Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
BMC Genomics ; 24(1): 781, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102559

RESUMO

BACKGROUND: Odorant-binding proteins (OBPs) are essential in insect's daily behaviors mediated by olfactory perception. Megachile saussurei Radoszkowski (Hymenoptera, Megachilidae) is a principal insect pollinating alfalfa (Medicago sativa) in Northwestern China. The olfactory function have been less conducted, which provides a lot of possibilities for our research. RESULTS: Our results showed that 20 OBPs were identified in total. Multiple sequence alignment analysis indicated MsauOBPs were highly conserved with a 6-cysteine motif pattern and all belonged to the classic subfamily, coding 113-196 amino acids and sharing 41.32%-99.12% amino acid identity with known OBPs of other bees. Phylogenetic analysis indicated there were certain homologies existed among MsauOBPs and most sequences were clustered with that of Osmia cornuta (Hymenoptera, Megachilidae). Expression analysis showed the identified OBPs were mostly enriched in antennae instead of other four body parts, especially the MsauOBP2, MsauOBP3, MsauOBP4, MsauOBP8, MsauOBP11 and MsauOBP17, in which the MsauOBP2, MsauOBP4 and MsauOBP8 presented obvious tissue-biased expression pattern. Molecular docking results indicated MsauOBP4 might be the most significant protein in recognizing alfalfa flower volatile 3-Octanone, while MsauOBP13 might be the most crucial protein identifying (Z)-3-hexenyl acetate. It was also found the lysine was a momentous hydrophilic amino acid in docking simulations. CONCLUSION: In this study, we identified and analyzed 20 OBPs of M. saussurei. The certain homology existed among these OBPs, while some degree of divergence could also be noticed, indicating the complex functions that different MsauOBPs performed. Besides, the M. saussurei and Osmia cornuta were very likely to share similar physiological functions as most of their OBPs were clustered together. MsauOBP4 might be the key protein in recognizing 3-Octanone, while MsauOBP13 might be the key protein in binding (Z)-3-hexenyl acetate. These two proteins might contribute to the alfalfa-locating during the pollination process. The relevant results may help determine the highly specific and effective attractants for M. saussurei in alfalfa pollination and reveal the molecular mechanism of odor-evoked pollinating behavior between these two species.


Assuntos
Himenópteros , Receptores Odorantes , Abelhas , Animais , Himenópteros/metabolismo , Odorantes , Sequência de Aminoácidos , Filogenia , Simulação de Acoplamento Molecular , Perfilação da Expressão Gênica , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Aminoácidos/metabolismo , Proteínas de Insetos/metabolismo , Antenas de Artrópodes/metabolismo , Transcriptoma
2.
J Exp Biol ; 226(21)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37750327

RESUMO

Motion plays an essential role in sensory acquisition. From changing the position in which information can be acquired to fine-scale probing and active sensing, animals actively control the way they interact with the environment. In olfaction, movement impacts the time and location of odour sampling as well as the flow of odour molecules around the olfactory organs. Employing a detailed spatiotemporal analysis, we investigated how insect antennae interact with the olfactory environment in a species with a well-studied olfactory system - the American cockroach. Cockroaches were tested in a wind-tunnel setup during the presentation of odours with different attractivity levels: colony extract, butanol and linalool. Our analysis revealed significant changes in antennal kinematics when odours were presented, including a shift towards the stream position, an increase in vertical movement and high-frequency local oscillations. Nevertheless, the antennal shifting occurred predominantly in a single antenna while the overall range covered by both antennae was maintained throughout. These findings hold true for both static and moving stimuli and were more pronounced for attractive odours. Furthermore, we found that upon odour encounter, there was an increase in the occurrence of high-frequency antennal sweeps and vertical strokes, which were shown to impact the olfactory environment's statistics directly. Our study lays out a tractable system for exploring the tight coupling between sensing and movement, in which antennal sweeps, in parallel to mammalian sniffing, are actively involved in facilitating odour capture and transport, generating odour intermittency in environments with low air movement where cockroaches dwell.


Assuntos
Baratas , Periplaneta , Animais , Olfato , Odorantes , Órgãos dos Sentidos , Antenas de Artrópodes , Mamíferos
3.
Insect Biochem Mol Biol ; 162: 104012, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37743031

RESUMO

The order Isopoda contains both aquatic and terrestrial species, among which Hemilepistus reaumurii, which lives in arid environments and is the most adapted to terrestrial life. Olfaction has been deeply investigated in insects while it has received very limited attention in other arthropods, particularly in terrestrial crustaceans. In insects, soluble proteins belonging to two main families, Odorant Binding Proteins (OBPs) and Chemosensory Proteins (CSPs), are contained in the olfactory sensillar lymph and are suggested to act as carriers of hydrophobic semiochemicals to or from membrane-bound olfactory receptors. Other protein families, namely Nieman-Pick type 2 (NPC2) and Lipocalins (LCNs) have been also reported as putative odorant carriers in insects and other arthropod clades. In this study, we have sequenced and analysed the transcriptomes of antennae and of the first pair of legs of H. reaumurii focusing on soluble olfactory proteins. Interestingly, we have found 13 genes encoding CSPs, whose sequences differ from those of the other arthropod clades, including non-isopod crustaceans, for the presence of two additional cysteine residues, besides the four conserved ones. Binding assays on two of these proteins showed strong affinities for fatty acids and long-chain unsaturated esters and aldehydes, putative semiochemicals for this species.


Assuntos
Artrópodes , Isópodes , Receptores Odorantes , Animais , Feromônios/metabolismo , Isópodes/genética , Isópodes/metabolismo , Insetos/metabolismo , Transcriptoma , Olfato/genética , Proteínas de Insetos/metabolismo , Artrópodes/genética , Receptores Odorantes/metabolismo , Antenas de Artrópodes/metabolismo , Filogenia , Perfilação da Expressão Gênica
4.
Artigo em Inglês | MEDLINE | ID: mdl-37688975

RESUMO

The flower bug Orius sauteri (Heteroptera: Anthocoridae), is a polyphagous predator and a natural enemy widely used in biological pest control to micro-pests including aphids, spider mites, thrips and so on. In the present study, the transcriptome analysis of adult heads in O. sauteri were performed and identified a total of 38 chemosensory genes including 24 odorant binding proteins (OBPs) and 14 chemosensory proteins (CSPs). Subsequently, we conducted quantitative real-time PCR to detect the tissue expression level of 18 OBPs and 8 CSPs. The results showed that almost all OsauOBPs and OsauCSPs have a high expression level in the adult heads of both sexes. In addition, 5 OsauOBPs (OBP1, OBP2, OBP3, OBP4 and OBP14) have a significantly higher expressed in male heads than female, indicating that these chemosensory proteins might be involved in the male-specific behaviors such as pheromone reception and mate-seeking. This study will provide helpful reference for subsequent understanding of chemoreception mechanism in O. sauteri.


Assuntos
Afídeos , Heterópteros , Receptores Odorantes , Feminino , Masculino , Animais , Odorantes , Heterópteros/genética , Heterópteros/metabolismo , Perfilação da Expressão Gênica , Afídeos/genética , Feromônios , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Transcriptoma , Antenas de Artrópodes/metabolismo , Filogenia
5.
Artigo em Inglês | MEDLINE | ID: mdl-37478664

RESUMO

Quadrastichus mendeli Kim is one of the most important parasitoids of Leptocybe invasa Fisher et La Salle, which is an invasive gall-making pest in eucalyptus plantations in the world. Gall-inducing insects live within plant tissues and induce tumor-like growths that provide the insects with food, shelter, and protection from natural enemies. Empirical evidences showed that sensory genes play a key role in the host location of parasitoids. So far, what kind of sensory genes regulate parasitoids to locate gall-inducing insects has not been uncovered. In this study, sensory genes in the antenna and abdomen of Q. mendeli were studied using high-throughput sequencing. In total, 181,543 contigs was obtained from the antenna and abdomen transcriptome of Q. mendeli. The major sensory genes (chemosensory proteins, CSPs; gustatory receptors, GRs; ionotropic receptors, IRs; odorant binding proteins, OBPs; odorant receptors, ORs; and sensory neuron membrane proteins, SNMPs) were identified, and phylogenetic analyses were performed with these genes from Q. mendeli and other model insect species. The gene co-expression network constructed by WGCNA method is robust and reliable. There were 10,314 differentially expressed genes (DEGs), and among them, 99 genes were DEGs. A comprehensive sequence resource with desirable quality was built by comparative transcriptome of the antenna and abdomen of Q. mendeli, enriching the genomic platform of Q. mendeli.


Assuntos
Himenópteros , Receptores Odorantes , Animais , Transcriptoma , Filogenia , Himenópteros/genética , Perfilação da Expressão Gênica , Receptores Odorantes/genética , Abdome , Proteínas de Insetos/genética , Antenas de Artrópodes/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-36645471

RESUMO

The initial representation of the instantaneous temporal information about food odor concentration in the primary olfactory center, the antennal lobe, was examined by simultaneously recording the activity of antagonistic ON and OFF neurons with 4-channel tetrodes. During presentation of pulse-like concentration changes, ON neurons encode the rapid concentration increase at pulse onset and the pulse duration, and OFF neurons the rapid concentration decrease at pulse offset and the duration of the pulse interval. A group of ON neurons establish a concentration-invariant representation of odor pulses. The responses of ON and OFF neurons to oscillating changes in odor concentration are determined by the rate of change in dependence on the duration of the oscillation period. By adjusting sensitivity for fluctuating concentrations, these neurons improve the representation of the rate of the changing concentration. In other ON and OFF neurons, the response to changing concentrations is invariant to large variations in the rate of change due to variations in the oscillation period, facilitating odor identification in the antennal-lobe. The independent processing of odor identity and the temporal dynamics of odor concentration may speed up processing time and improve behavioral performance associated with plume tracking, especially when the air is not moving.


Assuntos
Baratas , Eletrodos , Odorantes , Condutos Olfatórios , Animais , Baratas/fisiologia , Condutos Olfatórios/fisiologia , Neurônios Receptores Olfatórios/fisiologia , Olfato/fisiologia , Neurônios , Antenas de Artrópodes
7.
Pest Manag Sci ; 79(5): 1760-1767, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36622077

RESUMO

BACKGROUND: Chemosensory proteins (CSPs) play a vital role in the response to environmental stimuli in insects. However, the involvement of insect CSPs in the stress response to night-time environmental changes has not been examined. RESULTS: In the current study, four TiCSP genes were first cloned from Thalassodes immissaria by transcriptome and RACE-PCR techniques. TiCSPs had typical characteristics of insect CSPs, including a highly conserved four-cysteine motif and olfactory-specific protein D (OS-D) or OS-D superfamily domains. TiCSP1-4 were clustered classified within different clades in a phylogenetic analysis and were differentially expressed at all developmental stages. Under night-time artificial light stress, the expression levels of TiCSP1 in males were significantly decreased at 24 h, and those of TiCSP2 were decreased in both adult sexes at 48 h. In a molecular docking analysis, TiCSPs showed relatively higher binding affinities with sex pheromone components than with host plant volatile molecules. CONCLUSION: Taking the reduced expression levels of TiCSPs and binding affinities into account, TiCSP1 and TiCSP2 are involved in the stress response processes of T. immissaria under light treatment. Our study supplies basic data for the evaluation of the effects of light interference control technology - an emerging physical control measure on nontarget pests of lychee orchards. © 2023 Society of Chemical Industry.


Assuntos
Lepidópteros , Receptores Odorantes , Animais , Masculino , Perfilação da Expressão Gênica , Filogenia , Simulação de Acoplamento Molecular , Transcriptoma , Insetos/genética , Lepidópteros/genética , Proteínas de Insetos/metabolismo , Receptores Odorantes/química , Antenas de Artrópodes
8.
Parasite ; 29: 53, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36350195

RESUMO

Microplitis pallidipes Szépligeti (Hymenoptera: Braconidae) is an important parasitic wasp of second and third-instar noctuid larvae such as the insect pests Spodoptera exigua, Spodoptera litura, and Spodoptera frugiperda. As in other insects, M. pallidipes has a chemosensory recognition system that is critical to foraging, mating, oviposition, and other behaviors. Odorant-binding proteins (OBPs) are important to the system, but those of M. pallidipes have not been determined. This study used PacBio long-read sequencing to identify 170,980 M. pallidipes unigenes and predicted 129,381 proteins. Following retrieval of possible OBP sequences, we removed those that were redundant or non-full-length and eventually cloned five OBP sequences: MpOBP2, MpOBP3, MpOBP8, MpOBP10, and MpPBP 429, 429, 459, 420, and 429 bp in size, respectively. Each M. pallidipes OBP had six conserved cysteine residues. Phylogenetic analysis revealed that the five OBPs were located at different branches of the phylogenetic tree. Additionally, tissue expression profiles indicated that MpOBP2 and MpPBP were mainly expressed in the antennae of male wasps, while MpOBP3, MpOBP8, and MpOBP10 were mainly expressed in the antennae of female wasps. MpOBP3 was also highly expressed in the legs of female wasps. Temporal profiles revealed that the expression of each M. pallidipes OBP peaked at different days after emergence to adulthood. In conclusion, we identified five novel odorant-binding proteins of M. pallidipes and demonstrated biologically relevant differences in expression patterns.


Title: Identification et profil d'expression des protéines de liaison aux odeurs chez la guêpe parasite Microplitis pallidipes à l'aide du séquençage à lecture longue PacBio. Abstract: Microplitis pallidipes Szépligeti (Hymenoptera : Braconidae) est une importante guêpe parasite des larves de noctuelles de deuxième et troisième stades telles que les insectes ravageurs Spodoptera exigua, Spodoptera litura et Spodoptera frugiperda. Comme d'autres insectes, M. pallidipes possède un système de reconnaissance chimiosensoriel, essentiel à la recherche de nourriture, à l'accouplement, à la ponte et à d'autres comportements. Les protéines de liaison aux odeurs (PLO) sont importantes pour le système, mais celles de M. pallidipes n'ont pas été déterminées. Cette étude a utilisé le séquençage à lecture longue PacBio pour identifier 170 980 unigènes de M. pallidipes et prédit 129 381 protéines. Après la récupération des séquences de PLO possibles, nous avons supprimé celles qui étaient redondantes ou pas de pleine longueur et avons finalement cloné cinq séquences de PLO, MpOBP2, MpOBP3, MpOBP8, MpOBP10 et MpPBP, respectivement de taille 429, 429, 459, 420 et 429 pb. Chaque PLO de M. pallidipes avait six résidus de cystéine conservés. L'analyse phylogénétique a révélé que les cinq PLO étaient situés à différentes branches de l'arbre phylogénétique. De plus, les profils d'expression tissulaire ont indiqué que MpOBP2 et MpPBP étaient principalement exprimés dans les antennes des guêpes mâles, tandis que MpOBP3, MpOBP8 et MpOBP10 étaient principalement exprimés dans les antennes des guêpes femelles. MpOBP3 était également fortement exprimé dans les pattes des guêpes femelles. Les profils temporels ont révélé que l'expression de chaque PLO de M. pallidipes culminait à différents jours après l'émergence à l'âge adulte. En conclusion, nous avons identifié cinq nouvelles protéines de liaison aux odeurs de M. pallidipes et démontré des différences biologiquement pertinentes dans les profils d'expression.


Assuntos
Vespas , Animais , Feminino , Vespas/genética , Filogenia , Odorantes , Spodoptera/metabolismo , Spodoptera/parasitologia , Larva/genética , Larva/parasitologia , Proteínas de Insetos/genética , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Antenas de Artrópodes/metabolismo , Transcriptoma
9.
Biol Lett ; 18(11): 20220199, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36349580

RESUMO

In flying insects, head stabilization is an essential reflex that helps to reduce motion blur during fast aerial manoeuvres. This reflex is multimodal and requires the integration of visual and antennal mechanosensory feedback in hawkmoths, each operating as a negative-feedback-control loop. As in any negative-feedback system, the head stabilization system possesses inherent oscillatory dynamics that depend on the rate at which the sensorimotor components of the reflex operate. Consistent with this expectation, we observed small-amplitude oscillations in the head motion (or head wobble) of the oleander hawkmoth, Daphnis nerii, which are accentuated when sensory feedback is aberrant. Here, we show that these oscillations emerge from the inherent dynamics of the multimodal reflex underlying gaze stabilization, and that the amplitude of head wobble is a function of both the visual feedback and antennal mechanosensory feedback from the Johnston's organs. Our data support the hypothesis that head wobble results from a multimodal, dynamically stabilized reflex loop that mediates head positioning.


Assuntos
Manduca , Mariposas , Animais , Voo Animal , Antenas de Artrópodes , Reflexo , Cabeça
10.
Environ Entomol ; 51(4): 700-709, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35666204

RESUMO

The cigarette beetle, Lasioderma serricorne (Fabricius) (Coleoptera: Anobiidae), is a destructive stored product pest worldwide. Adult cigarette beetles are known to rely on host volatiles and pheromones to locate suitable habitats for oviposition and mating, respectively. However, little is known about the chemosensory mechanisms of these pests. Soluble chemoreception proteins are believed to initiate olfactory signal transduction in insects, which play important roles in host searching and mating behaviors. In this study, we sequenced the antennal transcriptome of L. serricorne and identified 14 odorant-binding proteins (OBPs), 5 chemosensory proteins (CSPs), and 2 Niemann-Pick C2 proteins (NPC2). Quantitative realtime PCR (qPCR) results revealed that several genes (LserOBP2, 3, 6, and 14) were predominantly expressed in females, which might be involved in specific functions in this gender. The five LserOBPs (LserOBP1, 4, 8, 10, and 12) that were highly expressed in the male antennae might encode proteins involved in specific functions in males. These findings will contribute to a better understanding of the olfactory system in this stored product pest and will assist in the development of efficient and environmentally friendly strategies for controlling L. serricorne.


Assuntos
Besouros , Receptores Odorantes , Animais , Antenas de Artrópodes/metabolismo , Besouros/genética , Besouros/metabolismo , Feminino , Perfilação da Expressão Gênica , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Masculino , Filogenia , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Transcriptoma
11.
Pestic Biochem Physiol ; 181: 105016, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35082039

RESUMO

The Liriomyza trifolii is a highly invasive polyphagia pest. Understanding the physiological functions of odorant binding proteins (OBPs) in the chemical communication of L. trifolii can lead to effective pest management strategies. Seven full-length OBPs were identified by transcriptome screening of L. trifolii adults. Bioinformatics analyses classified the seven OBPs into two subfamilies (six classic OBPs, one minus-C OBP). The analysis of their expression in different development stages revealed that LtriOBP5 was highly expressed in the larval stage, LtriOBP4 in the pupa stage, and LtriOBP1, 2, 3, 6, 7 in the adult stage; the expression levels were higher in male adults than in females. The analysis of different tissues showed high expression of LtriOBP1, 3, 6, 7 in the antennae, which were selected for in vitro purification. To explore the ligand compounds of OBPs, fluorescence competitive binding experiments were performed. Immunofluorescence localization revealed that LtriOBP1, 3, 6, 7 showed strong binding abilities to plant volatiles and were located in the antennae, implying that LtriOBP1, 3, 6, 7 may play key roles in olfaction, such as host location. LtriOBP6 and LtriOBP7 had strong binding abilities to specific herbivore-induced plant volatiles, suggesting LtriOBP6 and LtriOBP7 may also play critical roles in chemoreception. This study provides preliminary exploration of the olfactory perception mechanism of L. trifolii, which can be used as a basis to design insect behavior regulators and develop highly effective insecticides using mixture of ligands and known pesticides.


Assuntos
Proteínas de Insetos , Odorantes , Animais , Antenas de Artrópodes/metabolismo , Proteínas de Transporte , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Filogenia , Transcriptoma
12.
J Insect Sci ; 22(1)2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34982166

RESUMO

Aphids, mainly distributed in temperate zones, exhibit seasonal generation-alternating phenomena. Across the life cycle, different morphs are produced. Sitobion avenae (Fabricius 1775) is a major pest of wheat worldwide. To elucidate olfactory perception of morph-specific behavior across their life cycle, we investigated antennal sensilla among seven morphs using scanning electron microscopy. Trichoid, placoid, coeloconic, and campaniform sensilla were identified. Trichoid sensilla, big multiporous placoid sensilla (primary rhinarium), a group of sensilla (primary rhinaria), and campaniform sensilla showed similar distribution and resemblance among morphs, whereas small multiporous placoid sensilla (secondary rhinaria) exhibited obvious differences. Compared to apterous morphs, alate morphs possessed a greater abundance of secondary rhinaria, with the greatest found in males on antennal segments III-V. Alate virginoparae and alate sexuparae ranged from six to fourteen rhinaria on antennal segment III. Fundatrices, apterous virginoparae and apterous sexuparae only had one or two secondary rhinaria on antennal segment III while they disappeared in oviparae. Secondary rhinaria, lying in a cuticle cavity, are convex or concave in their central part. In males, both forms were present, with a greater proportion of convex form than that of the concave form. Fundatrices and virginoparae had the convex form while sexuparae had the concave form. Polyphenism of secondary rhinaria might suggest their association with the olfactory functions of morph-specific behavior. These results have improved our understanding of the adaptive evolution of the antennal sensilla in nonhost-alternating, holocyclic aphids.


Assuntos
Afídeos , Antenas de Artrópodes , Sensilas , Animais , Afídeos/anatomia & histologia , Afídeos/genética , Antenas de Artrópodes/anatomia & histologia , Estágios do Ciclo de Vida , Masculino , Microscopia Eletrônica de Varredura , Percepção Olfatória , Sensilas/anatomia & histologia
13.
Microsc Res Tech ; 85(3): 956-970, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34668271

RESUMO

Odontotermes parvidens is a commonly found important pest species of termite that primarily feed on a range of cellulosic sources. In termites, communication among the nestmates is the basis of all their daily activities and the sensory structures present on the sensory appendages play a crucial role in different social behaviors perceiving and processing various signals of the nestmates and external environments. So, it is essential to understand in detail their sensory structures in order to understand the sensory system of the species O. parvidens. Thus, we have studied the antenna which is one of the primary sensory appendages of both soldier and worker individuals of the species to elucidate various antennal sensory structures and their distribution using scanning electron microscopy. Based on the morphological features of various sensilla, we observed seven types of sensilla as sensilla chaetica (subtypes I, II, III, and IV), sensilla trichodea (subtypes I and II), sensilla trichodea curvata (subtypes I and II), sensilla basiconica, sensilla capitula, Böhm bristles, and sensilla campaniformia (subtypes I and II) along with numerous glandular pores on the antenna of soldier and worker castes. We have also discussed the putative functions of all the sensilla observed based on their external morphology and distributional characteristics on the antenna of soldier and worker castes of the species O. parvidens. Furthermore, the abundance of sensillar types on the antenna of both the castes has also been discussed.


Assuntos
Baratas , Isópteros , Animais , Antenas de Artrópodes/anatomia & histologia , Humanos , Microscopia Eletrônica de Varredura , Sensilas/anatomia & histologia , Classe Social
14.
Microsc Res Tech ; 85(4): 1371-1391, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34843138

RESUMO

Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) is a serious polyphagous pest of various field and horticultural crops. A complete knowledge on the morphological features of antennal sensory structures is essential for efficient semiochemical-based control methods. The external structure and distribution of antennal sensilla in male and female adults of H. armigera were investigated using scanning electron microscopy. Eight distinct morphological types of sensilla were identified in both sexes: sensilla trichodea, sensilla basiconica, sensilla auricillica, sensilla coeloconica (multiporous), sensilla chaetica (uniporous), sensilla styloconica, sensilla squamiformia, and Böhm sensilla (aporous) in varying numbers and distribution along the length of the antennae. Of these sensilla, the most widespread are sensilla trichodea and sensilla basiconica on the antennae of both sexes. Female antennae have comparatively greater number of sensilla trichodea than male antennae. Among eight types of sensilla, sensilla basiconica, auricillica, styloconica type II, squamiformia, and Böhm sensilla were identified and reported for the first time in H. armigera. Sexual dimorphism in H. armigera was mainly detected as the variations in sensilla shape, numbers, and distribution of each type of sensilla. The sexual difference was observed in the numbers of sensilla coeloconica, chaetica, styloconica, and squamiformia per flagellomere. The possible functions of these sensilla were discussed in view of previously reported lepidopteran insects. The findings provide fundamental information on the morphology and distribution of antennal sensory structures in H. armigera. It would be useful for further detailed studies on physiological and behavioral function of each sensillum type and helpful for formulating related pest control methods.


Assuntos
Mariposas , Sensilas , Animais , Antenas de Artrópodes/anatomia & histologia , Feminino , Masculino , Microscopia Eletrônica de Varredura , Mariposas/anatomia & histologia , Feromônios , Sensilas/anatomia & histologia , Caracteres Sexuais
15.
Molecules ; 26(15)2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34361547

RESUMO

Essential oils of aromatic plants represent an alternative to classical pest control with synthetic chemicals. They are especially promising for the alternative control of stored product pest insects. Here, we tested behavioral and electrophysiological responses of the stored product pest Tribolium confusum, to the essential oil of a Brazilian indigenous plant, Varronia globosa, collected in the Caatinga ecosystem. We analyzed the essential oil by GC-MS, tested the effects of the entire oil and its major components on the behavior of individual beetles in a four-way olfactometer, and investigated responses to these stimuli in electroantennogram recordings (EAG). We could identify 25 constituents in the essential oil of V. globosa, with anethole, caryophyllene and spathulenole as main components. The oil and its main component anethole had repellent effects already at low doses, whereas caryophyllene had only a repellent effect at a high dose. In addition, the essential oil abolished the attractive effect of the T. confusum aggregation pheromone. EAG recordings revealed dose-dependent responses to the individual components and increasing responses to the blend and even more to the entire oil. Our study reveals the potential of anethole and the essential oil of V. globosa in the management of stored product pests.


Assuntos
Antenas de Artrópodes/fisiologia , Comportamento Animal/efeitos dos fármacos , Repelentes de Insetos , Magnoliopsida/química , Óleos Voláteis , Tribolium/fisiologia , Animais , Repelentes de Insetos/química , Repelentes de Insetos/farmacologia , Óleos Voláteis/química , Óleos Voláteis/farmacologia
16.
Arch Insect Biochem Physiol ; 107(4): e21829, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34191347

RESUMO

The olfactory system of insects facilitates their search for host and mates, hence it plays an essential role for insect survival and reproduction. Insects recognize odor substances through olfactory neurons and olfactory genes. Previous studies showed that there are significant sex-specific differences in how insects identify odorant substances, especially sex pheromones. However, whether the sex-specific recognition of odorant substances is caused by differences in the expression of olfaction-related genes between males and females remains unclear. To clarify this problem, the whole transcriptome sequence of the adult Helicoverpa assulta, an important agricultural pest of tobacco and other Solanaceae plants, was obtained using Pacbio sequencing. RNA-seq analysis showed that there were 27 odorant binding proteins (OBPs), 24 chemosensory proteins, 4 pheromone-binding proteins (PBPs), 68 odorant receptors and 2 sensory neuron membrane proteins (SNMPs) genes, that were expressed in the antennae of male and female H. assulta. Females had significantly higher expression of General odorant-binding protein 1-like, OBP, OBP3, PBP3 and SNMP1 than males, while males had significantly higher expression of GOBP1, OBP7, OBP13, PBP2 and SNMP2. These results improve our understanding of mate search and host differentiation in H. assulta.


Assuntos
Antenas de Artrópodes/metabolismo , Mariposas/metabolismo , Caracteres Sexuais , Olfato/genética , Transcriptoma , Animais , Feminino , Masculino , Mariposas/genética
17.
Sci Rep ; 11(1): 9726, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33958688

RESUMO

Sensory genes play a key role in the host location of parasitoids. To date, the sensory genes that regulate parasitoids to locate gall-inducing insects have not been uncovered. An obligate ectoparasitoid, Quadrastichus mendeli Kim & La Salle (Hymenoptera: Eulophidae: Tetrastichinae), is one of the most important parasitoids of Leptocybe invasa, which is a global gall-making pest in eucalyptus plantations. Interestingly, Q. mendeli can precisely locate the larva of L. invasa, which induces tumor-like growth on the eucalyptus leaves and stems. Therefore, Q. mendeli-L. invasa provides an ideal system to study the way that parasitoids use sensory genes in gall-making pests. In this study, we present the transcriptome of Q. mendeli using high-throughput sequencing. In total, 31,820 transcripts were obtained and assembled into 26,925 unigenes in Q. mendeli. Then, the major sensory genes were identified, and phylogenetic analyses were performed with these genes from Q. mendeli and other model insect species. Three chemosensory proteins (CSPs), 10 gustatory receptors (GRs), 21 ionotropic receptors (IRs), 58 odorant binding proteins (OBPs), 30 odorant receptors (ORs) and 2 sensory neuron membrane proteins (SNMPs) were identified in Q. mendeli by bioinformatics analysis. Our report is the first to obtain abundant biological information on the transcriptome of Q. mendeli that provided valuable information regarding the molecular basis of Q. mendeli perception, and it may help to understand the host location of parasitoids of gall-making pests.


Assuntos
Genes de Insetos , Himenópteros/genética , Transcriptoma , Animais , Antenas de Artrópodes/metabolismo , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos
18.
J Morphol ; 282(5): 733-745, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33644867

RESUMO

Sensory structures on the antennae and mouthparts of insects are associated with various activities, such as host location, feeding, attracting a mate, and identifying a suitable oviposition site. Athetis lepigone (Möschler) is an important polyphagous Eurasian pest with more than 30 species of host plants. The larvae target bud leaves, prop roots, and tender stems of many agricultural crops, but the feeding habits of the adults remain poorly known. Aiming to understand the feeding behavior of the species, we investigated the fine morphology of its antennae and proboscis using scanning electron microscopy. The antennae of both sexes are filiform, and bear eight types of sensilla: Böhm's bristles, sensilla squamiformia, trichodea, chaetica, basiconica, coeloconica, styloconica, and auricillica. Sensilla trichodea are the most abundant among these sensillum types. The proboscis consists of two elongated, interlocked maxillary galeae that enclose the food canal by dorsal and ventral legulae. The external galeal surface is covered with numerous triangular microtrichia on Zone 1 and abundant blunt microbumps on Zone 2. The surface of the food canal bears closely connected and smooth semicircular ridges, gradually tapering toward the proboscis tip. Three types of sensilla are noticeable on the proboscis: sensilla trichodea, basiconica, and styloconica. We briefly discuss the putative functional significance of the antennal and proboscis sensilla and, based on the specific structural modifications of the proboscis, predict a flower-visiting habit for A. lepigone.


Assuntos
Mariposas , Sensilas , Animais , Antenas de Artrópodes , Feminino , Trato Gastrointestinal , Larva , Masculino , Microscopia Eletrônica de Varredura
19.
J Agric Food Chem ; 68(47): 13815-13823, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33151685

RESUMO

Plant volatiles such as floral scent compounds play a crucial role in mediating insect host locating, mate search, and oviposition sites selection. The alfalfa plant bug, Adelphocoris lineolatus (Goeze), is a seriously polyphagous herbivore of alfalfa and cotton that has an obvious preference for flowering host plants. In this study, we focused on the role of an odorant receptor AlinOR59 in the perception of plant volatiles in A. lineolatus. In situ hybridization showed that AlinOR59 was coexpressed with the coreceptor AlinORco in the ORNs cell located in the long curved sensilla trichodea on antennae of both genders. The Xenopus oocytes expression coupled with two-electrode voltage clamp recordings demonstrated that AlinOR59 responded to 15 plant volatiles. In electroantennogram assays, all of the above 15 compounds could excite electrophysiological responses in the antennae of adult bugs. Furthermore, an important floral scent compound, methyl salicylate, was utilized to evaluate the behavioral responses of A. lineolatus. It was found that adult bugs of both genders were significantly attracted to methyl salicylate. Taken together, our findings suggest that AlinOR59 plays a crucial role in the perception of floral scents in A. lineolatus and could be used as a potential target to design novel olfactory regulators for the management of bugs.


Assuntos
Heterópteros , Receptores Odorantes , Animais , Antenas de Artrópodes , Feminino , Flores/química , Proteínas de Insetos/genética , Masculino , Odorantes , Receptores Odorantes/genética , Sensilas
20.
J Insect Sci ; 20(5)2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33057681

RESUMO

The diamondback moth, Plutella xylostella L. (Lepidoptera: Plutellidae) is one of the most destructive pests to cruciferous plants worldwide. The oligophagous moth primarily utilizes its host volatiles for foraging and oviposition. Chemosensory proteins (CSPs) are soluble carrier proteins with low molecular weight, which recognize and transport various semiochemicals in insect chemoreception. At present, there is limited information on the recognition of host volatiles by CSPs of P. xylostella. Here, we investigated expression patterns and binding characteristics of PxylCSP11 in P. xylostella. The open reading frame of PxylCSP11 was 369-bp encoding 122 amino acids. PxylCSP11 possessed four conserved cysteines, which was consistent with the typical characteristic of CSPs. PxylCSP11 was highly expressed in antennae, and the expression level of PxylCSP11 in male antennae was higher than that in female antennae. Fluorescence competitive binding assays showed that PxylCSP11 had strong binding abilities to several ligands, including volatiles of cruciferous plants, and (Z)-11-hexadecenyl acetate (Z11-16:Ac), a major sex pheromone of P. xylostella. Our results suggest that PxylCSP11 may play an important role in host recognition and spouse location in P. xylostella.


Assuntos
Proteínas de Insetos/metabolismo , Mariposas/metabolismo , Animais , Antenas de Artrópodes/metabolismo , Brassicaceae/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Feminino , Expressão Gênica , Genes de Insetos , Proteínas de Insetos/química , Proteínas de Insetos/genética , Masculino , Atrativos Sexuais/metabolismo , Compostos Orgânicos Voláteis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA