Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 250
Filtrar
1.
Drug Dev Res ; 85(5): e22236, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39032052

RESUMO

The novel cinnamic acid (CA) (H4-CA, H5-CA, and H7-CA) and caffeic acid (KA) (H4-KA, H5-KA, and H7-KA) hemorphin analogs have recently been synthesized and their trans isomers have been tested for antiseizure and antinociceptive activity. In the present study, the cis forms of these compounds were tested and compared with their trans isomers in seizure and nociception tests in mice. The cis-H5-CA and H7-CA compounds showed efficacy against psychomotor seizures, whereas the trans isomers were ineffective. Both the cis and trans KA isomers were ineffective in the 6-Hz test. In the maximal electroshock (MES) test, the cis isomers showed superior antiseizure activity to the trans forms of CA and KA conjugates, respectively. The suppression of seizure propagation by cis-H5-CA and the cis-H5-KA was reversed by a kappa opioid receptor (KOR) antagonist. Naloxone and naltrindole were not effective. The cis-isomers of CA conjugates and cis-H7-KA produced significantly stronger antinociceptive effects than their trans-isomers. The cis-H5-CA antinociception was blocked by naloxone in the acute phase and by naloxone and KOR antagonists in the inflammatory phase of the formalin test. The antinociception of the KA conjugates was not abolished by opioid receptor blockade. None of the tested conjugates affected the thermal nociceptive threshold. The results of the docking analysis also suggest a model-specific mechanism related to the activity of the cis-isomers of CA and KA conjugates in relation to opioid receptors. Our findings pave the way for the further development of novel opioid-related antiseizure and antinociceptive therapeutics.


Assuntos
Analgésicos , Anticonvulsivantes , Ácidos Cafeicos , Cinamatos , Convulsões , Animais , Analgésicos/farmacologia , Analgésicos/química , Analgésicos/síntese química , Anticonvulsivantes/farmacologia , Anticonvulsivantes/química , Anticonvulsivantes/síntese química , Camundongos , Masculino , Convulsões/tratamento farmacológico , Cinamatos/farmacologia , Cinamatos/química , Cinamatos/síntese química , Cinamatos/uso terapêutico , Ácidos Cafeicos/farmacologia , Ácidos Cafeicos/química , Ácidos Cafeicos/uso terapêutico , Ácidos Cafeicos/síntese química , Peptídeos/farmacologia , Peptídeos/química , Peptídeos/síntese química , Peptídeos/uso terapêutico , Simulação de Acoplamento Molecular , Isomerismo
2.
Eur J Pharmacol ; 978: 176704, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38830458

RESUMO

Finding new and effective natural products for designing antiepileptic drugs is highly important in the scientific community. The scorpion venom heat-resistant peptide (SVHRP) was purified from Buthus martensii Karsch scorpion venom, and subsequent analysis of the amino acid sequence facilitated the synthesis of a peptide known as scorpion venom heat-resistant synthesis peptide (SVHRSP) using a technique for peptide synthesis. Previous studies have demonstrated that the SVHRSP can inhibit neuroinflammation and provide neuroprotection. This study aimed to investigate the antiepileptic effect of SVHRSP on both acute and chronic kindling seizure models by inducing seizures in male rats through intraperitoneal administration of pentylenetetrazole (PTZ). Additionally, an N-methyl-D-aspartate (NMDA)-induced neuronal injury model was used to observe the anti-excitotoxic effect of SVHRSP in vitro. Our findings showed that treatment with SVHRSP effectively alleviated seizure severity, prolonged latency, and attenuated neuronal loss and glial cell activation. It also demonstrated the prevention of alterations in the expression levels of NMDA receptor subunits and phosphorylated p38 MAPK protein, as well as an improvement in spatial reference memory impairment during Morris water maze (MWM) testing in PTZ-kindled rats. In vitro experiments further revealed that SVHRSP was capable of attenuating neuronal action potential firing, inhibiting NMDA receptor currents and intracellular calcium overload, and reducing neuronal injury. These results suggest that the antiepileptic and neuroprotective effects of SVHRSP may be mediated through the regulation of NMDA receptor function and expression. This study provides new insight into therapeutic strategies for epilepsy.


Assuntos
Anticonvulsivantes , Fármacos Neuroprotetores , Peptídeos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato , Venenos de Escorpião , Convulsões , Animais , Masculino , Receptores de N-Metil-D-Aspartato/metabolismo , Venenos de Escorpião/farmacologia , Venenos de Escorpião/química , Ratos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Convulsões/tratamento farmacológico , Convulsões/prevenção & controle , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Peptídeos/química , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Anticonvulsivantes/química , Pentilenotetrazol , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Temperatura Alta , Epilepsia/tratamento farmacológico , Epilepsia/induzido quimicamente , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Modelos Animais de Doenças
3.
Neurochem Int ; 178: 105796, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38936553

RESUMO

The Ocimum species present active compounds with the potential to develop drugs for treating chronic disease conditions, such as anxiety and seizures. The present study aims to investigate the anticonvulsant and anxiolytic-like effect of the essential oil from O. basilicum Linn (OEFOb) leaves and its major constituent estragole (ES) in vivo on adult zebrafish (aZF) and in silico. The aZF were treated with OEFOb or ES or vehicle and submitted to the tests of toxicity, open-field, anxiety, and convulsion and validated the interactions of the estragole on the involvement of GABAergic and serotonergic receptors by molecular docking assay. The results showed that the oral administration of OEFOb and ES did not have a toxic effect on the aZF and showed anxiolytic-like effects with the involvement of GABAA, 5-HT1, 5-HT2A/2C and 5-HT3A/3B as well on anxiety induced by alcohol withdrawal. The OEFOb and ES showed anticonvulsant potential attenuating the seizures induced by pentylenetetrazole (PTZ) by modulation of the GABAA system. Both anxiolytic and anticonvulsant effects were corroborated by the potential of the interaction of ES by in silico assay. These study samples demonstrate the pharmacological evidence and potential for using these compounds to develop new anxiolytic and anticonvulsant drugs.


Assuntos
Derivados de Alilbenzenos , Anisóis , Ansiolíticos , Anticonvulsivantes , Ocimum basilicum , Óleos Voláteis , Folhas de Planta , Convulsões , Peixe-Zebra , Animais , Ansiolíticos/farmacologia , Ansiolíticos/química , Ansiolíticos/isolamento & purificação , Anticonvulsivantes/farmacologia , Anticonvulsivantes/química , Anticonvulsivantes/isolamento & purificação , Óleos Voláteis/farmacologia , Óleos Voláteis/isolamento & purificação , Óleos Voláteis/química , Folhas de Planta/química , Ocimum basilicum/química , Anisóis/farmacologia , Anisóis/isolamento & purificação , Derivados de Alilbenzenos/farmacologia , Convulsões/tratamento farmacológico , Convulsões/induzido quimicamente , Simulação de Acoplamento Molecular , Ansiedade/tratamento farmacológico , Masculino , Pentilenotetrazol/toxicidade
4.
Int J Biol Macromol ; 272(Pt 1): 132739, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38825290

RESUMO

A stable Madhuca indica oil-in-water nanoemulsion (99-210 nm, zeta potential: > - 30 mV) was produced employing Tween 20 (surfactant) and Transcutol P (co-surfactant) (3:1). The nanoemulsion (oil: Smix = 3:7, 5:5, and 7:3) were subsequently incorporated into oxcarbazepine-loaded carboxymethylxanthan gum (DS = 1.23) dispersion. The hydrogel microspheres were formed using the ionic gelation process. Higher oil concentration had a considerable impact on particle size, drug entrapment efficiency, and buoyancy. The maximum 92 % drug entrapment efficiency was achieved with the microspheres having oil: Smix ratio 5:5. FESEM study revealed that the microspheres were spherical in shape and had an orange peel-like surface roughness. FTIR analysis revealed a hydrogen bonding interaction between drug and polymer. Thermal and x-ray examinations revealed the transformation of crystalline oxcarbazepine into an amorphous form. The microspheres had a buoyancy period of 7.5 h with corresponding release of around 83 % drug in 8 h in simulated stomach fluid, governed by supercase-II transport mechanism. In vivo neurobehavioral studies on PTZ-induced rats demonstrated that the microspheres outperformed drug suspension in terms of rotarod retention, number of crossings, and rearing activity in open field. Thus, Madhuca indica oil-in-water nanoemulsion-entrapped carboxymethyl xanthan gum microspheres appeared to be useful for monitoring oxcarbazepine release and managing epileptic seizures.


Assuntos
Mananas , Microesferas , Animais , Ratos , Mananas/química , Hidrogéis/química , Tamanho da Partícula , Epilepsia/tratamento farmacológico , Masculino , Portadores de Fármacos/química , Emulsões , Convulsões/tratamento farmacológico , Liberação Controlada de Fármacos , Óleos de Plantas/química , Óleos de Plantas/farmacologia , Anticonvulsivantes/química , Anticonvulsivantes/farmacologia , Galactose/análogos & derivados
5.
Top Curr Chem (Cham) ; 382(2): 20, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829467

RESUMO

Cannabis sativa has long been used for neurological and psychological healing. Recently, cannabidiol (CBD) extracted from cannabis sativa has gained prominence in the medical field due to its non-psychotropic therapeutic effects on the central and peripheral nervous systems. CBD, also acting as a potent antioxidant, displays diverse clinical properties such as anticancer, antiinflammatory, antidepressant, antioxidant, antiemetic, anxiolytic, antiepileptic, and antipsychotic effects. In this review, we summarized the structural activity relationship of CBD with different receptors by both experimental and computational techniques and investigated the mechanism of interaction between related receptors and CBD. The discovery of structural activity relationship between CBD and target receptors would provide a direction to optimize the scaffold of CBD and its derivatives, which would give potential medical applications on CBD-based therapies in various illnesses.


Assuntos
Canabidiol , Canabidiol/química , Canabidiol/farmacologia , Canabidiol/metabolismo , Humanos , Animais , Antioxidantes/química , Antioxidantes/farmacologia , Cannabis/química , Relação Estrutura-Atividade , Receptores de Canabinoides/metabolismo , Anticonvulsivantes/química , Anticonvulsivantes/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Antidepressivos/química , Antidepressivos/farmacologia
6.
Sci Rep ; 14(1): 11400, 2024 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762571

RESUMO

The current study developed an innovative design for the production of smart multifunctional core-double shell superparamagnetic nanoparticles (NPs) with a focus on the development of a pH-responsive drug delivery system tailored for the controlled release of Phenytoin, accompanied by real-time monitoring capabilities. In this regard, the ultra-small superparamagnetic iron oxide@silica NPs (IO@Si MNPs) were synthesized and then coated with a layer of gelatin containing Phenytoin as an antiepileptic drug. The precise saturation magnetization value for the resultant NPs was established at 26 emu g-1. The polymeric shell showed a pH-sensitive behavior with the capacity to regulate the release of encapsulated drug under neutral pH conditions, simultaneously, releasing more amount of the drug in a simulated tumorous-epileptic acidic condition. The NPs showed an average size of 41.04 nm, which is in the desired size range facilitating entry through the blood-brain barrier. The values of drug loading and encapsulation efficiency were determined to be 2.01 and 10.05%, respectively. Moreover, kinetic studies revealed a Fickian diffusion process of Phenytoin release, and diffusional exponent values based on the Korsmeyer-Peppas equation were achieved at pH 7.4 and pH 6.3. The synthesized NPs did not show any cytotoxicity. Consequently, this new design offers a faster release of PHT at the site of a tumor in response to a change in pH, which is essential to prevent epileptic attacks.


Assuntos
Anticonvulsivantes , Sistemas de Liberação de Medicamentos , Gelatina , Fenitoína , Dióxido de Silício , Gelatina/química , Anticonvulsivantes/química , Anticonvulsivantes/administração & dosagem , Dióxido de Silício/química , Concentração de Íons de Hidrogênio , Fenitoína/química , Fenitoína/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Humanos , Compostos Férricos/química , Liberação Controlada de Fármacos , Portadores de Fármacos/química , Nanopartículas Magnéticas de Óxido de Ferro/química , Nanopartículas de Magnetita/química , Nanopartículas/química , Tamanho da Partícula
7.
Mini Rev Med Chem ; 24(16): 1481-1495, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38288816

RESUMO

BACKGROUND: This article reviews computational research on benzimidazole derivatives. Cytotoxicity for all compounds against cancer cell lines was measured and the results revealed that many compounds exhibited high inhibitions. This research examines the varied pharmacological properties like anticancer, antibacterial, antioxidant, anti-inflammatory and anticonvulsant activities of benzimidazole derivatives. The suggested method summarises In silico research for each activity. This review examines benzimidazole derivative structure-activity relationships and pharmacological effects. In silico investigations can anticipate structural alterations and their effects on these derivative's pharmacological characteristics and efficacy through many computational methods. Molecular docking, molecular dynamics simulations and virtual screening help anticipate pharmacological effects and optimize chemical design. These trials will improve lead optimization, target selection, and ADMET property prediction in drug development. In silico benzimidazole derivative studies will be assessed for gaps and future research. Prospective studies might include empirical verification, pharmacodynamic analysis, and computational methodology improvement. OBJECTIVES: This review discusses benzimidazole derivative In silico research to understand their specific pharmacological effects. This will help scientists design new drugs and guide future research. METHODS: Latest, authentic and published reports on various benzimidazole derivatives and their activities are being thoroughly studied and analyzed. RESULT: The overview of benzimidazole derivatives is more comprehensive, highlighting their structural diversity, synthetic strategies, mechanisms of action, and the computational tools used to study them. CONCLUSION: In silico studies help to understand the structure-activity relationship (SAR) of benzimidazole derivatives. Through meticulous alterations of substituents, ring modifications, and linker groups, this study identified the structural factors influencing the pharmacological activity of benzimidazole derivatives. These findings enable the rational design and optimization of more potent and selective compounds.


Assuntos
Benzimidazóis , Benzimidazóis/química , Benzimidazóis/farmacologia , Humanos , Relação Estrutura-Atividade , Antineoplásicos/farmacologia , Antineoplásicos/química , Simulação por Computador , Estrutura Molecular , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Antioxidantes/farmacologia , Antioxidantes/química , Simulação de Acoplamento Molecular , Anticonvulsivantes/química , Anticonvulsivantes/farmacologia , Animais , Antibacterianos/farmacologia , Antibacterianos/química
8.
Arch Pharm (Weinheim) ; 357(1): e2300328, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37840397

RESUMO

Oxadiazoles and thiadiazoles are malleable heterocycles that have recently generated major interest in the field of medicinal chemistry. Compounds based on these moieties have versatile biological applications such as anticonvulsant, anticancer, antidiabetic, and antioxidant agents. Due to the versatile nature and stability of the oxadiazole and thiadiazole nucleus, medicinal chemists have changed the structural elements of the ring in numerous ways. These compounds have shown significant anticonvulsant effects, demonstrating their potential in the management of epileptic disorders. In this review, we have covered numerous biological pathways and in silico targeted proteins of oxadiazole and thiadiazole derivatives for treating various biological disorders. The data compiled in this article will be helpful for researchers, research scientists, and research chemists who work in the field of drug discovery and drug development.


Assuntos
Oxidiazóis , Tiadiazóis , Relação Estrutura-Atividade , Oxidiazóis/farmacologia , Oxidiazóis/química , Anticonvulsivantes/farmacologia , Anticonvulsivantes/química , Descoberta de Drogas , Tiadiazóis/química
9.
Bioorg Chem ; 143: 107063, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38150935

RESUMO

Based on the pharmacophore model of opioid receptors, our team recently synthesized a series of short-chain hemorphin peptide analogs containing non-natural amino acids. They demonstrated anticonvulsant and antinociceptive activity with low neurotoxicity. In the present study, a series of novel bioconjugates of N-modified hemorphin analogs containing second pharmacophore cinnamic acids (CA) or caffeic (KA) were synthesized by a traditional solid-phase Fmoc chemistry method for peptide synthesis. Electrochemical and fluorimetric analysis, in vivo anticonvulsant and antinociceptive activity in mice were conducted on the compounds. The three CA acid- (H4-CA, H5-CA, and H7-CA) and three KA acid- (H4-KA, H5-KA, and H7-KA) conjugated hemorphin derivatives exhibited potency at the highest doses of 2 µg/5 µl, administered by intracerebroventricular (icv) mode, against seizure spread in the maximal electroshock test (MES) in mice. The KA-conjugated H5-KA derivate, at the lowest dose, was the only compound that suppressed clonic seizures in the subcutaneous pentylenetetrazol (scPTZ) test. Except for the H5-CA, all tested CA acid- and KA acid-conjugated peptide derivates had the potency to increase the latency for clonic seizures in a dose-dependent mode. The activity against the psychomotor seizures in the 6-Hz test was detected only for the H4-CA (0.5 µg) and H4-KA (0.5 µg and 1 µg), respectively. All investigated peptides showed a more pronounced antinociceptive effect in the "intraplantar formalin" test compared to the "hot plate" test. Shorter chain analogs showed a better antinociceptive profile against tonic pain. The data suggest a DOR and KOR-mediated mechanism of action. According to the docking analysis, H7-CA showed a different antinociceptive profile than other investigated peptides. The novel peptide derivates did not exhibit neurotoxicity in the rotarod test. Our findings suggest that conjugated CA and KA morphine peptides can be used to develop novel morphine-related analogs with anticonvulsant and antinociceptive activity.


Assuntos
Anticonvulsivantes , Cinamatos , Convulsões , Camundongos , Animais , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Anticonvulsivantes/química , Simulação de Acoplamento Molecular , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Convulsões/metabolismo , Pentilenotetrazol , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Analgésicos/química , Eletrochoque , Peptídeos/uso terapêutico , Derivados da Morfina/uso terapêutico
10.
Biomed Pharmacother ; 168: 115749, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37879208

RESUMO

A series of 3-aminopyrrolidine-2,5-dione derivatives was synthesized and tested for anticonvulsant activity. Succinimide derivatives were obtained from a simple solvent-based reaction and a mechanochemical aza-Michael reaction of maleimide or its N-substituted derivatives with selected amines. The structure of the compounds was confirmed by spectroscopic methods (NMR, FT-IR, HPLC, ESI-MS, EA and XRD for four compounds). The cytotoxic activity of the succinimide derivatives was evaluated using HepG2 cells for hepatocytotoxicity and SH-SY5Y cells for neurocytotoxicity. None of the studied compounds showed hepatocytotoxicity and two showed neurocytotoxicity. Initial anticonvulsant screening was performed in mice using the psychomotor seizure test (6 Hz, 32 mA). The selected compounds were evaluated in the following acute models of epilepsy: the maximal electroshock test, psychomotor seizure test (6 Hz, 44 mA), subcutaneous pentylenetetrazole seizure test, and acute neurotoxicity (rotarod test). The most active compound 3-((4-chlorophenyl)amino)pyrrolidine-2,5-dione revealed antiseizure activity in all seizure models (including pharmacoresistant seizures) and showed better median effective doses (ED50) and protective index values than the reference compound, ethosuximide. Furthermore, 3-(benzylamino)pyrrolidine-2,5-dione and 3-(phenylamino)pyrrolidine-2,5-dione exhibited antiseizure activity in the 6 Hz and MES tests, and 3-(butylamino)-1-phenylpyrrolidine-2,5-dione and 3-(benzylamino)-1-phenylpyrrolidine-2,5-dione exhibited antiseizure activity in the 6 Hz test. All active compounds demonstrated low in vivo neurotoxicity in the rotarod test and yielded favourable protective indices.


Assuntos
Anticonvulsivantes , Neuroblastoma , Humanos , Camundongos , Animais , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Anticonvulsivantes/química , Espectroscopia de Infravermelho com Transformada de Fourier , Neuroblastoma/tratamento farmacológico , Convulsões/tratamento farmacológico , Convulsões/prevenção & controle , Etossuximida/uso terapêutico , Pentilenotetrazol , Relação Estrutura-Atividade , Estrutura Molecular
11.
Mini Rev Med Chem ; 23(15): 1514-1534, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36744692

RESUMO

A rising number of researchers are interested in thiophene-based analogs as they have wide possibilities of biological potential in the largely developing chemical world of the heterocyclic moiety. It also occupies a central position in synthetic organic chemistry and is of the highest theoretical and practical importance. It became an important moiety for researchers to discover combinatorial libraries and implement the efforts in search of the lead entity. Moreover, it helps medicinal chemists to improve sophisticated molecules with a broad range of pharmacological activities. Thiophene and its synthetic derivatives are a prominent heterocyclic compound class with intriguing uses in medical chemistry. It has been manifesting to be an effective drug in current respective diseases scenario. It has been discovered that thiophene had an extensive spectrum of pharmacological potential with numerous applications in academic interest, in the pharmaceutical industry, material science, and medicinal chemistry. Antimitotic, antimicrobial, anti-inflammatory, anticonvulsant, antipsychotic, antiarrhythmic, anti-anxiety, antifungal, antioxidant, estrogen receptor regulating, and anti-cancer are one of the pharmacological and physiological activities of thiophene moiety. However, there are some marketed formulations available such as Thiophenfurin, Teniposide, Cefoxitin, Ticaconazole, Sertaconazole, Suprofen, ketotifen, Brinzolamide, Dorzolamide, Tiotropium which contain thiophene nucleus. Thus, in brief, gathering recent data is necessary to comprehend the present scenario of thiophene moiety for scientific research purposes and highlights a broad view of the biological potential of compounds having a thiophene nucleus.


Assuntos
Anti-Infecciosos , Compostos Heterocíclicos , Anticonvulsivantes/química , Tiofenos/farmacologia , Tiofenos/uso terapêutico , Tiofenos/química , Química Farmacêutica , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Anti-Infecciosos/química
12.
Epilepsia ; 64(3): 553-566, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36645121

RESUMO

There are only a few drugs that can seriously lay claim to the title of "wonder drug," and ivermectin, the world's first endectocide and forerunner of a completely new class of antiparasitic agents, is among them. Ivermectin, a mixture of two macrolytic lactone derivatives (avermectin B1a and B1b in a ratio of 80:20), exerts its highly potent antiparasitic effect by activating the glutamate-gated chloride channel, which is absent in vertebrate species. However, in mammals, ivermectin activates several other Cys-loop receptors, including the inhibitory γ-aminobutyric acid type A and glycine receptors and the excitatory nicotinic acetylcholine receptor of brain neurons. Based on these effects on vertebrate receptors, ivermectin has recently been proposed to constitute a multifaceted wonder drug for various novel neurological indications, including alcohol use disorders, motor neuron diseases, and epilepsy. This review critically discusses the preclinical and clinical evidence of antiseizure effects of ivermectin and provides several arguments supporting that ivermectin is not a suitable candidate drug for the treatment of epilepsy. First, ivermectin penetrates the mammalian brain poorly, so it does not exert any pharmacological effects via mammalian ligand-gated ion channels in the brain unless it is used at high, potentially toxic doses or the blood-brain barrier is functionally impaired. Second, ivermectin is not selective but activates numerous inhibitory and excitatory receptors. Third, the preclinical evidence for antiseizure effects of ivermectin is equivocal, and at least in part, median effective doses in seizure models are in the range of the median lethal dose. Fourth, the only robust clinical evidence of antiseizure effects stems from the treatment of patients with onchocerciasis, in which the reduction of seizures is due to a reduction in microfilaria densities but not a direct antiseizure effect of ivermectin. We hope that this critical analysis of available data will avert the unjustified hype associated with the recent use of ivermectin to control COVID-19 from recurring in neurological diseases such as epilepsy.


Assuntos
Anticonvulsivantes , Antiparasitários , Epilepsia , Ivermectina , Antiparasitários/química , Antiparasitários/farmacocinética , Antiparasitários/uso terapêutico , Antiparasitários/toxicidade , Ivermectina/química , Ivermectina/farmacocinética , Ivermectina/uso terapêutico , Ivermectina/toxicidade , Epilepsia/tratamento farmacológico , Humanos , Receptores de Canais Iônicos de Abertura Ativada por Ligante com Alça de Cisteína/agonistas , Anticonvulsivantes/química , Anticonvulsivantes/farmacocinética , Anticonvulsivantes/uso terapêutico , Anticonvulsivantes/toxicidade , Encéfalo/metabolismo , Animais , Camundongos
13.
Molecules ; 27(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35164136

RESUMO

Trying to meet the multitarget-directed ligands strategy, a series of previously described aryl-substituted phenylalanine derivatives, reported as competitive antagonists of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, were screened in vitro for their free-radical scavenging and antioxidant capacity in two different assays: ferric reducing antioxidant power (FRAP) and oxygen radical absorbance capacity fluorescent (ORAC-FL) assays. The most active antioxidants 1 and 8 were further examined to evaluate their neuroprotective properties in vitro. In this study, compound 1 showed a significant neuroprotective effect against the neurotoxin 6-hydroxydopamine in neuroblastoma SH-SY5Y and IMR-32 cell lines. Both compounds also showed prevention from high levels of reactive oxygen species (ROS) in SH-SY5Y cells. Furthermore, the desired monoamine oxidase B (MAO-B) inhibition effect (IC50 = 278 ± 29 nM) for 1 was determined. No toxic effects up to 100 µM of 1 and 8 against neuroblastoma cells were observed. Furthermore, in vivo studies showed that compound 1 demonstrated significant anticonvulsant potential in 6-Hz test, but in neuropathic pain models its antiallodynic and antihyperalgesic properties were not observed. Concluding, the compound 1 seems to be of higher importance as a new phenylalanine-based lead candidate due to its confirmed promise in in vitro and in vivo anticonvulsant activity.


Assuntos
Anticonvulsivantes , Inibidores da Monoaminoxidase , Monoaminoxidase/metabolismo , Fármacos Neuroprotetores , Fenilalanina , Receptores de AMPA/antagonistas & inibidores , Animais , Anticonvulsivantes/síntese química , Anticonvulsivantes/química , Anticonvulsivantes/farmacologia , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos , Inibidores da Monoaminoxidase/síntese química , Inibidores da Monoaminoxidase/química , Inibidores da Monoaminoxidase/farmacologia , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Oxidopamina/toxicidade , Fenilalanina/análogos & derivados , Fenilalanina/síntese química , Fenilalanina/química , Fenilalanina/farmacologia , Receptores de AMPA/metabolismo
14.
Cell Chem Biol ; 29(1): 43-56.e12, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34936859

RESUMO

Imbalanced iron homeostasis plays a crucial role in neurological diseases, yet direct imaging evidence revealing the distribution of active ferrous iron (Fe2+) in the living brain remains scarce. Here, we present a near-infrared excited two-photon fluorescent probe (FeP) for imaging changes of Fe2+ flux in the living epileptic mouse brain. In vivo 3D two-photon brain imaging with FeP directly revealed abnormal elevation of Fe2+ in the epileptic mouse brain. Moreover, we found that dihydroartemisinin (DHA), a lead compound discovered through probe-based high-throughput screening, plays a critical role in modulating iron homeostasis. In addition, we revealed that DHA might exert its antiepileptic effects by modulating iron homeostasis in the brain and finally inhibiting ferroptosis. This work provides a reliable chemical tool for assessing the status of ferrous iron in the living epileptic mouse brain and may aid the rapid discovery of antiepileptic drug candidates.


Assuntos
Anticonvulsivantes/farmacologia , Artemisininas/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/diagnóstico por imagem , Corantes Fluorescentes/farmacologia , Imageamento Tridimensional , Prótons , Animais , Anticonvulsivantes/química , Artemisininas/química , Encéfalo/metabolismo , Células Cultivadas , Compostos Ferrosos/metabolismo , Corantes Fluorescentes/química , Homeostase/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus
15.
Int J Mol Sci ; 22(21)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34768964

RESUMO

Thiazolidin-4-ones is an important heterocyclic ring system of a pharmacophore and a privileged scaffold in medicinal chemistry. This review is focused on the latest scientific reports regarding biological activities of thiazolidin-4-ones published in 2020 and 2021. The review covers recent information about antioxidant, anticancer, anti-inflammatory, analgesic, anticonvulsant, antidiabetic, antiparasitic, antimicrobial, antitubercular and antiviral properties of thiazolidin-4-ones. Additionally, the influence of different substituents in molecules on their biological activity was discussed in this paper. Thus, this study may help to optimize the structure of thiazolidin-4-one derivatives as more efficient drug agents. Presented information may be used as a practical hint for rational design of new small molecules with biological activity, especially among thiazolidin-4-ones.


Assuntos
Tiazolidinas/química , Tiazolidinas/farmacologia , Analgésicos/química , Analgésicos/farmacologia , Animais , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Anticonvulsivantes/química , Anticonvulsivantes/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Estrutura Molecular , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Relação Estrutura-Atividade
16.
Int J Mol Sci ; 22(18)2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34575901

RESUMO

The term epileptogenesis defines the usually durable process of converting normal brain into an epileptic one. The resistance of a significant proportion of patients with epilepsy to the available pharmacotherapy prompted the concept of a causative treatment option consisting in stopping or modifying the progress of epileptogenesis. Most antiepileptic drugs possess only a weak or no antiepileptogenic potential at all, but a few of them appear promising in this regard; these include, for example, eslicarbazepine (a sodium and T-type channel blocker), lamotrigine (a sodium channel blocker and glutamate antagonist) or levetiracetam (a ligand of synaptic vehicle protein SV2A). Among the approved non-antiepileptic drugs, antiepileptogenic potential seems to reside in losartan (a blocker of angiotensin II type 1 receptors), biperiden (an antiparkinsonian drug), nonsteroidal anti-inflammatory drugs, antioxidative drugs and minocycline (a second-generation tetracycline with anti-inflammatory and antioxidant properties). Among other possible antiepileptogenic compounds, antisense nucleotides have been considered, among these an antagomir targeting microRNA-134. The drugs and agents mentioned above have been evaluated in post-status epilepticus models of epileptogenesis, so their preventive efficacy must be verified. Limited clinical data indicate that biperiden in patients with brain injuries is well-tolerated and seems to reduce the incidence of post-traumatic epilepsy. Exceptionally, in this regard, our own original data presented here point to c-Fos as an early seizure duration, but not seizure intensity-related, marker of early epileptogenesis. Further research of reliable markers of early epileptogenesis is definitely needed to improve the process of designing adequate antiepileptogenic therapies.


Assuntos
Anticonvulsivantes/farmacologia , Biomarcadores , Suscetibilidade a Doenças , Descoberta de Drogas , Epilepsia/etiologia , Epilepsia/metabolismo , Animais , Anticonvulsivantes/química , Antioxidantes/administração & dosagem , Terapia Combinada , Suplementos Nutricionais , Descoberta de Drogas/métodos , Epilepsia/diagnóstico , Epilepsia/tratamento farmacológico , Humanos , Terapia de Alvo Molecular , Proteínas Proto-Oncogênicas c-fos/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-fos/metabolismo
17.
CNS Drugs ; 35(9): 935-963, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34145528

RESUMO

Epilepsy is one of the most common and disabling chronic neurological disorders. Antiseizure medications (ASMs), previously referred to as anticonvulsant or antiepileptic drugs, are the mainstay of symptomatic epilepsy treatment. Epilepsy is a multifaceted complex disease and so is its treatment. Currently, about 30 ASMs are available for epilepsy therapy. Furthermore, several ASMs are approved therapies in nonepileptic conditions, including neuropathic pain, migraine, bipolar disorder, and generalized anxiety disorder. Because of this wide spectrum of therapeutic activity, ASMs are among the most often prescribed centrally active agents. Most ASMs act by modulation of voltage-gated ion channels; by enhancement of gamma aminobutyric acid-mediated inhibition; through interactions with elements of the synaptic release machinery; by blockade of ionotropic glutamate receptors; or by combinations of these mechanisms. Because of differences in their mechanisms of action, most ASMs do not suppress all types of seizures, so appropriate treatment choices are important. The goal of epilepsy therapy is the complete elimination of seizures; however, this is not achievable in about one-third of patients. Both in vivo and in vitro models of seizures and epilepsy are used to discover ASMs that are more effective in patients with continued drug-resistant seizures. Furthermore, therapies that are specific to epilepsy etiology are being developed. Currently, ~ 30 new compounds with diverse antiseizure mechanisms are in the preclinical or clinical drug development pipeline. Moreover, therapies with potential antiepileptogenic or disease-modifying effects are in preclinical and clinical development. Overall, the world of epilepsy therapy development is changing and evolving in many exciting and important ways. However, while new epilepsy therapies are developed, knowledge of the pharmacokinetics, antiseizure efficacy and spectrum, and adverse effect profiles of currently used ASMs is an essential component of treating epilepsy successfully and maintaining a high quality of life for every patient, particularly those receiving polypharmacy for drug-resistant seizures.


Assuntos
Anticonvulsivantes/administração & dosagem , Brometos/administração & dosagem , Carbamatos/administração & dosagem , Clorofenóis/administração & dosagem , Epilepsia/tratamento farmacológico , Convulsões/tratamento farmacológico , Tetrazóis/administração & dosagem , Animais , Anticonvulsivantes/química , Brometos/química , Carbamatos/química , Clorofenóis/química , Quimioterapia Combinada/métodos , Epilepsia/metabolismo , Epilepsia/fisiopatologia , Humanos , Sais , Convulsões/metabolismo , Convulsões/fisiopatologia , Tetrazóis/química , Resultado do Tratamento
18.
Bioorg Chem ; 112: 104943, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33964578

RESUMO

In this study, a series of new isatin aroylhydrazones (5a-e and 6a-e) was synthesized and evaluated for their anticonvulsant activities. The (Z)-configuration of compounds was confirmed by 1H NMR. In vivo studies using maximal electroshock (MES) and pentylenetetrazole (PTZ) models of epilepsy in mice revealed that while most of compounds had no effect on chemically-induced seizures at the higher dose of 100 mg/kg but showed significant protection against electrically-induced seizures at the lower dose of 5 mg/kg. Certainly, N-methyl analogs 6a and 6e were found to be the most effective compounds, displaying 100% protection at the dose of 5 mg/kg. Protein binding and lipophilicity(logP) of the selected compounds (6a and 6e) were also determined experimentally. In silico evaluations of title compounds showed acceptable ADME parameters, and drug-likeness properties. Distance mapping and docking of the selected compounds with different targets proposed the possible action of them on VGSCs and GABAA receptors. The cytotoxicity evaluation of 6a and 6e against SH-SY5Y and Hep-G2 cell lines indicated safety profile of compounds on the neuronal and hepatic cells.


Assuntos
Anticonvulsivantes/farmacologia , Antineoplásicos/farmacologia , Epilepsia/tratamento farmacológico , Hidrazonas/farmacologia , Animais , Anticonvulsivantes/síntese química , Anticonvulsivantes/química , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Eletrochoque , Epilepsia/induzido quimicamente , Humanos , Hidrazonas/síntese química , Hidrazonas/química , Masculino , Camundongos , Simulação de Acoplamento Molecular , Estrutura Molecular , Pentilenotetrazol , Relação Estrutura-Atividade
19.
Molecules ; 26(6)2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33809109

RESUMO

The new series of 3-(2-chlorophenyl)- and 3-(3-chlorophenyl)-pyrrolidine-2,5-dione-acetamide derivatives as potential anticonvulsant and analgesic agents was synthesized. The compounds obtained were evaluated in the following acute models of epilepsy: maximal electroshock (MES), psychomotor (6 Hz, 32 mA), and subcutaneous pentylenetetrazole (scPTZ) seizure tests. The most active substance-3-(2-chlorophenyl)-1-{2-[4-(4-fluorophenyl)piperazin-1-yl]-2-oxoethyl}-pyrrolidine-2,5-dione (6) showed more beneficial ED50 and protective index values than the reference drug-valproic acid (68.30 mg/kg vs. 252.74 mg/kg in the MES test and 28.20 mg/kg vs. 130.64 mg/kg in the 6 Hz (32 mA) test, respectively). Since anticonvulsant drugs are often effective in neuropathic pain management, the antinociceptive activity for two the promising compounds-namely, 6 and 19-was also investigated in the formalin model of tonic pain. Additionally, for the aforementioned compounds, the affinity for the voltage-gated sodium and calcium channels, as well as GABAA and TRPV1 receptors, was determined. As a result, the most probable molecular mechanism of action for the most active compound 6 relies on interaction with neuronal voltage-sensitive sodium (site 2) and L-type calcium channels. Compounds 6 and 19 were also tested for their neurotoxic and hepatotoxic properties and showed no significant cytotoxic effect.


Assuntos
Analgésicos/síntese química , Analgésicos/farmacologia , Anticonvulsivantes/síntese química , Anticonvulsivantes/farmacologia , Pirrolidinas/síntese química , Pirrolidinas/farmacologia , Analgésicos/química , Animais , Anticonvulsivantes/química , Linhagem Celular , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Células Hep G2 , Humanos , Técnicas In Vitro , Masculino , Camundongos , Estrutura Molecular , Neuralgia/tratamento farmacológico , Pirrolidinas/química , Convulsões/tratamento farmacológico , Relação Estrutura-Atividade
20.
Eur J Med Chem ; 214: 113222, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33545637

RESUMO

A new series of pyrazolo[3,4-d]pyrimidine/triazine hybrids 6a-r was designed as antitumor and anticonvulsant agents. All the prepared compounds were evaluated against colon (HCT-116), breast (MCF-7) and normal human fibroblast (WI38) cell lines. The most potent derivatives against HCT-116 and MCF-7 cells were 6o and 6q, with IC50 = 4.80 and 6.50 nM, respectively, when compared to lapatinib, the reference drug (IC50 = 12.00 and 21.00 nM, on HCT-116 and MCF-7, sequentially). All other derivatives exhibited good to moderate cytotoxic activity. Four compounds 6f, 6j, 6o and 6q were evaluated for their EGFR T790M/HER2 inhibitory activity. They revealed 81.81-65.70% and 86.66-54.49% inhibitory activity against EGFR T790M and HER2 in a sequent. The most potent derivatives 6o and 6q were further estimated for cell cycle analysis showing pre G1 apoptotic activity and cell growth arrest at G2/M phase. Apoptotic marker proteins expression levels (caspase-3/7/9, Bax and Bcl-2) were measured for 6o and 6q. They showed pro-apoptotic effect by increasing caspase-3/7/9 protein levels and Bax/Bcl-2 ratio. Moreover, anticonvulsant activity for the prepared compounds 6a-r were evaluated in vivo using lithium-pilocarpine mice model of Status Epilepticus. EEG changes where recorded and MDA, GSH, GABA and glutamate were measured in brain tissue of different groups. All tested compounds revealed variable anti-epileptic effects, the most potent compounds were 6b and 6m. Also 6d, 6e, 6h, 6i, 6k, 6l and 6n compounds exhibited good anti-seizure activity, while compound 6j showed the lower activity. The rest of compounds displayed a neutral activity.


Assuntos
Anticonvulsivantes/farmacologia , Antineoplásicos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Receptor ErbB-2/antagonistas & inibidores , Estado Epiléptico/tratamento farmacológico , Animais , Anticonvulsivantes/síntese química , Anticonvulsivantes/química , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Humanos , Carbonato de Lítio , Masculino , Camundongos , Estrutura Molecular , Pilocarpina , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Pirazóis/síntese química , Pirazóis/química , Pirimidinas/síntese química , Pirimidinas/química , Receptor ErbB-2/metabolismo , Estado Epiléptico/induzido quimicamente , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA