2X7Rs are highly active in patients infected with coronavirus disease­2019 (COVID­19). Hyperactivation of P2X7Rs in COVID­19 may induce severe myocardial injury through the activation of several signaling pathways. The present study reviewed the important role of the P2X7R in cardiac dysfunctions and discusses its use as a possible new therapeutic approach for the prevention and treatment of several myocardial diseases.


Assuntos
COVID-19 , Infarto do Miocárdio , Miocardite , Humanos , Trifosfato de Adenosina/farmacologia , COVID-19/genética , Infarto do Miocárdio/genética , Miocardite/genética , Antagonistas do Receptor Purinérgico P2X/farmacologia , Antagonistas do Receptor Purinérgico P2X/uso terapêutico , Receptores Purinérgicos P2X7/genética
9.
Lung ; 201(1): 25-35, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36512069

RESUMO

INTRODUCTION: To determine the optimal dose of sivopixant, a highly selective P2X3 receptor antagonist, for refractory or unexplained chronic cough (RCC/UCC). METHODS: In this phase 2b, randomized, double-blind, placebo-controlled, parallel-group, multicenter trial, patients received sivopixant 50, 150, or 300 mg or placebo once daily for 4 weeks. The primary endpoint was a change from baseline in 24-h cough frequency (coughs/h) with sivopixant vs placebo. RESULTS: Overall, 390/406 randomized patients completed the study. Placebo-adjusted changes in hourly cough count over 24 h were 13.17% (P = 0.3532), - 1.77% (P = 0.8935), and - 12.47% (P = 0.3241) and in cough severity (visual analog scale) were 1.75 mm (P = 0.5854), - 1.21 mm (P = 0.7056), and - 6.55 mm (P = 0.0433) with sivopixant 50, 150, and 300 mg, respectively. Placebo-adjusted changes from baseline in Leicester Cough Questionnaire total scores were - 0.37 (P = 0.4207), - 0.07 (P = 0.8806), and 0.69 (P = 0.1473) with sivopixant 50, 150, and 300 mg, respectively. Additionally, 61.3%, 78.3%, 86.8%, and 71.4% of patients receiving sivopixant 50, 150, and 300 mg and placebo, respectively, reported any improvements in Patient Global Impression of Change. The incidence of treatment-emergent adverse events (TEAEs) was 25.7%, 32.0%, 49.0%, and 20.6% in sivopixant 50, 150, and 300 mg and placebo groups, respectively; all TEAEs in the sivopixant group were mild-to-moderate. CONCLUSION: Sivopixant did not demonstrate a statistically significant difference vs placebo in change from baseline in 24-h cough frequency. The dose of 300 mg has potential for RCC/UCC, showing the greatest improvements in cough frequency and patient-reported outcomes and dose-related mild to moderate reversible taste disturbance, although further trials are needed. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov identifier NCT04110054; registered September 26, 2019.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Tosse/tratamento farmacológico , Antagonistas do Receptor Purinérgico P2X/uso terapêutico , Resultado do Tratamento , Método Duplo-Cego
10.
Reprod Sci ; 30(3): 823-834, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35799022

RESUMO

Cervical cancer is one of the most common and serious tumors in women. Finding new biomarkers and therapeutic targets plays an important role in the diagnosis, prognosis, and treatment of cervical cancer. Purinergic ligand-gated ion channel 7 receptor (P2X7R) is a purine ligand cation channel, activated by adenosine triphosphate (ATP). Studies have shown that P2X7R plays an important role in a variety of diseases and cancers. More and more studies have shown that P2X7R is also closely related to cervical cancer; therefore, the role of P2X7R in the development of cervical cancer deserves further discussion. The expression level of P2X7R in uterine epithelial cancer tissues was lower than that of the corresponding normal tissues. P2X7R plays an important role in the apoptotic process of cervical cancer through various mechanisms of action, and both antagonists and agonists of P2X7R can inhibit the proliferation of cervical cancer cells, while P2X7R is involved in the antitumor effect of Atr-I on cervical cancer cells. This review evaluates the current role of P2X7R in cervical cancer in order to develop more specific therapies for cervical cancer. In conclusion, P2X7R may become a biomarker for cervical cancer screening, and even a new target for clinical treatment of cervical cancer.


Assuntos
Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/tratamento farmacológico , Detecção Precoce de Câncer , Colo do Útero/metabolismo , Biomarcadores , Apoptose , Receptores Purinérgicos P2X7 , Trifosfato de Adenosina/metabolismo , Antagonistas do Receptor Purinérgico P2X/farmacologia , Antagonistas do Receptor Purinérgico P2X/uso terapêutico
11.
J Med Chem ; 65(20): 13967-13987, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36150180

RESUMO

We analyzed the P2X4 receptor structure-activity relationship of a known antagonist 5, a 1,5-dihydro-2H-naphtho[1,2-b][1,4]diazepine-2,4(3H)-dione. Following extensive modification of the reported synthetic route, 4-pyridyl 21u (MRS4719) and 6-methyl 22c (MRS4596) analogues were most potent at human (h) P2X4R (IC50 0.503 and 1.38 µM, respectively, and selective versus hP2X1R, hP2X2/3R, hP2X3R). Thus, the naphthalene 6-, but not 7-position was amenable to substitution, and an N-phenyl ring aza-scan identified 21u with 3-fold higher activity than 5. Compounds 21u and 22c showed neuroprotective and learning- and memory-enhancing activities in a mouse middle cerebral artery occlusion (MCAO) model of ischemic stroke, with potency of 21u > 22c. 21u dose-dependently reduced infarct volume and reduced brain atrophy at 3 and 35 days post-stroke, respectively. Relevant to clinical implication, 21u also reduced ATP-induced [Ca2+]i influx in primary human monocyte-derived macrophages. This study indicates the translational potential of P2X4R antagonists for treating ischemic stroke, including in aging populations.


Assuntos
AVC Isquêmico , Fármacos Neuroprotetores , Animais , Camundongos , Humanos , Antagonistas do Receptor Purinérgico P2X/farmacologia , Antagonistas do Receptor Purinérgico P2X/uso terapêutico , Receptores Purinérgicos P2X4 , Modelos Animais de Doenças , Relação Estrutura-Atividade , Azepinas , Trifosfato de Adenosina , Naftalenos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
12.
Pharmacol Ther ; 237: 108228, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35716953

RESUMO

The purinoceptor 7 receptor (P2X7R) plays an important role in promoting inflammation in response to accumulating damage-associated molecular patterns (DAMPs) released from stressed or apoptotic cells and has been connected to various pathological conditions. The initial investment by large pharmaceutical companies such as AstraZeneca and Pfizer led to the development of several classes of P2X7R antagonists for the treatment of rheumatoid arthritis and Crohn's disease. While these compounds showed early promise as therapeutic agents and were found to potently inhibit adenosine triphosphate (ATP)-induced release of interleukin 1 beta (IL-1ß) in patient-derived monocytes primed with lipopolysaccharide (LPS), they failed to elicit a therapeutic benefit in phase II clinical trials. Within the last 10 years, a wealth of strong preclinical and clinical evidence has implicated IL-1ß as an aggressor in the development and progression of cardiovascular diseases, a cytokine modulated by the P2X7R. On account of the immune-mediated events that regulate atherosclerosis, antagonism of the P2X7R has been proposed as a therapeutic strategy due to the unique functionality of the receptor as an instigator of sterile inflammation. Here, we review the success and failures in P2X7R drug development to evaluate the major barriers to successful clinical translation of P2X7R antagonists. These avenues should be addressed by researchers and pharmaceutical companies to ensure future clinical success in the treatment of CAD.


Assuntos
Doença da Artéria Coronariana , Antagonistas do Receptor Purinérgico P2X , Trifosfato de Adenosina , Doença da Artéria Coronariana/tratamento farmacológico , Humanos , Inflamação/tratamento farmacológico , Lipopolissacarídeos , Preparações Farmacêuticas , Antagonistas do Receptor Purinérgico P2X/farmacologia , Antagonistas do Receptor Purinérgico P2X/uso terapêutico , Receptores Purinérgicos P2X7/uso terapêutico
13.
Pharmacol Ther ; 237: 108166, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35263649

RESUMO

For years chronic cough (CC) has presented an enormous physical, psychological, and social burden on those who experience it, with no approved pharmacological therapies to assuage their symptoms. With our improved understanding of the pathophysiological mechanisms of CC, primarily the recognition of neuronal dysregulation in its aetiology, there appears to be a new hope for such patients. In this review we discuss the multitude of proposed pharmacological targets in CC, including the promising results produced by the antagonism of P2X3 receptors. We also assess the evidence of other peripherally acting pharmacolgical agents still in development.


Assuntos
Tosse , Antagonistas do Receptor Purinérgico P2X , Trifosfato de Adenosina , Doença Crônica , Tosse/tratamento farmacológico , Humanos , Antagonistas do Receptor Purinérgico P2X/farmacologia , Antagonistas do Receptor Purinérgico P2X/uso terapêutico
14.
J Vet Med Sci ; 84(4): 610-617, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35249909

RESUMO

Postoperative ileus (POI) is a postsurgical gastrointestinal motility dysfunction caused by mechanical stress to the intestine during abdominal surgery. POI leads to nausea and vomiting reduced patient quality of life, as well as high medical costs and extended hospitalization. Intestinal inflammation caused by macrophages and neutrophils is thought to be important in the mechanism of POI. Surgery-associated tissue injury and inflammation induce the release of adenosine triphosphate (ATP) from injured cells. Released ATP binds the purinergic P2X7 receptor (P2X7R) expressed on inflammatory cells, inducing the secretion of inflammatory mediators. P2X7R antagonists are thought to be important mediators of the first step in the inflammation process, and studies in chemically induced colitis models confirmed that P2X7R antagonists exhibit anti-inflammatory effects. Therefore, we hypothesized that P2X7R plays an important role in POI. POI models were generated from C57BL/6J mice. Mice were treated with P2X7R antagonist A438079 (34 mg/kg) 30 min before and 2 hr after intestinal manipulation (IM). Inflammatory cell infiltration and gastrointestinal transit were measured. A438079 ameliorated macrophage and neutrophil infiltration in the POI model. Impaired intestinal transit improved following A438079 treatment. P2X7R was expressed on both infiltrating and resident macrophages in the inflamed ileal muscle layer. The P2X7R antagonist A438079 exhibits anti-inflammatory effects via P2X7R expressed on macrophages and therefore could be a target in the treatment of POI.


Assuntos
Íleus , Doenças dos Roedores , Trifosfato de Adenosina , Animais , Anti-Inflamatórios/uso terapêutico , Modelos Animais de Doenças , Íleus/tratamento farmacológico , Íleus/etiologia , Íleus/metabolismo , Íleus/veterinária , Inflamação/tratamento farmacológico , Inflamação/veterinária , Camundongos , Camundongos Endogâmicos C57BL , Complicações Pós-Operatórias/tratamento farmacológico , Complicações Pós-Operatórias/veterinária , Antagonistas do Receptor Purinérgico P2X/farmacologia , Antagonistas do Receptor Purinérgico P2X/uso terapêutico , Qualidade de Vida , Receptores Purinérgicos P2X7/uso terapêutico
15.
Eur J Med Chem ; 231: 114162, 2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35123298

RESUMO

P2X receptors are potential therapeutic targets for the treatment of various neurodegenerative disorders, pain, inflammation, hypertension, and cancer. Adamantane ring has been reported to exhibit significant inhibitory potential towards P2X receptors, especially for P2X7R. We have utilized uniqueness of adamantane moiety in our synthesized compounds and introduced various substitutions that enhanced the potency as well as selectivity for P2XR subtypes. Among synthesized derivatives, 4n and 5b were found to be most potent and selective inhibitors for h-P2X4R and h-P2X7R, respectively. 4n was found to be highly selective for h-P2X4R with IC50 ± SEM = 0.04 ± 0.01 µM, that is 22 times more potent than BX-430, a standard selective inhibitor of h-P2X4R. 5b has IC50 ± SEM of 0.073 ± 0.04 µM, which is comparable with the known antagonists of h-P2X7R. 4n and 5b were studied for mode of inhibition of P2XRs and both were found to be negative allosteric modulators. In silico studies were also conducted to find the type of interactions as well as mode of inhibition.


Assuntos
Adamantano , Doenças do Sistema Nervoso , Adamantano/farmacologia , Adamantano/uso terapêutico , Humanos , Inflamação/tratamento farmacológico , Antagonistas do Receptor Purinérgico P2X/farmacologia , Antagonistas do Receptor Purinérgico P2X/uso terapêutico , Receptores Purinérgicos P2X7 , Tioureia/farmacologia
16.
Purinergic Signal ; 18(1): 13-59, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34757513

RESUMO

Hyperinflammation plays an important role in severe and critical COVID-19. Using inconsistent criteria, many researchers define hyperinflammation as a form of very severe inflammation with cytokine storm. Therefore, COVID-19 patients are treated with anti-inflammatory drugs. These drugs appear to be less efficacious than expected and are sometimes accompanied by serious adverse effects. SARS-CoV-2 promotes cellular ATP release. Increased levels of extracellular ATP activate the purinergic receptors of the immune cells initiating the physiologic pro-inflammatory immune response. Persisting viral infection drives the ATP release even further leading to the activation of the P2X7 purinergic receptors (P2X7Rs) and a severe yet physiologic inflammation. Disease progression promotes prolonged vigorous activation of the P2X7R causing cell death and uncontrolled ATP release leading to cytokine storm and desensitisation of all other purinergic receptors of the immune cells. This results in immune paralysis with co-infections or secondary infections. We refer to this pathologic condition as hyperinflammation. The readily available and affordable P2X7R antagonist lidocaine can abrogate hyperinflammation and restore the normal immune function. The issue is that the half-maximal effective concentration for P2X7R inhibition of lidocaine is much higher than the maximal tolerable plasma concentration where adverse effects start to develop. To overcome this, we selectively inhibit the P2X7Rs of the immune cells of the lymphatic system inducing clonal expansion of Tregs in local lymph nodes. Subsequently, these Tregs migrate throughout the body exerting anti-inflammatory activities suppressing systemic and (distant) local hyperinflammation. We illustrate this with six critically ill COVID-19 patients treated with lidocaine.


Assuntos
Trifosfato de Adenosina/metabolismo , COVID-19/imunologia , Síndrome da Liberação de Citocina/etiologia , Inflamação/etiologia , Lidocaína/uso terapêutico , Antagonistas do Receptor Purinérgico P2X/uso terapêutico , Receptores Purinérgicos/fisiologia , Anti-Inflamatórios/uso terapêutico , Cuidados Críticos , Síndrome da Liberação de Citocina/tratamento farmacológico , Humanos , Inflamação/tratamento farmacológico , Infusões Subcutâneas , Lidocaína/administração & dosagem , Lidocaína/farmacologia , Linfonodos/imunologia , Sistema Linfático/imunologia , Masculino , Dose Máxima Tolerável , Pessoa de Meia-Idade , Modelos Imunológicos , Antagonistas do Receptor Purinérgico P2X/administração & dosagem , Antagonistas do Receptor Purinérgico P2X/farmacologia , Receptores Purinérgicos/efeitos dos fármacos , Receptores Purinérgicos P1/efeitos dos fármacos , Receptores Purinérgicos P1/fisiologia , Receptores Purinérgicos P2X7/fisiologia , Síndrome do Desconforto Respiratório/tratamento farmacológico , Síndrome do Desconforto Respiratório/etiologia , Transdução de Sinais , Linfócitos T Reguladores/imunologia
17.
Eur J Pharmacol ; 906: 174235, 2021 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-34097884

RESUMO

P2X7 receptor, a purinergic receptor family member, is abundantly expressed on many cells, including immune, muscle, bone, neuron, and glia. It acts as an ATP-activated cation channel that permits the influx of Ca2+, Na+ and efflux of K+ ions. The P2X7 receptor plays crucial roles in many physiological processes including cytokine and chemokine secretion, NLRP3 inflammasome activation, cellular growth and differentiation, locomotion, wound healing, transcription factors activation, cell death and T-lymphocyte survival. Past studies have demonstrated the up-regulation and direct association of this receptor in many pathophysiological conditions such as cancer, diabetics, arthritis, tuberculosis (TB) and inflammatory diseases. Hence, targeting this receptor is considered a worthwhile approach to lessen the afflictions associated with the disorders mentioned above by understanding the receptor architecture and downstream signalling processes. Here, in the present review, we have dissected the structural and functional aspects of the P2X7 receptor, emphasizing its role in various diseased conditions. This information will provide in-depth knowledge about the receptor and help to develop apt curative methodologies for the betterment of humanity in the coming years.


Assuntos
Agonistas do Receptor Purinérgico P2X/uso terapêutico , Antagonistas do Receptor Purinérgico P2X/farmacologia , Receptores Purinérgicos P2X7/metabolismo , Animais , Artrite/tratamento farmacológico , Artrite/imunologia , Citocinas/metabolismo , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/imunologia , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Humanos , Inflamassomos/efeitos dos fármacos , Inflamassomos/imunologia , Inflamassomos/metabolismo , Inflamação/tratamento farmacológico , Inflamação/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Agonistas do Receptor Purinérgico P2X/farmacologia , Antagonistas do Receptor Purinérgico P2X/uso terapêutico , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Tuberculose/tratamento farmacológico , Tuberculose/imunologia
19.
Purinergic Signal ; 17(2): 215-227, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33728582

RESUMO

The P2X receptor 7 (P2X7R) is a plasma membrane receptor sensing extracellular ATP associated with a wide variety of cellular functions. It is most commonly expressed on immune cells and is highly upregulated in a number of human cancers where it can play a trophic role in tumorigenesis. Activation of this receptor leads to the formation of a non-selective cation channel, which has been associated with several cellular functions mediated by the PI3K/Akt pathway and protein kinases. Due to its broad range of functions, the receptor represents a potential therapeutic target for a number of cancers. This review describes the range of mechanisms associated with P2X7R activation in cancer settings and highlights the potential of targeted inhibition of P2X7R as a therapy. It also describes in detail a number of key P2X7R antagonists currently in pre-clinical and clinical development, including oxidised ATP, Brilliant Blue G (BBG), KN-62, KN-04, A740003, A438079, GSK1482160, CE-224535, JNJ-54175446, JNJ-55308942, and AZ10606120. Lastly, it summarises the in vivo studies and clinical trials associated with the use and development of these P2X7R antagonists in different disease contexts.


Assuntos
Trifosfato de Adenosina/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Antagonistas do Receptor Purinérgico P2X/uso terapêutico , Receptores Purinérgicos P2X7/efeitos dos fármacos , Animais , Ensaios Clínicos como Assunto , Humanos
20.
J Mol Med (Berl) ; 99(3): 349-358, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33486566

RESUMO

Breast cancer is currently the most common cancer and the leading cause of cancer death among women worldwide. Advanced breast cancer is prone to metastasis, and there is currently no drug to cure metastatic breast cancer. The purinergic ligand-gated ion channel 7 receptor is an ATP-gated nonselective cation channel receptor and is involved in signal transduction, growth regulation, cytokine secretion, and tumor cell development. Recent studies have shown that upregulation of the P2X7 receptor in breast cancer can mediate AKT signaling pathways, Ca2 þ-activated SK3 potassium channels, and EMT and regulate the secretion of small extracellular vesicles to promote breast cancer invasion and migration, which are affected by factors such as hypoxia and ATP. In addition, studies have shown that microRNAs can bind to the 3' untranslated region of the P2X7 receptor, which affects the occurrence and development of breast cancer by upregulating and downregulating P2X7 receptor expression. Studies have shown that new P2X7 receptor inhibitors, such as emodin and Uncaria tomentosa, can inhibit P2X7 receptor-mediated breast cancer invasion and are expected to be used clinically. This article reviews the research progress on the relationship between the P2X7 receptor and breast cancer to provide new ideas and a basis for clinical diagnosis and treatment.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias da Mama/metabolismo , Terapia de Alvo Molecular/métodos , Proteínas de Neoplasias/fisiologia , Antagonistas do Receptor Purinérgico P2X/uso terapêutico , Receptores Purinérgicos P2X7/fisiologia , Trifosfato de Adenosina/metabolismo , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Unha-de-Gato , Cátions/metabolismo , Progressão da Doença , Emodina/uso terapêutico , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Transporte de Íons , Invasividade Neoplásica , Metástase Neoplásica , Proteínas de Neoplasias/efeitos dos fármacos , Extratos Vegetais/uso terapêutico , Antagonistas do Receptor Purinérgico P2X/farmacologia , Receptores Purinérgicos P2X7/química , Receptores Purinérgicos P2X7/efeitos dos fármacos , Transdução de Sinais/fisiologia , Relação Estrutura-Atividade , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA