RESUMO
Chikungunya virus (CHIKV) is an emerging viral pathogen that causes both acute and chronic debilitating arthritis. Here, we describe the functional and structural basis as to how two anti-CHIKV monoclonal antibodies, CHK-124 and CHK-263, potently inhibit CHIKV infection in vitro and in vivo. Our in vitro studies show that CHK-124 and CHK-263 block CHIKV at multiple stages of viral infection. CHK-124 aggregates virus particles and blocks attachment. Also, due to antibody-induced virus aggregation, fusion with endosomes and egress are inhibited. CHK-263 neutralizes CHIKV infection mainly by blocking virus attachment and fusion. To determine the structural basis of neutralization, we generated cryogenic electron microscopy reconstructions of Fab:CHIKV complexes at 4- to 5-Å resolution. CHK-124 binds to the E2 domain B and overlaps with the Mxra8 receptor-binding site. CHK-263 blocks fusion by binding an epitope that spans across E1 and E2 and locks the heterodimer together, likely preventing structural rearrangements required for fusion. These results provide structural insight as to how neutralizing antibody engagement of CHIKV inhibits different stages of the viral life cycle, which could inform vaccine and therapeutic design.
Assuntos
Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/farmacologia , Anticorpos Antivirais/farmacologia , Febre de Chikungunya/tratamento farmacológico , Vírus Chikungunya/efeitos dos fármacos , Aedes , Animais , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais/ultraestrutura , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Neutralizantes/ultraestrutura , Anticorpos Antivirais/uso terapêutico , Anticorpos Antivirais/ultraestrutura , Sítios de Ligação/efeitos dos fármacos , Febre de Chikungunya/imunologia , Febre de Chikungunya/virologia , Vírus Chikungunya/imunologia , Chlorocebus aethiops , Microscopia Crioeletrônica , Modelos Animais de Doenças , Humanos , Imunoglobulinas/metabolismo , Masculino , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/metabolismo , Camundongos , Células Vero , Proteínas Virais de Fusão/antagonistas & inibidores , Proteínas Virais de Fusão/imunologia , Ligação Viral/efeitos dos fármacosRESUMO
Most neutralizing antibodies against Middle East respiratory syndrome coronavirus (MERS-CoV) target the receptor-binding domain (RBD) of the spike glycoprotein and block its binding to the cellular receptor dipeptidyl peptidase 4 (DPP4). The epitopes and mechanisms of mAbs targeting non-RBD regions have not been well characterized yet. Here we report the monoclonal antibody 7D10 that binds to the N-terminal domain (NTD) of the spike glycoprotein and inhibits the cell entry of MERS-CoV with high potency. Structure determination and mutagenesis experiments reveal the epitope and critical residues on the NTD for 7D10 binding and neutralization. Further experiments indicate that the neutralization by 7D10 is not solely dependent on the inhibition of DPP4 binding, but also acts after viral cell attachment, inhibiting the pre-fusion to post-fusion conformational change of the spike. These properties give 7D10 a wide neutralization breadth and help explain its synergistic effects with several RBD-targeting antibodies.
Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Infecções por Coronavirus/imunologia , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/metabolismo , Anticorpos Neutralizantes/ultraestrutura , Anticorpos Antivirais/sangue , Anticorpos Antivirais/metabolismo , Anticorpos Antivirais/ultraestrutura , Linhagem Celular Tumoral , Chlorocebus aethiops , Infecções por Coronavirus/sangue , Infecções por Coronavirus/virologia , Cristalografia por Raios X , Dipeptidil Peptidase 4/metabolismo , Modelos Animais de Doenças , Mapeamento de Epitopos , Epitopos/imunologia , Feminino , Células HEK293 , Humanos , Camundongos , Coronavírus da Síndrome Respiratória do Oriente Médio/metabolismo , Testes de Neutralização , Ligação Proteica/imunologia , Domínios Proteicos/imunologia , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestrutura , Glicoproteína da Espícula de Coronavírus/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/ultraestrutura , Células Vero , Internalização do VírusRESUMO
Broadly neutralizing antibodies against highly variable pathogens have stimulated the design of vaccines and therapeutics. We report the use of diverse camelid single-domain antibodies to influenza virus hemagglutinin to generate multidomain antibodies with impressive breadth and potency. Multidomain antibody MD3606 protects mice against influenza A and B infection when administered intravenously or expressed locally from a recombinant adeno-associated virus vector. Crystal and single-particle electron microscopy structures of these antibodies with hemagglutinins from influenza A and B viruses reveal binding to highly conserved epitopes. Collectively, our findings demonstrate that multidomain antibodies targeting multiple epitopes exhibit enhanced virus cross-reactivity and potency. In combination with adeno-associated virus-mediated gene delivery, they may provide an effective strategy to prevent infection with influenza virus and other highly variable pathogens.
Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Camelídeos Americanos/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vírus da Influenza A/imunologia , Vírus da Influenza B/imunologia , Vacinas contra Influenza/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Animais , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/ultraestrutura , Anticorpos Antivirais/química , Anticorpos Antivirais/ultraestrutura , Cristalografia por Raios X , Cães , Feminino , Epitopos Imunodominantes/química , Epitopos Imunodominantes/genética , Epitopos Imunodominantes/imunologia , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos BALB C , Testes de Neutralização , Biblioteca de Peptídeos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Anticorpos de Domínio ÚnicoRESUMO
Adeno-associated viruses (AAVs) are being developed as vectors for the treatment of genetic disorders. However, pre-existing antibodies present a significant limitation to achieving optimal efficacy for the AAV gene delivery system. Efforts aimed at engineering vectors with the ability to evade the immune response include identification of residues on the virus capsid important for these interactions and changing them. Here K531 is identified as the determinant of monoclonal antibody ADK6 recognition by AAV6, and not the closely related AAV1. The AAV6-ADK6 complex structure was determined by cryo-electron microscopy and the footprint confirmed by cell-based assays. The ADK6 footprint overlaps previously identified AAV antigenic regions and neutralizes by blocking essential cell surface glycan attachment sites. This study thus expands the available repertoire of AAV-antibody information that can guide the design of host immune escaping AAV vectors able to maintain capsid functionality.
Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Parvovirinae/imunologia , Anticorpos Monoclonais/ultraestrutura , Anticorpos Neutralizantes/ultraestrutura , Anticorpos Antivirais/ultraestrutura , Proteínas do Capsídeo/imunologia , Proteínas do Capsídeo/ultraestrutura , Microscopia Crioeletrônica , Dependovirus , Parvovirinae/ultraestrutura , Ligação ProteicaRESUMO
Vaccinia virus (VACV) envelope protein D8 is one of three glycosaminoglycan adhesion molecules and binds to the linear polysaccharide chondroitin sulfate (CS). D8 is also a target for neutralizing antibody responses that are elicited by the smallpox vaccine, which has enabled the first eradication of a human viral pathogen and is a useful model for studying antibody responses. However, to date, VACV epitopes targeted by human antibodies have not been characterized at atomic resolution. Here, we characterized the binding properties of several human anti-D8 antibodies and determined the crystal structures of three VACV-mAb variants, VACV-66, VACV-138, and VACV-304, separately bound to D8. Although all these antibodies bound D8 with high affinity and were moderately neutralizing in the presence of complement, VACV-138 and VACV-304 also fully blocked D8 binding to CS-A, the low affinity ligand for D8. VACV-138 also abrogated D8 binding to the high-affinity ligand CS-E, but we observed residual CS-E binding was observed in the presence of VACV-304. Analysis of the VACV-138- and VACV-304-binding sites along the CS-binding crevice of D8, combined with different efficiencies of blocking D8 adhesion to CS-A and CS-E allowed us to propose that D8 has a high- and low-affinity CS-binding region within its central crevice. The crevice is amenable to protein engineering to further enhance both specificity and affinity of binding to CS-E. Finally, a wild-type D8 tetramer specifically bound to structures within the developing glomeruli of the kidney, which express CS-E. We propose that through structure-based protein engineering, an improved D8 tetramer could be used as a potential diagnostic tool to detect expression of CS-E, which is a possible biomarker for ovarian cancer.
Assuntos
Anticorpos Antivirais/ultraestrutura , Moléculas de Adesão Celular/imunologia , Proteínas do Envelope Viral/química , Anticorpos/metabolismo , Anticorpos/fisiologia , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Formação de Anticorpos/fisiologia , Antígenos Virais/imunologia , Cristalografia por Raios X/métodos , Ensaio de Imunoadsorção Enzimática/métodos , Epitopos/química , Humanos , Testes de Neutralização , Ligação Proteica , Relação Estrutura-Atividade , Vaccinia virus/imunologia , Proteínas do Envelope Viral/imunologiaRESUMO
The rapid spread of Zika virus (ZIKV), which causes microcephaly and Guillain-Barré syndrome, signals an urgency to identify therapeutics. Recent efforts to rescreen dengue virus human antibodies for ZIKV cross-neutralization activity showed antibody C10 as one of the most potent. To investigate the ability of the antibody to block fusion, we determined the cryoEM structures of the C10-ZIKV complex at pH levels mimicking the extracellular (pH8.0), early (pH6.5) and late endosomal (pH5.0) environments. The 4.0 Å resolution pH8.0 complex structure shows that the antibody binds to E proteins residues at the intra-dimer interface, and the virus quaternary structure-dependent inter-dimer and inter-raft interfaces. At pH6.5, antibody C10 locks all virus surface E proteins, and at pH5.0, it locks the E protein raft structure, suggesting that it prevents the structural rearrangement of the E proteins during the fusion event-a vital step for infection. This suggests antibody C10 could be a good therapeutic candidate.
Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Proteínas do Envelope Viral/imunologia , Zika virus/imunologia , Anticorpos Neutralizantes/ultraestrutura , Anticorpos Antivirais/ultraestrutura , Reações Cruzadas/imunologia , Microscopia Crioeletrônica , Vírus da Dengue/imunologia , Concentração de Íons de Hidrogênio , Zika virus/ultraestruturaRESUMO
The HIV-1 fusion peptide, comprising 15 to 20 hydrophobic residues at the N terminus of the Env-gp41 subunit, is a critical component of the virus-cell entry machinery. Here, we report the identification of a neutralizing antibody, N123-VRC34.01, which targets the fusion peptide and blocks viral entry by inhibiting conformational changes in gp120 and gp41 subunits of Env required for entry. Crystal structures of N123-VRC34.01 liganded to the fusion peptide, and to the full Env trimer, revealed an epitope consisting of the N-terminal eight residues of the gp41 fusion peptide and glycan N88 of gp120, and molecular dynamics showed that the N-terminal portion of the fusion peptide can be solvent-exposed. These results reveal the fusion peptide to be a neutralizing antibody epitope and thus a target for vaccine design.
Assuntos
Vacinas contra a AIDS/imunologia , Anticorpos Neutralizantes/química , Anticorpos Antivirais/química , Proteína gp120 do Envelope de HIV/imunologia , Proteína gp41 do Envelope de HIV/imunologia , HIV-1/imunologia , Proteínas Virais de Fusão/imunologia , Sequência de Aminoácidos , Anticorpos Neutralizantes/isolamento & purificação , Anticorpos Neutralizantes/ultraestrutura , Anticorpos Antivirais/ultraestrutura , Linfócitos B/imunologia , Linfócitos B/virologia , Cristalografia por Raios X , Humanos , Interações Hidrofóbicas e Hidrofílicas , Epitopos Imunodominantes/imunologia , Dados de Sequência Molecular , Peptídeos/imunologia , Conformação Proteica , Internalização do VírusRESUMO
Human cytomegalovirus (HCMV) poses a significant threat to immunocompromised individuals and neonates infected in utero. Glycoprotein B (gB), the herpesvirus fusion protein, is a target for neutralizing antibodies and a vaccine candidate due to its indispensable role in infection. Here we show the crystal structure of the HCMV gB ectodomain bound to the Fab fragment of 1G2, a neutralizing human monoclonal antibody isolated from a seropositive subject. The gB/1G2 interaction is dominated by aromatic residues in the 1G2 heavy chain CDR3 protruding into a hydrophobic cleft in the gB antigenic domain 5 (AD-5). Structural analysis and comparison with HSV gB suggest the location of additional neutralizing antibody binding sites on HCMV gB. Finally, immunoprecipitation experiments reveal that 1G2 can bind to HCMV virion gB suggesting that its epitope is exposed and accessible on the virus surface. Our data will support the development of vaccines and therapeutic antibodies against HCMV infection.
Assuntos
Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/metabolismo , Antígenos Virais/metabolismo , Fragmentos Fab das Imunoglobulinas/metabolismo , Proteínas do Envelope Viral/metabolismo , Proteínas Virais de Fusão/metabolismo , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/ultraestrutura , Anticorpos Antivirais/química , Anticorpos Antivirais/ultraestrutura , Antígenos Virais/química , Antígenos Virais/ultraestrutura , Cristalização , Cristalografia por Raios X , Citomegalovirus/imunologia , Humanos , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/ultraestrutura , Imunoprecipitação , Microscopia Eletrônica , Mutagênese Sítio-Dirigida , Conformação Proteica , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/ultraestrutura , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/ultraestruturaRESUMO
A 5.3 Å resolution, cryo-electron microscopy (cryoEM) map of Chikungunya virus-like particles (VLPs) has been interpreted using the previously published crystal structure of the Chikungunya E1-E2 glycoprotein heterodimer. The heterodimer structure was divided into domains to obtain a good fit to the cryoEM density. Differences in the T = 4 quasi-equivalent heterodimer components show their adaptation to different environments. The spikes on the icosahedral 3-fold axes and those in general positions are significantly different, possibly representing different phases during initial generation of fusogenic E1 trimers. CryoEM maps of neutralizing Fab fragments complexed with VLPs have been interpreted using the crystal structures of the Fab fragments and the VLP structure. Based on these analyses the CHK-152 antibody was shown to stabilize the viral surface, hindering the exposure of the fusion-loop, likely neutralizing infection by blocking fusion. The CHK-9, m10 and m242 antibodies surround the receptor-attachment site, probably inhibiting infection by blocking cell attachment. DOI:http://dx.doi.org/10.7554/eLife.00435.001.
Assuntos
Anticorpos Neutralizantes/ultraestrutura , Anticorpos Antivirais/ultraestrutura , Vírus Chikungunya/ultraestrutura , Vacinas de Partículas Semelhantes a Vírus/ultraestrutura , Proteínas do Envelope Viral/ultraestrutura , Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/metabolismo , Sítios de Ligação , Vírus Chikungunya/imunologia , Vírus Chikungunya/metabolismo , Vírus Chikungunya/patogenicidade , Microscopia Crioeletrônica , Cristalografia por Raios X , Fragmentos Fab das Imunoglobulinas/metabolismo , Fragmentos Fab das Imunoglobulinas/ultraestrutura , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Vacinas de Partículas Semelhantes a Vírus/metabolismo , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/metabolismo , Vírion/imunologia , Vírion/metabolismo , Vírion/ultraestrutura , Internalização do VírusRESUMO
HPV16 L1 gene was amplified from HPV16 positive vaginal secretion sample by PCR, and inserted into pTO-T7 to obtain the recombinant expression vector pTO-T7-HPV16-L1. Then, the pTO-T7-HPV16-L1 was transformed into E. coil strain ER2566 and the recombinant protein HPV16 L1 was expressed in soluble form. After purification by ammonium sulfate precipitation, ion-exchange chromatography, and hydrophobic interaction chromatography, the recombinant protein HPV16 L1 had a purity of more than 98%. By removing DTT, purified HPV16 L1 proteins self-assembled in vitro into VLPs with the diameter of 50 nm. The vaccination experiments on experimental animals showed the VLPs could elicit high titer of neutralizing antibodies against HPV 16. HPV16 VLPs with high immunogenicity and high purity can be produced easily and effectively from an E. coli expression system in the study, and thus can be used in structure investigation and HPV16 vaccine development.
Assuntos
Papillomavirus Humano 16/imunologia , Infecções por Papillomavirus/imunologia , Vírion/imunologia , Animais , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/ultraestrutura , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Proteínas do Capsídeo/isolamento & purificação , Cabras , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/ultraestrutura , Humanos , Masculino , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/imunologia , Proteínas Oncogênicas Virais/isolamento & purificação , Infecções por Papillomavirus/virologia , Coelhos , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Vacinação , Vírion/genéticaRESUMO
Members of the tetraspanin family including CD9 contribute to the structural organization and plasticity of the plasma membrane. K41, a CD9-specific monoclonal antibody, inhibits the release of HIV-1 and canine distemper virus (CDV)- but not measles virus (MV)-induced cell-cell fusion. We now report that K41, which recognizes a conformational epitope on the large extracellular loop of CD9, induces rapid relocation and clustering of CD9 in net-like structures at cell-cell contact areas. High-resolution analyses revealed that CD9 clustering is accompanied by the formation of microvilli that protrude from either side of adjacent cell surfaces, thus forming structures like microvilli zippers. While the cellular CD9-associated proteins beta(1)-integrin and EWI-F were co-clustered with CD9 at cell-cell interfaces, viral proteins in infected cells were differentially affected. MV envelope proteins were detected within CD9 clusters, whereas CDV proteins were excluded from CD9 clusters. Thus, the tetraspanin CD9 can regulate cell-cell fusion by controlling the access of the fusion machinery to cell contact areas.
Assuntos
Antígenos CD/imunologia , Fusão Celular , Vírus da Cinomose Canina/patogenicidade , Vírus do Sarampo/patogenicidade , Glicoproteínas de Membrana/imunologia , Microvilosidades/metabolismo , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , Anticorpos Monoclonais/ultraestrutura , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/ultraestrutura , Antígenos CD/metabolismo , Antígenos CD/ultraestrutura , Células CHO , Comunicação Celular , Células Cultivadas , Chlorocebus aethiops , Cricetinae , Cricetulus , Vírus da Cinomose Canina/genética , Cães , Células Endoteliais/imunologia , Células Endoteliais/ultraestrutura , Células Endoteliais/virologia , Endotélio Vascular/citologia , Técnica Indireta de Fluorescência para Anticorpo , Células HeLa , Humanos , Cinética , Vírus do Sarampo/genética , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/ultraestrutura , Microvilosidades/ultraestrutura , Tetraspanina 29 , Transfecção , Veias Umbilicais/citologia , Células VeroRESUMO
The structures of Sindbis virus and Ross River virus complexed with Fab fragments from monoclonal antibodies have been determined from cryoelectron micrographs. Both antibodies chosen for this study bind to regions of the virions that have been implicated in cell-receptor recognition and recognize epitopes on the E2 glycoprotein. The two structures show that the Fab fragments bind to the outermost tip of the trimeric envelope spike protein. Hence, the same region of both the Sindbis virus and Ross River virus envelope spike is composed of E2 and is involved in recognition of the cellular receptor.
Assuntos
Proteínas do Capsídeo , Capsídeo/isolamento & purificação , Ross River virus/ultraestrutura , Sindbis virus/ultraestrutura , Proteínas do Envelope Viral/isolamento & purificação , Anticorpos Monoclonais/ultraestrutura , Anticorpos Antivirais/ultraestrutura , Sítios de Ligação , Criopreservação , Processamento de Imagem Assistida por Computador , Fragmentos Fab das Imunoglobulinas/ultraestrutura , Microscopia Imunoeletrônica , Receptores ViraisRESUMO
The number of immunoglobulins necessary to neutralize rabies virus (CVS strain) was estimated using IgG and IgM monoclonal antibodies (MAb) specific to the three antigenic sites of the glycoprotein. It was estimated that below 130 IgG or 30 IgM bound per virions, infectivity was totally preserved. Neutralization occurred for an average of 1 or 2 IgG for 3 spikes and 1 IgM for 9 to 10 spikes on the virus surface. Saturation was obtained for 1 to 3 IgG per spike, depending on the antibody, and 1 IgM for 4 to 5 spikes. This result was confirmed by electron microscopy. Neutralization-resisting mutants which continued to fix the selecting MAb in ELISA were also investigated. In two cases, the lack of neutralization was due to the fact that the maximum number of immunoglobulins bound per virion was below the neutralizing dose. In one case, however, the mutant was able to fix the same number of IgG as the parental strain and was not neutralized, even at saturation. The capacity of the antibodies to reduce the attachment of the virus onto BSR cells was also examined. Every intermediate between no inhibition of the attachment and inhibition by a factor of 20 was found; even in this last case, inhibition of attachment was insufficient to explain the extent of neutralization. No correlation was found between the antigenic site recognized by the antibody and the level of inhibition. IgM inhibited attachment more than IgG and one IgG2b antibody did not inhibit attachment at all. The fusion of virions saturated with this antibody with artificial liposomes was totally inhibited, either specifically or because virus-antibody complexes did not attached to the liposomes.