Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
1.
PLoS One ; 17(10): e0275632, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36227865

RESUMO

BACKGROUND: Resveratrol may improve organ dysfunction after experimental hemorrhagic or septic shock, and some of these effects appear to be mediated by estrogen receptors. However, the influence of resveratrol on liver function and hepatic microcirculation after hemorrhagic shock is unknown, and a presumed mediation via estrogen receptors has not been investigated in this context. METHODS: Male Sprague-Dawley rats (200-300g, n = 14/group) underwent hemorrhagic shock for 90 min (MAP 35±5 mmHg) and were resuscitated with shed blood and Ringer's solution. Animals were treated intravenously with vehicle (1% EtOH), resveratrol (0.2 mg/kg), the unselective estrogen receptor antagonist ICI 182,780 (0.05 mg/kg) or resveratrol + ICI 182,780 prior to retransfusion. Sham-operated animals did not undergo hemorrhage but were treated likewise. After 2 hours of reperfusion, liver function was assessed either by plasma disappearance rate of indocyanine green (PDRICG) or evaluation of hepatic perfusion and hepatic integrity by intravital microscopy, serum enzyme as well as cytokine levels. RESULTS: Compared to vehicle controls, administration of resveratrol significantly improved PDRICG, hepatic perfusion index and hepatic integrity after hemorrhagic shock. The co-administration of ICI 182,780 completely abolished the protective effect only with regard to liver function. CONCLUSIONS: This study shows that resveratrol may improve liver function and hepatocellular integrity after hemorrhagic shock in rats; estrogen receptors mediate these effects at least partially.


Assuntos
Choque Hemorrágico , Animais , Citocinas/farmacologia , Antagonistas do Receptor de Estrogênio/farmacologia , Estrogênios/farmacologia , Fulvestranto/farmacologia , Hemorragia , Verde de Indocianina/farmacologia , Fígado , Masculino , Ratos , Ratos Sprague-Dawley , Receptores de Estrogênio , Ressuscitação , Resveratrol/farmacologia , Solução de Ringer/farmacologia
2.
Development ; 149(1)2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-35023540

RESUMO

Estrogens are well-known to regulate development of sexual dimorphism of the brain; however, their role in embryonic brain development prior to sex-differentiation is unclear. Using estrogen biosensor zebrafish models, we found that estrogen activity in the embryonic brain occurs from early neurogenesis specifically in a type of glia in the olfactory bulb (OB), which we name estrogen-responsive olfactory bulb (EROB) cells. In response to estrogen, EROB cells overlay the outermost layer of the OB and interact tightly with olfactory sensory neurons at the olfactory glomeruli. Inhibiting estrogen activity using an estrogen receptor antagonist, ICI182,780 (ICI), and/or EROB cell ablation impedes olfactory glomerular development, including the topological organisation of olfactory glomeruli and inhibitory synaptogenesis in the OB. Furthermore, activation of estrogen signalling inhibits both intrinsic and olfaction-dependent neuronal activity in the OB, whereas ICI or EROB cell ablation results in the opposite effect on neuronal excitability. Altering the estrogen signalling disrupts olfaction-mediated behaviour in later larval stage. We propose that estrogens act on glia to regulate development of OB circuits, thereby modulating the local excitability in the OB and olfaction-mediated behaviour.


Assuntos
Estrogênios/metabolismo , Neurogênese , Neuroglia/citologia , Bulbo Olfatório/embriologia , Animais , Antagonistas do Receptor de Estrogênio/farmacologia , Fulvestranto/farmacologia , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Bulbo Olfatório/citologia , Bulbo Olfatório/efeitos dos fármacos , Neurônios Receptores Olfatórios/citologia , Neurônios Receptores Olfatórios/metabolismo , Receptores de Estrogênio/antagonistas & inibidores , Sinapses/metabolismo , Sinapses/fisiologia , Peixe-Zebra
3.
Eur J Med Chem ; 227: 113869, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34710747

RESUMO

New twelve in silico designed coumarin-based ERα antagonists, namely 3DQ-1a to 3DQ-1е, were synthesized and confirmed as selective ERα antagonists, showing potencies ranging from single-digit nanomolar to picomolar. The hits were confirmed as selective estrogen receptor modulators and validated as antiproliferative agents using MCF-7 breast cancer cell lines exerting from picomolar to low nanomolar potency, at the same time showing no agonistic activity within endometrial cell lines. Their mechanism of action was inspected and revealed to be through the inhibition of the Raf-1/MAPK/ERK signal transduction pathway, preventing hormone-mediated gene expression on either genomic direct or genomic indirect level, and stopping the MCF-7 cells proliferation at G0/G1 phase. In vivo experiments, by means of the per os administration to female Wistar rats with pre-induced breast cancer, distinguished six derivatives, 3DQ-4a, 3DQ-2a, 3DQ-1a, 3DQ-1b, 3DQ-2b, and 3DQ-3b, showing remarkable potency as tumor suppressors endowed with optimal pharmacokinetic profiles and no significant histopathological profiles. The presented data indicate the new compounds as potential candidates to be submitted in clinical trials for breast cancer therapy.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Cumarínicos/farmacologia , Desenho de Fármacos , Antagonistas do Receptor de Estrogênio/farmacologia , Receptor alfa de Estrogênio/antagonistas & inibidores , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Cumarínicos/síntese química , Cumarínicos/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Antagonistas do Receptor de Estrogênio/síntese química , Antagonistas do Receptor de Estrogênio/química , Receptor alfa de Estrogênio/metabolismo , Feminino , Humanos , Células MCF-7 , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Estrutura Molecular , Ratos , Ratos Wistar , Relação Estrutura-Atividade
4.
Bioorg Chem ; 119: 105554, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34923243

RESUMO

Nuclear Estrogen receptors (ER) are cytoplasmic proteins; translocated to the nucleus to induce transcriptional signals after getting bound to the estrogen hormone. ER activation implicated in cancer cell proliferation of female reproductive organs. Thus, the discovery of ER antagonists is a reliable strategy to combat estrogen-dependent breast cancer. Endometrial carcinoma is one of the complications encountered upon long-term therapy by selective estrogen receptor modulators (SERMs) like Tamoxifen (TMX) and methyl piperidinopyrazole (MPP). Thus, the ER-full antagonist is a solution to improve the safety of this class of therapeutics during the treatment of breast cancer. We selected MPP as a lead structure to design conformationally constrained analogs. Structural rigidification is a proven strategy to transform the SERMs into full antagonists. Accordingly, we synthesized 7-methoxy-3-(4-methoxyphenyl)-4,5-dihydro-2H-benzo[g]indazoles (4), (6a-c),(8-12) along with the biphenolic counterparts(13-19)that are the anticipated active metabolites. The 4-nitrophenyl derivative(4)is with the most balanced profile regardingthe in vivoanti-uterotrophic potential (EC50 = 4.160 µM); and the cytotoxicity assay of the corresponding active metabolite(13)against ER+ breast cancer cell lines (MCF-7 IC50 = 7.200 µM, T-47D IC50 = 11.710 µM). The inconsiderable uterotrophic activities of the elaborated ER-antagonists and weak antiproliferative activity of the compound(13)against ovarian cancer (SKOV-3 IC50 = 29.800 µM) highlighted it as a good start point to elaborate potential ER-full antagonists devoid of endometrial carcinoma. Extending the pendant chain that protrudes from the 2-(4-(substituted)-phenyl) ring of the new benzo-indazoles is recommended for enhancing the potency based on the binding mode of compound(13)in the ligand-binding domain (LBD) of ER.


Assuntos
Antineoplásicos/farmacologia , Desenho de Fármacos , Antagonistas do Receptor de Estrogênio/farmacologia , Piperidinas/farmacologia , Pirazóis/farmacologia , Receptores de Estrogênio/antagonistas & inibidores , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Antagonistas do Receptor de Estrogênio/síntese química , Antagonistas do Receptor de Estrogênio/química , Feminino , Humanos , Ligantes , Estrutura Molecular , Piperidinas/síntese química , Piperidinas/química , Pirazóis/síntese química , Pirazóis/química , Ratos , Ratos Wistar , Receptores de Estrogênio/metabolismo , Relação Estrutura-Atividade
5.
Nutr Res ; 94: 10-24, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34571215

RESUMO

Topical 17-beta-estradiol (E2) regulates the hair cycle, hair shaft differentiation, and sebum production. Vitamin A also regulates sebum production. Vitamin A metabolism proteins localized to the pilosebaceous unit (PSU; hair follicle and sebaceous gland); and were regulated by E2 in other tissues. This study tests the hypothesis that E2 also regulates vitamin A metabolism in the PSU. First, aromatase and estrogen receptors localized to similar sites as retinoid metabolism proteins during mid-anagen. Next, female and male wax stripped C57BL/6J mice were topically treated with E2, the estrogen receptor antagonist ICI 182,780 (ICI), letrozole, E2 plus letrozole, or vehicle control (acetone) during mid-anagen. E2 or one of its inhibitors regulated most of the vitamin A metabolism genes and proteins examined in a sex-dependent manner. Most components were higher in females and reduced with ICI in females. ICI reductions occurred in the premedulla, sebaceous gland, and epidermis. Reduced E2 also reduced RA receptors in the sebaceous gland and bulge in females. However, reduced E2 increased the number of retinal dehydrogenase 2 positive hair follicle associated dermal dendritic cells in males. These results suggest that estrogen regulates vitamin A metabolism in the skin. Interactions between E2 and vitamin A have implications in acne treatment, hair loss, and skin immunity.


Assuntos
Proteínas de Transporte/metabolismo , Estradiol/metabolismo , Estrogênios/metabolismo , Pele/metabolismo , Tretinoína/metabolismo , Animais , Aromatase/metabolismo , Células Dendríticas/metabolismo , Epiderme , Antagonistas do Receptor de Estrogênio/farmacologia , Feminino , Fulvestranto/farmacologia , Cabelo , Folículo Piloso/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Oxirredutases/metabolismo , Receptores de Estrogênio/metabolismo , Glândulas Sebáceas/metabolismo , Fatores Sexuais
6.
Neurobiol Learn Mem ; 184: 107499, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34352396

RESUMO

Estrogens, particularly 17ß-estradiol (estradiol, E2), regulate memory formation. E2 acts through its intracellular receptors, estrogen receptors (ER) ERα and ERß, as well as a recently identified G protein-coupled estrogen receptor (GPER). Although the effects of E2 on memory have been investigated, studies examining the effects of GPER stimulation are scarce. Selective GPER agonism improves memory in ovariectomized female rats, but little information is available regarding the effects of GPER stimulation in male rodents. The aim of the present study was to investigate the effects of the GPER agonist, G1, on consolidation and reconsolidation of inhibitory avoidance (IA) and object recognition (OR) memory in male rats. Animals received vehicle, G1 (15, 75, 150 µg/kg; i.p.), or the GPER antagonist G15 (100 µg/kg; i.p.) immediately after training, or G1 (150 µg/kg; i.p.) 3 or 6 h after training. To investigate reconsolidation, G1 was administered immediately after IA retention Test 1. Results indicated that G1 administered immediately after training at the highest dose enhanced both OR and IA memory consolidation, while GPER blockade immediately after training impaired OR. No effects of GPER stimulation were observed when G1 was given 3 or 6 h after training or after Test 1. The present findings provide evidence that GPER is involved in the early stages of memory consolidation in both neutral and emotional memory tasks in male adult rats.


Assuntos
Memória/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Reconhecimento Psicológico/fisiologia , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Aprendizagem da Esquiva/fisiologia , Antagonistas do Receptor de Estrogênio/farmacologia , Estrogênios/farmacologia , Masculino , Memória/efeitos dos fármacos , Motivação/fisiologia , Ratos , Ratos Wistar , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Reconhecimento Psicológico/efeitos dos fármacos
7.
Eur J Med Chem ; 221: 113543, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34022716

RESUMO

Endocrine therapy (ET) has benefited patients with estrogen receptor alpha (ERα) positive breast cancer for decades. Selective estrogen receptor modulator (SERM) such as Tamoxifen represents the clinical standard of care (SoC). Despite the therapeutic importance of current SoC agents, 30-50% of prolonged treatment patients inevitably generated resistant tumor cells, usually eventually suffered tumor relapse and developed into metastatic breast cancer (MBC), which was the leading cause of female cancer-related mortality. Among these, most resistant tumors remained dependent on ERα signaling, which reignited the need for the next generation of ERα related agents. We hypothesized that selective estrogen receptor covalent antagonists targeting ERα would provide a therapeutic alternative. In the current work, series of novel benzothiophene hybrids bearing electrophile moieties were synthesized and biologically evaluated. The representative analogue 15c exhibited potent anti-proliferative effect in MCF-7 cell lines in vitro, and further mechanism studies confirmed the necessity of covalent bonding. More importantly, 15c could attenuate the expression of TFF-1, GREB-1 and downregulate the levels of cellular ERα protein.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Desenho de Fármacos , Antagonistas do Receptor de Estrogênio/farmacologia , Receptores de Estrogênio/antagonistas & inibidores , Tiofenos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Antagonistas do Receptor de Estrogênio/síntese química , Antagonistas do Receptor de Estrogênio/química , Feminino , Humanos , Células MCF-7 , Estrutura Molecular , Receptores de Estrogênio/metabolismo , Relação Estrutura-Atividade , Tiofenos/síntese química , Tiofenos/química , Células Tumorais Cultivadas
9.
Future Oncol ; 17(13): 1665-1681, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33726508

RESUMO

Treatment for HR+/HER2+ patients has been debated, as some tumors within this luminal HER2+ subtype behave like luminal A cancers, whereas others behave like non-luminal HER2+ breast cancers. Recent research and clinical trials have revealed that a combination of hormone and targeted anti-HER2 approaches without chemotherapy provides long-term disease control for at least some HR+/HER2+ patients. Novel anti-HER2 therapies, including neratinib and trastuzumab emtansine, and new agents that are effective in HR+ cancers, including the next generation of oral selective estrogen receptor downregulators/degraders and CDK4/6 inhibitors such as palbociclib, are now being evaluated in combination. This review discusses current trials and results from previous studies that will provide the basis for current recommendations on how to treat newly diagnosed patients with HR+/HER2+ disease.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias da Mama/terapia , Mastectomia , Terapia Neoadjuvante/tendências , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Mama/patologia , Mama/cirurgia , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Camptotecina/análogos & derivados , Camptotecina/farmacologia , Camptotecina/uso terapêutico , Quimioterapia Adjuvante/métodos , Quimioterapia Adjuvante/tendências , Ensaios Clínicos como Assunto , Antagonistas do Receptor de Estrogênio/farmacologia , Antagonistas do Receptor de Estrogênio/uso terapêutico , Feminino , Humanos , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Terapia de Alvo Molecular/métodos , Terapia de Alvo Molecular/tendências , Terapia Neoadjuvante/métodos , Piperazinas/farmacologia , Piperazinas/uso terapêutico , Intervalo Livre de Progressão , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Piridinas/farmacologia , Piridinas/uso terapêutico , Quinolinas/farmacologia , Quinolinas/uso terapêutico , Receptor ErbB-2/análise , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-2/metabolismo , Receptores de Estrogênio/análise , Receptores de Estrogênio/antagonistas & inibidores , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/análise , Receptores de Progesterona/metabolismo , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico
10.
Breast Cancer Res ; 23(1): 26, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33602273

RESUMO

BACKGROUND: Resistance to endocrine treatment in metastatic breast cancer is a major clinical challenge. Clinical tools to predict both drug resistance and possible treatment combination approaches to overcome it are lacking. This unmet need is mainly due to the heterogeneity underlying both the mechanisms involved in resistance development and breast cancer itself. METHODS: To study the complexity of the mechanisms involved in the resistance to the selective estrogen receptor degrader (SERD) fulvestrant, we performed comprehensive biomarker analyses using several in vitro models that recapitulate the heterogeneity of developed resistance. We further corroborated our findings in tissue samples from patients treated with fulvestrant. RESULTS: We found that different in vitro models of fulvestrant resistance show variable stability in their phenotypes, which corresponded with distinct genomic alterations. Notably, the studied models presented adaptation at different cell cycle nodes to facilitate progression through the cell cycle and responded differently to CDK inhibitors. Cyclin E2 overexpression was identified as a biomarker of a persistent fulvestrant-resistant phenotype. Comparison of pre- and post-treatment paired tumor biopsies from patients treated with fulvestrant revealed an upregulation of cyclin E2 upon development of resistance. Moreover, overexpression of this cyclin was found to be a prognostic factor determining resistance to fulvestrant and shorter progression-free survival. CONCLUSIONS: These data highlight the complexity of estrogen receptor positive breast cancer and suggest that the development of diverse resistance mechanisms dictate levels of ER independence and potentially cross-resistance to CDK inhibitors.


Assuntos
Quinases Ciclina-Dependentes/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Antagonistas do Receptor de Estrogênio/farmacologia , Fulvestranto/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Receptores de Estrogênio/metabolismo , Antineoplásicos Hormonais/farmacologia , Biomarcadores Tumorais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , Mutação , Polimorfismo de Nucleotídeo Único , Transdução de Sinais
11.
Cell Rep ; 34(8): 108776, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33626359

RESUMO

Estrogen receptor-α (ER) drives tumor development in ER-positive (ER+) breast cancer. The transcription factor GATA3 has been closely linked to ER function, but its precise role in this setting remains unclear. Quantitative proteomics was used to assess changes to the ER complex in response to GATA3 depletion. Unexpectedly, few proteins were lost from the ER complex in the absence of GATA3, with the only major change being depletion of the dioxygenase TET2. TET2 binding constituted a near-total subset of ER binding in multiple breast cancer models, with loss of TET2 associated with reduced activation of proliferative pathways. TET2 knockdown did not appear to change global methylated cytosine (5mC) levels; however, oxidation of 5mC to 5-hydroxymethylcytosine (5hmC) was significantly reduced, and these events occurred at ER enhancers. These findings implicate TET2 in the maintenance of 5hmC at ER sites, providing a potential mechanism for TET2-mediated regulation of ER target genes.


Assuntos
5-Metilcitosina/análogos & derivados , Neoplasias da Mama/enzimologia , Montagem e Desmontagem da Cromatina , Metilação de DNA , Proteínas de Ligação a DNA/metabolismo , Dioxigenases/metabolismo , Elementos Facilitadores Genéticos , Receptor alfa de Estrogênio/metabolismo , 5-Metilcitosina/metabolismo , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proteínas de Ligação a DNA/genética , Bases de Dados Genéticas , Dioxigenases/genética , Antagonistas do Receptor de Estrogênio/farmacologia , Receptor alfa de Estrogênio/genética , Feminino , Fulvestranto/farmacologia , Fator de Transcrição GATA3/genética , Fator de Transcrição GATA3/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Camundongos Endogâmicos NOD , Camundongos SCID , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Sci Rep ; 11(1): 4274, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33608590

RESUMO

Goals of endocrine therapy for advanced breast cancer (ABC) include prolonging survival rates, maintaining the quality of life, and delaying the initiation of chemotherapy. We evaluated the effectiveness of fulvestrant as first-line in patients with estrogen receptor (ER)-positive ABC with relapse during or after adjuvant anti-estrogenic therapy in real-world settings. Retrospective, observational study involving 171 postmenopausal women with ER-positive ABC who received fulvestrant as first-line between January 2011 and May 2018 in Spanish hospitals. With a median follow-up of 31.4 months, the progression-free survival (PFS) with fulvestrant was 14.6 months. No differences were seen in the visceral metastatic (14.3 months) versus non-visceral (14.6 months) metastatic subgroup for PFS. Overall response rate and clinical benefit rate were 35.2% and 82.8%. Overall survival was 43.1 months. The duration of the clinical benefit was 19.2 months. Patients with ECOG performance status 0 at the start of treatment showed a significant greater clinical benefit rate and overall survival than with ECOG 1-2. Results in real-world settings are in concordance with randomized clinical trials. Fulvestrant continues to demonstrate clinical benefits in real-world settings and appears be well tolerated as first-line for the treatment of postmenopausal women with ER-positive ABC.


Assuntos
Antineoplásicos Hormonais/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Antagonistas do Receptor de Estrogênio/uso terapêutico , Fulvestranto/uso terapêutico , Pós-Menopausa/metabolismo , Receptores de Estrogênio/metabolismo , Idoso , Antineoplásicos Hormonais/farmacologia , Biomarcadores Tumorais , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/etiologia , Antagonistas do Receptor de Estrogênio/farmacologia , Feminino , Fulvestranto/farmacologia , Humanos , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Prognóstico , Receptores de Estrogênio/antagonistas & inibidores , Estudos Retrospectivos , Resultado do Tratamento
13.
Aging (Albany NY) ; 13(2): 2604-2625, 2021 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-33428600

RESUMO

Many studies have reported that estrogen (E2) promotes lung cancer by binding to nuclear estrogen receptors (ER), and altering ER related nuclear protein expressions. With the GEO database analysis, Human centromere protein F (CENPF) is highly expressed in lung adenocarcinoma (LUAD), and the co-expression of CENPF and ERß was found in the nucleus of LUAD cells through immunofluorescence. We identified the nuclear protein CENPF and explored its relationship with the ER pathway. CENPF and ERß2/5 were related with T stage and poor prognosis (P<0.05). CENPF knockout significantly inhibited LUAD cell growth, the tumor growth of mice and the expression of ERß2/5 (P<0.05). The protein expression of CENPF and ERß2/5 in the CENPF-Knockdown+Fulvestrant group was lower than CENPF- Negative Control +Fulvestrant group (P=0.002, 0.004, 0.001) in A549 cells. The tumor size and weight of the CENPF-Knockdown+Fulvestrant group were significantly lower than CENPF- Negative Control +Fulvestrant group (P=0.001, 0.039) in nude mice. All the results indicated that both CENPF and ERß2/5 play important roles in the progression of LUAD, and knockdown CENPF can inhibit the progression of LUAD by inhibiting the expression of ER2/5. Thus, the development of inhibitors against ERß2/5 and CENPF remained more effective in improving the therapeutic effect of LUAD.


Assuntos
Adenocarcinoma de Pulmão/genética , Proteínas Cromossômicas não Histona/genética , Receptor beta de Estrogênio/metabolismo , Neoplasias Pulmonares/genética , Proteínas dos Microfilamentos/genética , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Animais , Proteínas Cromossômicas não Histona/metabolismo , Biologia Computacional , Bases de Dados Factuais , Progressão da Doença , Antagonistas do Receptor de Estrogênio/farmacologia , Fulvestranto/farmacologia , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , Proteínas dos Microfilamentos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
14.
Cancer Res ; 80(20): 4487-4499, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32855207

RESUMO

Although blocking estrogen-dependent signaling is a cornerstone of adjuvant treatment for breast cancer, 25% of patients experience recurrent disease. Stroma events including innate immune responses are key in cancer progression. How different estrogen receptor (ER)-targeting therapies, including the partial agonist tamoxifen and the pure antagonist fulvestrant, affect the tumor stroma has not yet been elucidated. Fulvestrant is used in only postmenopausal patients, and its effects in the presence of estradiol remain undetermined. Here we observe that fulvestrant decreases ER+ breast cancer growth compared with tamoxifen in the presence of physiologic levels of estradiol in human breast cancer in nude mice and in murine breast cancer in immune-competent mice. Fulvestrant significantly inhibited macrophage and neutrophil infiltration in both models. These effects were corroborated in a zebrafish model where fulvestrant inhibited neutrophil- and macrophage-dependent cancer cell dissemination more effectively than tamoxifen. A comprehensive analysis of 234 human proteins released into the cancer microenvironment by the cancer cells sampled via microdialysis in vivo revealed that 38 proteins were altered following both treatments; 25 of these proteins were associated with immune response and were altered by fulvestrant only. Compared with tamoxifen, fulvestrant significantly affected inflammatory proteins released by murine stroma cells. Importantly, in vivo microdialysis of human ER+ breast cancer revealed that the majority of affected proteins in murine models were upregulated in patients. Together, these results suggest that fulvestrant targets ER+ breast cancer more effectively than tamoxifen even in the presence of estradiol, mainly by attenuation of the innate immune response. SIGNIFICANCE: These findings demonstrate novel effects of the pure antiestrogen fulvestrant in ER+ breast cancer and evaluate its effects under physiologic levels of estradiol, representative of premenopausal patients.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/imunologia , Fulvestranto/farmacologia , Imunidade Inata/efeitos dos fármacos , Tamoxifeno/farmacologia , Animais , Antineoplásicos Hormonais/farmacologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Antagonistas do Receptor de Estrogênio/farmacologia , Feminino , Humanos , Células MCF-7 , Camundongos Nus , Microdiálise , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/imunologia , Receptores de Estrogênio/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra
15.
JAMA Netw Open ; 3(7): e209486, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32633764

RESUMO

Importance: There is no proven test that can guide the optimal treatment, either endocrine therapy or chemotherapy, for estrogen receptor-positive breast cancer. Objective: To investigate the associations of sperm-associated antigen 5 (SPAG5) transcript and SPAG5 protein expressions with treatment response in systemic therapy for estrogen receptor-positive breast cancer. Design, Settings, and Participants: This retrospective cohort study included patients with estrogen receptor-positive breast cancer who received 5 years of adjuvant endocrine therapy with or without neoadjuvant anthracycline-based combination chemotherapy (NACT) derived from 11 cohorts from December 1, 1986, to November 28, 2019. The associations of SPAG5 transcript and SPAG5 protein expression with pathological complete response to NACT were evaluated, as was the association of SPAG5 mRNA expression with response to neoadjuvant endocrine therapy. The associations of distal relapse-free survival with SPAG5 transcript or SPAG5 protein expressions were analyzed. Data were analyzed from September 9, 2015, to November 28, 2019. Main Outcomes and Measures: The primary outcomes were breast cancer-specific survival, distal relapse-free survival, pathological complete response, and clinical response. Outcomes were examined using Kaplan-Meier, multivariable logistic, and Cox regression models. Results: This study included 12 720 women aged 24 to 78 years (mean [SD] age, 58.46 [12.45] years) with estrogen receptor-positive breast cancer, including 1073 women with SPAG5 transcript expression and 361 women with SPAG5 protein expression of locally advanced disease stage IIA through IIIC. Women with SPAG5 transcript and SPAG5 protein expressions achieved higher pathological complete response compared with those without SPAG5 transcript or SPAG5 protein expressions (transcript: odds ratio, 2.45 [95% CI, 1.71-3.51]; P < .001; protein: odds ratio, 7.32 [95% CI, 3.33-16.22]; P < .001). Adding adjuvant anthracycline chemotherapy to adjuvant endocrine therapy for SPAG5 mRNA expression in estrogen receptor-positive breast cancer was associated with prolonged 5-year distal relapse-free survival in patients without lymph node involvement (hazard ratio, 0.34 [95% CI, 0.14-0.87]; P = .03) and patients with lymph node involvement (hazard ratio, 0.35 [95% CI, 0.18-0.68]; P = .002) compared with receiving 5-year endocrine therapy alone. Mean (SD) SPAG5 transcript was found to be downregulated after 2 weeks of neoadjuvant endocrine therapy compared with pretreatment levels in 68 of 92 patients (74%) (0.23 [0.18] vs 0.34 [0.24]; P < .001). Conclusions and Relevance: These findings suggest that SPAG5 transcript and SPAG5 protein expressions could be used to guide the optimal therapies for estrogen receptor-positive breast cancer. Retrospective and prospective clinical trials are warranted.


Assuntos
Neoplasias da Mama , Proteínas de Ciclo Celular , Monitoramento de Medicamentos/métodos , Perfilação da Expressão Gênica/métodos , Receptores de Estrogênio/metabolismo , Antraciclinas/farmacologia , Antineoplásicos/farmacologia , Biomarcadores Farmacológicos/análise , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quimioterapia Adjuvante/efeitos adversos , Quimioterapia Adjuvante/métodos , Resistencia a Medicamentos Antineoplásicos , Antagonistas do Receptor de Estrogênio/farmacologia , Moduladores de Receptor Estrogênico/farmacologia , Feminino , Humanos , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Intervalo Livre de Progressão
16.
Environ Toxicol ; 35(10): 1043-1049, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32415908

RESUMO

In this study, we used ICI 182 780 (ICI), an estrogen receptor (ER) antagonist, to investigate the estrogenic activity of Danshen, and to further explored whether Danshen extract can block Leu27IGF-II-induced hypertrophy in H9c2 cardiomyoblast cells. We first used an IGF-II analog Leu27IGF-II, which specifically activates IGF2R signaling cascades and induces H9c2 cardiomyoblast cell hypertrophy. However, Danshen extract completely inhibited Leu27IGF-II-induced cell size increase, ANP and BNP hypertrophic marker expression, and IGF2R induction. We also observed that Danshen extract inhibited calcineurin protein expression and NFAT3 nuclear translocation, leading to suppression of Leu27IGF-II-induced cardiac hypertrophy. Moreover, the anti-Leu27IGF-II-IGF2R signaling effect of Danshen was totally reversed by ICI, which suggest the cardio protective effect of Danshen is mediated through estrogen receptors. Our study suggests that, Danshen exerts estrogenic activity, and thus, it could be used as a selective ER modulator in IGFIIR induced hypertrophy model.


Assuntos
Crescimento Celular/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Fator de Crescimento Insulin-Like II/análogos & derivados , Mioblastos Cardíacos/efeitos dos fármacos , Receptor IGF Tipo 2/metabolismo , Salvia miltiorrhiza/química , Animais , Calcineurina/metabolismo , Cardiomegalia/prevenção & controle , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Medicamentos de Ervas Chinesas/isolamento & purificação , Antagonistas do Receptor de Estrogênio/farmacologia , Fulvestranto/farmacologia , Fator de Crescimento Insulin-Like II/farmacologia , Mioblastos Cardíacos/metabolismo , Mioblastos Cardíacos/patologia , Transporte Proteico , Ratos , Receptores de Estrogênio/metabolismo , Transdução de Sinais
17.
J Steroid Biochem Mol Biol ; 201: 105698, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32404282

RESUMO

Estrogen receptor (ER)α and the human epidermal growth factor receptor (HER) family are inversely expressed in ERα-positive cancer in association with resistance to hormonal therapy, but the mechanism underlying their relationship remains unknown. We analyzed the effect of HER family ligands on the expression of ER and the HER family in ERα-positive MCF-7 and T47D breast cancer cell lines in 3D spheroid culture. Here, we demonstrated for the first time that heregulin-1ß (HRG), a HER3 and HER4 ligand, most effectively regulated ER/HER family expression by decreasing ERα mRNA expression and increasing HER family mRNA expression. HRG treatment attenuated fulvestrant-mediated growth inhibition, and promoted the migration of MCF-7 cells. Moreover, HRG increased the CD44+/CD24- cell fraction and side population cells, both of which are recognized as prospective breast cancer stem cell markers. HRG activated both phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin (PI3K/AKT/mTOR) and mitogen-activated protein kinase (MAPK) pathways. Inhibitors of these pathways reduced the growth of MCF-7 cells, but the addition of HRG has different effects on these pathways. HRG blocked the inhibitory effect of mTOR inhibitors, such as rapamycin and everolimus, on cell growth but not that of a PI3K inhibitor. Furthermore, HRG slightly decreased the inhibitory effect of an AKT inhibitor on cell growth. In contrast, HRG enhanced the MEK inhibitor-induced inhibition of cell growth. These findings suggest that HRG-stimulated signaling pathways allow ERα-positive breast cancer cells to escape from growth inhibition caused by everolimus, via MAPK signaling and/or other signaling pathways. Everolimus improves progression-free survival in combination with exemestane as second-line therapy for metastatic hormone receptor-positive breast cancer. Our study suggests that HRG is a novel target for ERα-positive breast cancer therapy.


Assuntos
Neoplasias da Mama/genética , Receptor alfa de Estrogênio/genética , Neuregulina-1 , Receptor ErbB-2/genética , Antineoplásicos Hormonais/farmacologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Antagonistas do Receptor de Estrogênio/farmacologia , Receptor alfa de Estrogênio/metabolismo , Everolimo/farmacologia , Feminino , Fulvestranto/farmacologia , Humanos , Terapia de Alvo Molecular , Células-Tronco Neoplásicas/efeitos dos fármacos , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Resultado do Tratamento
18.
J Steroid Biochem Mol Biol ; 202: 105697, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32461092

RESUMO

Treatment of hormone sensitive breast cancer tumors with endocrine therapy such as antiestrogens or aromatase inhibitors has improved the outcome significantly. Studies including our own have shown that downregulation of ERα with pure antiestrogen fulvestrant in combination with aromatase inhibitors may prolong responsiveness of the tumors to endocrine therapy. Fulvestrant has been studied as second line or first line treatment for post-menopausal hormone receptor positive breast cancers as a single agent or in combination with AIs. Studies have also suggested that further escalation of dose may improve benefit. However, dose escalation of fulvestrant, which is administered via intramuscular injection, is difficult due to its poor solubility. To overcome this shortcoming of an injectable drug, a novel orally active antiestrogen, AZD9496 was developed. In addition to being orally active, AZD9496 is designed as a selective ERα downregulator (SERD). In the current study, we compared the effect of AZD9496 and fulvestrant on the growth of MCF-7Ca (human estrogen receptor positive MCF-7 cells stably transfected with human placental aromatase gene) xenografts grown in ovariectomized athymic nude mice. AZD9496 was also compared to fulvestrant in vitro as a single agent or in combination with anastrozole. Our current study shows that AZD9496 is equally effective as fulvestrant at controlling the growth of hormone sensitive human breast cancer tumors. Similar to fulvestrant, AZD9496 inhibits cellular aromatase activity through ERα mediated signaling. However, unlike fulvestrant, combination of AZD9496 with anastrozole did not produce increased tumor inhibition. Our results show that AZD9496 was significantly better at inhibiting cellular aromatase which contributed to its anticancer activity. Next, we measured the effect of AZD9496 on the mouse uterus. Uterine weight of mice treated with AZD9496 was significantly lower than that for mice treated with androstenedione. This reduction in uterine weight was due to AZD9496 mediated inhibition of aromatase activity and not a direct effect on uterine ERα expression. We also observed that anti-cancer efficacy of AZD9496 depended on its ability to inhibit cellular aromatase. These results suggest that AZD9496 may be a better alternative to fulvestrant due to its selectivity for mammary ER and ability to inhibit aromatase in addition of downregulating ERα that can be obtained upon oral administration. As such, AZD9496 may prove to be a better option than fulvestrant for the treatment of hormone sensitive human breast cancer.


Assuntos
Inibidores da Aromatase/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Cinamatos/uso terapêutico , Indóis/uso terapêutico , Neoplasias Mamárias Experimentais/tratamento farmacológico , Moduladores Seletivos de Receptor Estrogênico/uso terapêutico , Anastrozol/farmacologia , Anastrozol/uso terapêutico , Animais , Antineoplásicos Hormonais/farmacologia , Antineoplásicos Hormonais/uso terapêutico , Aromatase/metabolismo , Inibidores da Aromatase/farmacologia , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Cinamatos/farmacologia , Antagonistas do Receptor de Estrogênio/farmacologia , Antagonistas do Receptor de Estrogênio/uso terapêutico , Receptor alfa de Estrogênio , Feminino , Fulvestranto/farmacologia , Fulvestranto/uso terapêutico , Humanos , Indóis/farmacologia , Neoplasias Mamárias Experimentais/metabolismo , Camundongos Nus , Pós-Menopausa , Moduladores Seletivos de Receptor Estrogênico/farmacologia
19.
Einstein (Sao Paulo) ; 18: eAO4560, 2020.
Artigo em Inglês, Português | MEDLINE | ID: mdl-32321078

RESUMO

OBJECTIVE: To investigate if ICI 182,780 (fulvestrant), a selective estrogen receptor alpha/beta (ERα/ERß) antagonist, and G-1, a selective G-protein-coupled receptor (GPER) agonist, can potentially induce autophagy in breast cancer cell lines MCF-7 and SKBr3, and how G-1 affects cell viability. METHODS: Cell viability in MCF-7 and SKBr3 cells was assessed by the MTT assay. To investigate the autophagy flux, MCF-7 cells were transfected with GFP-LC3, a marker of autophagosomes, and analyzed by real-time fluorescence microscopy. MCF-7 and SKBr3 cells were incubated with acridine orange for staining of acidic vesicular organelles and analyzed by flow cytometry as an indicator of autophagy. RESULTS: Regarding cell viability in MCF-7 cells, ICI 182,780 and rapamycin, after 48 hours, led to decreased cell proliferation whereas G-1 did not change viability over the same period. The data showed that neither ICI 182,780 nor G-1 led to increased GFP-LC3 puncta in MCF-7 cells over the 4-hour observation period. The cytometry assay showed that ICI 182,780 led to a higher number of acidic vesicular organelles in MCF-7 cells. G-1, in turn, did not have this effect in any of the cell lines. In contrast, ICI 182,780 and G-1 did not decrease cell viability of SKBr3 cells or induce formation of acidic vesicular organelles, which corresponds to the final step of the autophagy process in this cell line. CONCLUSION: The effect of ICI 182,780 on increasing acidic vesicular organelles in estrogen receptor-positive breast cancer cells appears to be associated with its inhibitory effect on estrogen receptors, and GPER does notseem to be involved. Understanding these mechanisms may guide further investigations of these receptors' involvement in cellular processes of breast cancer resistance.


Assuntos
Autofagia/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Antagonistas do Receptor de Estrogênio/farmacologia , Fulvestranto/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Análise de Variância , Western Blotting , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Receptor alfa de Estrogênio/antagonistas & inibidores , Receptor beta de Estrogênio/antagonistas & inibidores , Feminino , Citometria de Fluxo/métodos , Humanos , Células MCF-7 , Receptores Acoplados a Proteínas G/análise , Reprodutibilidade dos Testes , Sirolimo/farmacologia , Fatores de Tempo , Transfecção/métodos
20.
Mycopathologia ; 185(3): 425-438, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32185617

RESUMO

PURPOSES: To investigate the role of 17ß-estrogen in Candida albicans (C. albicans) adhesion on human vaginal epithelial cells in vulvovaginal candidiasis (VVC). METHODS: The vaginal epithelial cell line, VK2/E6E7, was used to study the estrogen-induced molecular events between C. albicans and cells. An adhesion study was performed to evaluate the involvement of the estrogen-dependent focal adhesion kinase (FAK) activation in cell adhesion. The phosphorylation status of FAK and estrogen receptor α (ERα) upon estrogen challenge was assessed by western blotting. Specific inhibitors for ERα were used to validate the involvement of ERα-FAK signaling cascade. RESULTS: A transient activation of ERα and FAK was observed following the stimulation with 1000 nM estrogen for 48 h, as well as the increased average number of C. albicans adhering to each vaginal epithelial cell. Estrogen-induced activation of ERa and FAK was inhibited by the specific inhibitor of ERα, especially when the inhibitor reached a 10 µM concentration and allowed to act for 12 h. Simultaneously, a decrease in the number of adherent C. albicans was observed. However, this inhibitory effect diminished as the concentration of estrogen increased. CONCLUSION: FAK and ERα signaling cascades were involved in the early interaction between the vaginal epithelial cells and C. albicans, which appeared to be linked with the enhanced cell adhesion leading to VVC and promoted by a certain concentration of estrogen.


Assuntos
Candida albicans/metabolismo , Candidíase Vulvovaginal/microbiologia , Estrogênios/fisiologia , Quinase 2 de Adesão Focal/metabolismo , Vagina/citologia , Adesividade/efeitos dos fármacos , Western Blotting , Candida albicans/efeitos dos fármacos , Candida albicans/fisiologia , Candidíase Vulvovaginal/patologia , Linhagem Celular , Células Epiteliais/citologia , Células Epiteliais/microbiologia , Antagonistas do Receptor de Estrogênio/farmacologia , Receptor alfa de Estrogênio/metabolismo , Estrogênios/administração & dosagem , Feminino , Fulvestranto/farmacologia , Humanos , Fosforilação , Fatores de Tempo , Vagina/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA