Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
1.
Biochemistry (Mosc) ; 86(11): 1469-1476, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34906050

RESUMO

Vaccination is the most effective mean of preventing influenza virus infections. However, vaccination-induced adverse reactions of the nervous system, the causes of which are unknown, lead to concerns on the safety of influenza A vaccine. In this study, we used flow cytometry, cell ELISA, and immunofluorescence to find that H1-84 monoclonal antibody (mAb) against the191/199 region of the H1N1 influenza virus hemagglutinin (HA) protein binds to neural cells and mediates cell damage. Using molecular simulation software, such as PyMOL and PDB viewer, we demonstrated that the HA191/199 region maintains the overall structure of the HA head. Since the HA191/199 region cannot be removed from the HA structure, it has to be altered via introducing point mutations by site-directed mutagenesis. This will provide an innovative theoretical support for the subsequent modification the influenza A vaccine for increasing its safety.


Assuntos
Anticorpos Monoclonais Murinos , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Vírus da Influenza A Subtipo H1N1 , Simulação de Dinâmica Molecular , Neurônios/metabolismo , Anticorpos Monoclonais Murinos/química , Anticorpos Monoclonais Murinos/imunologia , Anticorpos Antivirais/química , Anticorpos Antivirais/imunologia , Linhagem Celular Tumoral , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Vírus da Influenza A Subtipo H1N1/química , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/imunologia , Mutagênese Sítio-Dirigida , Neurônios/patologia , Domínios Proteicos
2.
Biochem J ; 477(17): 3219-3235, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32789497

RESUMO

Immunotherapy has been successful in treating many tumour types. The development of additional tumour-antigen binding monoclonal antibodies (mAbs) will help expand the range of immunotherapeutic targets. Lewis histo-blood group and related glycans are overexpressed on many carcinomas, including those of the colon, lung, breast, prostate and ovary, and can therefore be selectively targeted by mAbs. Here we examine the molecular and structural basis for recognition of extended Lea and Lex containing glycans by a chimeric mAb. Both the murine (FG88.2) IgG3 and a chimeric (ch88.2) IgG1 mAb variants showed reactivity to colorectal cancer cells leading to significantly reduced cell viability. We determined the X-ray structure of the unliganded ch88.2 fragment antigen-binding (Fab) containing two Fabs in the unit cell. A combination of molecular docking, glycan grafting and molecular dynamics simulations predicts two distinct subsites for recognition of Lea and Lex trisaccharides. While light chain residues were exclusively used for Lea binding, recognition of Lex involved both light and heavy chain residues. An extended groove is predicted to accommodate the Lea-Lex hexasaccharide with adjoining subsites for each trisaccharide. The molecular and structural details of the ch88.2 mAb presented here provide insight into its cross-reactivity for various Lea and Lex containing glycans. Furthermore, the predicted interactions with extended epitopes likely explains the selectivity of this antibody for targeting Lewis-positive tumours.


Assuntos
Anticorpos Monoclonais Murinos , Antineoplásicos Imunológicos , Fragmentos Fab das Imunoglobulinas , Antígenos do Grupo Sanguíneo de Lewis , Antígenos CD15 , Simulação de Acoplamento Molecular , Neoplasias , Oligossacarídeos , Animais , Anticorpos Monoclonais Murinos/química , Anticorpos Monoclonais Murinos/imunologia , Antineoplásicos Imunológicos/química , Antineoplásicos Imunológicos/imunologia , Linhagem Celular Tumoral , Humanos , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/imunologia , Antígenos do Grupo Sanguíneo de Lewis/química , Antígenos do Grupo Sanguíneo de Lewis/imunologia , Antígenos CD15/química , Antígenos CD15/imunologia , Camundongos , Neoplasias/química , Neoplasias/imunologia , Oligossacarídeos/química , Oligossacarídeos/imunologia
3.
Protein Expr Purif ; 174: 105682, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32502709

RESUMO

Canine parvovirus (CPV) non-structural protein-1 (NS1) plays crucial roles in CPV replication and transcription, as well as pathogenic effects to the host. However, the mechanism was not fully understood. Lack of NS1 antibody is one of the restricting factors for NS1 function investigation. To prepare NS1 monoclonal antibody (mAb), the NS1 epitope (AA461 ~ AA650) gene was amplified by PCR, and inserted into pGEX-4T-1vector to construct the prokaryotic expression vector of GST-tag-fused NS1 epitope gene. The NS1 fusion protein was expressed in E. coli, and purified with GSH-magnetic beads, and then used to immunize BALB/c mice. The mouse splenic lymphocytes were isolated and fused with myeloma cells (SP 2/0) to generate hybridoma cells. After several rounds of screening by ELISA, a hybridoma cell clone (1B8) stably expressing NS1 mAb was developed. A large amount of NS1 mAb was prepared from mouse ascites fluid. The isotype of NS1 mAb was identified as IgG1, which can specifically bind NS1 protein in either CPV-infected cells or NS1 vector-transfected cells, indicating the NS1 mAb is effective in detecting NS1 protein. Meanwhile, we used the NS1 mAb to investigate NS1 dynamic changes by qRT-PCR and location by confocal imaging in CPV-infected host cells and showed that NS1 began to appear in the cells at 12 h after CPV infection and reached the highest level at 42 h, NS1 protein was mainly located in nucleus of the cells. This study provided a necessary condition for further investigation on molecular mechanism of NS1 function and pathogenicity.


Assuntos
Anticorpos Monoclonais Murinos , Anticorpos Antivirais , Epitopos , Infecções por Parvoviridae , Parvovirus Canino , Proteínas não Estruturais Virais , Animais , Anticorpos Monoclonais Murinos/química , Anticorpos Monoclonais Murinos/imunologia , Anticorpos Antivirais/química , Anticorpos Antivirais/imunologia , Linhagem Celular , Epitopos/química , Epitopos/genética , Epitopos/imunologia , Epitopos/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Parvoviridae/imunologia , Infecções por Parvoviridae/metabolismo , Parvovirus Canino/química , Parvovirus Canino/genética , Parvovirus Canino/imunologia , Parvovirus Canino/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/imunologia , Proteínas não Estruturais Virais/metabolismo
4.
Sci Adv ; 6(11): eaax2271, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32195335

RESUMO

Antibodies are essential for elucidating gene function. However, affordable technology for proteome-scale antibody generation does not exist. To address this, we developed Proteome Epitope Tag Antibody Library (PETAL) and its array. PETAL consists of 62,208 monoclonal antibodies (mAbs) against 15,199 peptides from diverse proteomes. PETAL harbors binders for a great multitude of proteins in nature due to antibody multispecificity, an intrinsic antibody feature. Distinctive combinations of 10,000 to 20,000 mAbs were found to target specific proteomes by array screening. Phenotype-specific mAb-protein pairs were found for maize and zebrafish samples. Immunofluorescence and flow cytometry mAbs for membrane proteins and chromatin immunoprecipitation-sequencing mAbs for transcription factors were identified from respective proteome-binding PETAL mAbs. Differential screening of cell surface proteomes of tumor and normal tissues identified internalizing tumor antigens for antibody-drug conjugates. By finding high-affinity mAbs at a fraction of current time and cost, PETAL enables proteome-scale antibody generation and target discovery.


Assuntos
Anticorpos Monoclonais Murinos/química , Epitopos/química , Proteoma/química , Células A549 , Animais , Células HEK293 , Células HL-60 , Células HeLa , Células Hep G2 , Células Endoteliais da Veia Umbilical Humana , Humanos , Células Jurkat , Células K562 , Células MCF-7 , Camundongos , Células PC-3 , Peptídeos , Células THP-1 , Células U937
5.
Int J Mol Sci ; 20(24)2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31847265

RESUMO

Several lines of controversial evidence concerning estrogen receptor ß (ERß) remain to be solved because of the unavailability of specific antibodies against ERß. The recent validation analysis identified a monoclonal antibody (PPZ0506) with sufficient specificity against human ERß. However, the specificity and cross-reactivity of PPZ0506 antibody against ERß proteins from laboratory animals have not been confirmed. In the present study, we aimed to validate the applicability of PPZ0506 to rodent studies. The antibody exhibited specific cross-reactivity against mouse and rat ERß proteins in immunoblot and immunocytochemical experiments using transfected cells. In immunohistochemistry for rat tissue sections, PPZ0506 showed immunoreactive signals in the ovary, prostate, and brain. These immunohistochemical profiles of rat ERß proteins in rat tissues accord well with its mRNA expression patterns. Although the antibody was reported to show the moderate signals in human testis, no immunoreactive signals were observed in rat testis. Subsequent RT-PCR analysis revealed that this species difference in ERß expression resulted from different expression profiles related to the alternative promoter usage between humans and rats. In conclusion, we confirmed applicability of PPZ0506 for rodent ERß studies, and our results provide a fundamental basis for further examination of ERß functions.


Assuntos
Anticorpos Monoclonais Murinos/química , Receptor beta de Estrogênio/biossíntese , Animais , Humanos , Imuno-Histoquímica , Camundongos , Especificidade de Órgãos , Ratos , Ratos Wistar
6.
Chem Commun (Camb) ; 55(68): 10060-10063, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31328750
7.
Immunology ; 157(4): 296-303, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31162836

RESUMO

The characterization of the architecture, structure and extracellular interactions of the CD6 glycoprotein, a transmembrane receptor expressed in medullary thymocytes and all mature T-cell populations, has been enhanced by the existence of monoclonal antibodies (mAbs) that specifically recognize the various scavenger receptor cysteine-rich (SRCR) domains of the ectodomain. Using engineered isoforms of CD6 including or excluding each of the three SRCR domains, either expressed at the membranes of cells or in soluble forms, we provide conclusive and definitive evidence that domain 2 of CD6, previously not identifiable, can be recognized by the CD6 mAbs OX125 and OX126, and that OX124 targets domain 3 and can block the interaction at the cell surface of CD6 with its major ligand CD166. Alternative splicing-dependent CD6 isoforms can now be confidently identified. We confirm that following T-cell activation there is a partial replacement of full-length CD6 by the CD6Δd3 isoform, which lacks the CD166-binding domain, and we find no evidence for the expression of other CD6 isoforms at the mRNA or protein levels.


Assuntos
Processamento Alternativo/imunologia , Anticorpos Monoclonais Murinos/química , Antígenos CD/imunologia , Antígenos de Diferenciação de Linfócitos T/imunologia , Ativação Linfocitária , Linfócitos T/imunologia , Anticorpos Monoclonais Murinos/imunologia , Humanos , Células Jurkat , Domínios Proteicos , Isoformas de Proteínas/imunologia , Linfócitos T/citologia
8.
PLoS One ; 14(5): e0216470, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31063496

RESUMO

BACKGROUND: Human B-cell lymphoma 6 (BCL6) gene, usually coding protein of 706 amino acids, is closely associated with large B cell lymphoma. Researches showed that protein mutation or change of expression levels usually happened in the mounting non-hodgkin lymphoma (NHL). Thus BCL6 is considered to be involved in germinal center (GC)-derived lymphoma. RESULTS: The BCL61-350 gene codons were optimized for prokaryotic system. After expression of BCL61-350 in E. coli, the BCL61-350 protein was purified with Ni column. Then the BCL61-350 protein, mixing with QuickAntibody-Mouse5W adjuvant, was injected into Balb/c mice. After immunization and cell fusion, a stable cell line named 1E6A4, which can secrete anti-BCL6 antibody, was obtained. The isotype of 1E6A4 mAb was determined as IgG2a, and the affinity constant reached 5.12×1010 L/mol. Furthermore, the specificity of the mAb was determined with ELISA, western blot and immunohistochemistry. Results indicated that the 1E6A4 mAb was able to detect BCL6 specifically and sensitively. CONCLUSIONS: BCL61-350 antigen has been successfully generated with an effective and feasible method, and a highly specific antibody named 1E6A4 against BCL6 has been screened and characterized in this study, which was valuable in clinical diagnosis.


Assuntos
Anticorpos Monoclonais Murinos , Imunoglobulina G , Linfoma de Células B/diagnóstico , Linfoma de Células B/imunologia , Proteínas Proto-Oncogênicas c-bcl-6/imunologia , Animais , Anticorpos Monoclonais Murinos/química , Anticorpos Monoclonais Murinos/imunologia , Ensaio de Imunoadsorção Enzimática , Feminino , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Centro Germinativo/patologia , Humanos , Imunoglobulina G/química , Imunoglobulina G/imunologia , Imuno-Histoquímica , Linfoma de Células B/metabolismo , Linfoma de Células B/patologia , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Proto-Oncogênicas c-bcl-6/biossíntese
9.
Protein Expr Purif ; 158: 74-80, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30826310

RESUMO

Receptor tyrosine kinase like orphan receptor 2 (ROR2) is a co-receptor for some Wnt proteins including Wnt5a that activate the noncanonical Wnt/planar cell polarity (PCP) signaling pathway. Upregulation of ROR2 is associated with several cancer forms. The extracellular region of ROR2, which contains an immunoglobulin (Ig)-like domain, a Frizzled like cysteine-rich domain (CRD) and a Kringle domain, is a potential anticancer drug target. The structural and biochemical properties of the ROR2 extracellular region remain largely unexplored. Here we describe the mapping and purification, using a baculovirus - insect cell system, of a near-full-length ROR2 extracellular fragment (residues 53-402), which is well-behaved and suitable for future structural and biochemical analysis. We show that the extracellular region of ROR2 per se is monomeric in solution. Different monoclonal antibodies raised against the purified ROR2 protein can specifically recognize the protein and can either inhibit or activate the PCP activity in a cell-based assay, and are thus potentially useful for future mechanistic and therapeutic/diagnostic studies. The biological relevance of these antibodies further demonstrates that the purified recombinant ROR2 protein is properly folded and biochemically active.


Assuntos
Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/química , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/isolamento & purificação , Animais , Anticorpos Monoclonais Murinos/química , Baculoviridae , Humanos , Camundongos , Domínios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Células Sf9 , Spodoptera
10.
Biochimie ; 158: 246-256, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30703478

RESUMO

Human Cripto-1 (Cripto-1), the founding member of the EGF-CFC superfamily, is a key regulator of many processes during embryonic development and oncogenesis. Cripto-1 is barely present or even absent in normal adult tissues while it is aberrantly re-expressed in various tumors. Blockade of the CFC domain-mediated Cripto-1 functions is acknowledged as a promising therapeutic intervention point to inhibit the tumorigenic activity of the protein. In this work, we report the generation and characterization of murine monoclonal antibodies raised against the synthetic folded CFC [112-150] domain of the human protein. Through subtractive ELISA assays clones were screened for the ability to specifically recognize "hot spot" residues on the CFC domain, which are crucial for the interaction with Activin Type I receptor (ALK4) and GRP78. On selected antibodies, SPR and epitope mapping studies have confirmed their specificity and have revealed that recognition occurs only on a conformational epitope. Furthermore, FACS analyses have confirmed the ability of 1B4 antibody to recognize the membrane-anchored and soluble native Cripto-1 protein in a panel of human cancer cells. Finally, we have evaluated its functional effects through in vitro cellular signaling assays and cell cycle analysis. These findings suggest that the selected anti-CFC mAbs have the potential to neutralize the protein oncogenic activity and may be used as theranostic molecules suitable as tumor homing agents for Cripto-1-overexpressing cancer cells and tissues and to overcome drug-resistance in routine cancer therapies.


Assuntos
Anticorpos Monoclonais Murinos/química , Anticorpos Antineoplásicos/química , Anticorpos Neutralizantes/química , Citometria de Fluxo , Proteínas Ligadas por GPI , Peptídeos e Proteínas de Sinalização Intercelular , Proteínas de Neoplasias , Receptores de Ativinas Tipo I/imunologia , Receptores de Ativinas Tipo I/metabolismo , Animais , Anticorpos Monoclonais Murinos/imunologia , Anticorpos Antineoplásicos/imunologia , Anticorpos Neutralizantes/imunologia , Linhagem Celular Tumoral , Chaperona BiP do Retículo Endoplasmático , Proteínas Ligadas por GPI/imunologia , Proteínas Ligadas por GPI/metabolismo , Proteínas de Choque Térmico/imunologia , Proteínas de Choque Térmico/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/imunologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Proteínas de Neoplasias/imunologia , Proteínas de Neoplasias/metabolismo , Domínios Proteicos
11.
J Virol ; 93(8)2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30760569

RESUMO

Tick-borne encephalitis virus (TBEV) and louping ill virus (LIV) are members of the tick-borne flaviviruses (TBFVs) in the family Flaviviridae which cause encephalomeningitis and encephalitis in humans and other animals. Although vaccines against TBEV and LIV are available, infection rates are rising due to the low vaccination coverage. To date, no specific therapeutics have been licensed. Several neutralizing monoclonal antibodies (MAbs) show promising effectiveness in the control of TBFVs, but the underlying molecular mechanisms are yet to be characterized. Here, we determined the crystal structures of the LIV envelope (E) protein and report the comparative structural analysis of a TBFV broadly neutralizing murine MAb (MAb 4.2) in complex with either the LIV or TBEV E protein. The structures reveal that MAb 4.2 binds to the lateral ridge of domain III of the E protein (EDIII) of LIV or TBEV, an epitope also reported for other potently neutralizing MAbs against mosquito-borne flaviviruses (MBFVs), but adopts a unique binding orientation. Further structural analysis suggested that MAb 4.2 may neutralize flavivirus infection by preventing the structural rearrangement required for membrane fusion during virus entry. These findings extend our understanding of the vulnerability of TBFVs and other flaviviruses (including MBFVs) and provide an avenue for antibody-based TBFV antiviral development.IMPORTANCE Understanding the mechanism of antibody neutralization/protection against a virus is crucial for antiviral countermeasure development. Tick-borne encephalitis virus (TBEV) and louping ill virus (LIV) are tick-borne flaviviruses (TBFVs) in the family Flaviviridae They cause encephalomeningitis and encephalitis in humans and other animals. Although vaccines for both viruses are available, infection rates are rising due to low vaccination coverage. In this study, we solved the crystal structures of the LIV envelope protein (E) and a broadly neutralizing/protective TBFV MAb, MAb 4.2, in complex with E from either TBEV or LIV. Key structural features shared by TBFV E proteins were analyzed. The structures of E-antibody complexes showed that MAb 4.2 targets the lateral ridge of both the TBEV and LIV E proteins, a vulnerable site in flaviviruses for other potent neutralizing MAbs. Thus, this site represents a promising target for TBFV antiviral development. Further, these structures provide important information for understanding TBFV antigenicity.


Assuntos
Anticorpos Monoclonais Murinos/química , Anticorpos Neutralizantes/química , Anticorpos Antivirais/química , Vírus da Encefalite Transmitidos por Carrapatos/química , Epitopos/química , Proteínas do Envelope Viral/química , Cristalografia por Raios X , Vírus da Encefalite Transmitidos por Carrapatos/genética , Flavivirus/química , Domínios Proteicos
12.
MAbs ; 11(3): 559-568, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30694096

RESUMO

To enable large-scale antibody production, the creation of a stable, high producer cell line is essential. This process often takes longer than 6 months using standard limited dilution techniques and is very labor intensive. The use of a tri-cistronic vector expressing green fluorescent protein (GFP) and both antibody chains, separated by a GT2A peptide sequence, allows expression of all proteins under a single promotor in equimolar ratios. By combining the advantages of 2A peptide cleavage and single cell sorting, a chimeric antibody-antigen fusion protein that contained the variable domains of mouse IgG with a porcine IgA constant domain fused to the FedF antigen could be produced in CHO-K1 cells. After transfection, a strong correlation was found between antibody production and GFP expression (r = 0.69) using image analysis of formed monolayer patches. This enables the rapid selection of GFP-positive clones using automated image analysis for the selection of high producer clones. This vector design allowed the rapid selection of high producer clones within a time-frame of 4 weeks after transfection. The highest producing clone had a specific antibody productivity of 2.32 pg/cell/day. Concentrations of 34 mg/L were obtained using shake-flask batch culture. The produced recombinant antibody showed stable expression, binding and minimal degradation. In the future, this antibody will be assessed for its effectiveness as an oral vaccine antigen.


Assuntos
Anticorpos Monoclonais Murinos , Antígenos , Imunoglobulina A , Imunoglobulina G , Região Variável de Imunoglobulina , Proteínas Recombinantes de Fusão , Animais , Anticorpos Monoclonais Murinos/biossíntese , Anticorpos Monoclonais Murinos/química , Anticorpos Monoclonais Murinos/genética , Antígenos/biossíntese , Antígenos/química , Antígenos/genética , Células CHO , Cricetulus , Imunoglobulina A/biossíntese , Imunoglobulina A/química , Imunoglobulina A/genética , Imunoglobulina G/biossíntese , Imunoglobulina G/química , Imunoglobulina G/genética , Região Variável de Imunoglobulina/biossíntese , Região Variável de Imunoglobulina/química , Região Variável de Imunoglobulina/genética , Camundongos , Peptídeos/química , Peptídeos/genética , Proteólise , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Suínos
13.
Protein Expr Purif ; 158: 51-58, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-29981846

RESUMO

5T4, a membrane protein, is overexpressed in many tumor tissues but rarely expressed in normal tissues. Here, CHO-5T4+ cells were generated and served as the antigen to immunize mice. Hybridoma techniques were employed to produce monoclonal antibodies (mAbs). The recombinant protein of human IgG Fc-fused extracellular domain of 5T4 (5T4 ECD-Fc) was obtained from transient expression in HEK293F cells. The fusion protein 5T4 ECD-Fc and CHO-5T4+ cells were respectively utilized to screen anti-5T4 antibodies that could bind to the native antigen. In preliminary screening, three hundred and fifty mAbs were obtained. Via surface plasmon resonance and flow cytometry screening, seven anti-5T4 mAbs stood out. Among them, H6 showed a high affinity (KD = 1.6 × 10-11 M) and internalization percentage (36% for 1 h and 80% for 4 h). The molecular weight and isoelectric point of H6 were determined by LC-MS and iCIEF. Moreover, the specific reactivity of H6 was demonstrated by western blotting, flow cytometry, and immunohistochemistry, respectively. In conclusion, we produced human recombinant protein of 5T4 extracellular domain and developed high-affinity internalizing monoclonal antibodies which may be applied in the 5T4-targeting ADC therapy and basic research.


Assuntos
Anticorpos Monoclonais Murinos , Afinidade de Anticorpos , Antineoplásicos Imunológicos , Fragmentos Fc das Imunoglobulinas , Glicoproteínas de Membrana , Proteínas Recombinantes de Fusão , Animais , Anticorpos Monoclonais Murinos/química , Anticorpos Monoclonais Murinos/imunologia , Antineoplásicos Imunológicos/química , Antineoplásicos Imunológicos/imunologia , Células CHO , Cricetulus , Feminino , Humanos , Fragmentos Fc das Imunoglobulinas/biossíntese , Fragmentos Fc das Imunoglobulinas/química , Fragmentos Fc das Imunoglobulinas/imunologia , Fragmentos Fc das Imunoglobulinas/isolamento & purificação , Glicoproteínas de Membrana/biossíntese , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/imunologia , Glicoproteínas de Membrana/isolamento & purificação , Camundongos , Camundongos Endogâmicos BALB C , Domínios Proteicos , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/isolamento & purificação
14.
J Immunol Methods ; 465: 31-38, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30502324

RESUMO

We have developed a stable Chinese Hamster Ovary (CHO) cell line for the production of a recombinant monoclonal antibody (mAb) to a short protein sequence derived from the N-terminus of human herpes simplex virus type 1 glycoprotein D (HSV-1 gD). The antibody (designated r34.1) provides a useful tool for the immunoaffinity purification of HSV-1 gD tagged proteins, and provides a generic purification system by which various proteins and peptides can be purified. Recombinant 34.1 was assembled using cDNA derived from a HSV-1 gD specific murine hybridoma engineered to encode a full-length IgG molecule. Antibody expression cassettes were transfected into CHO-S cells, and a stable cell-line expressing up to 500 mg/L of antibody, isolated. Affinity purified r34.1 exhibited nanomolar affinity for its cognate ligand, and is stable throughout multiple cycles of immunoaffinity purification involving ligand binding at neutral pH, followed by acid elution. The HSV-1 gD tag expression and purification strategy has been used to enhance the secretion and purification of several vaccine immunogens including HIV envelope protein rgp120s, but the protocol has potential for generic application.


Assuntos
Anticorpos Monoclonais Murinos/química , Anticorpos Antivirais/química , Herpesvirus Humano 1/química , Proteínas do Envelope Viral/química , Animais , Anticorpos Monoclonais Murinos/genética , Anticorpos Monoclonais Murinos/imunologia , Anticorpos Antivirais/genética , Anticorpos Antivirais/imunologia , Células CHO , Cricetulus , Herpesvirus Humano 1/imunologia , Humanos , Camundongos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas do Envelope Viral/imunologia
15.
Peptides ; 120: 170009, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30196126

RESUMO

Antibodies are an integral biomedical tool, not only for research but also as therapeutic agents. However, progress can only be made with sensitive and specific antibodies. The regulatory (neuro)peptide galanin and its three endogenous receptors (GAL1-3-R) are widely distributed in the central and peripheral nervous systems, and in peripheral non-neuronal tissues. The galanin system has multiple biological functions, including feeding behavior, pain processing, nerve regeneration and inflammation, to name only a few. Galanin could serve as biomarker in these processes, and therefore its receptors are potential drug targets for various diseases. For that reason, it is of paramount interest to precisely measure galanin peptide levels in tissues and to determine the cellular and subcellular localization of galanin receptors. A plethora of antibodies and antibody-based tools, including radioimmunoassay (RIA) and enzyme-linked immunosorbent assay (ELISA) kits, are commercially available to detect galanin and its receptors. However, many of them lack rigorous validation which casts doubt on their specificity. A goal of the present study was to raise awareness of the importance of validation of antibodies and antibody-based tools, with a specific focus on the galanin system. To that end, we tested and report here about commercially available antibodies against galanin and galanin receptors that appear specific to us. Furthermore, we investigated the validity of commercially available galanin ELISA kits. As the tested ELISAs failed to meet the validation requirements, we developed and validated a specific sandwich ELISA which can be used to detect full-length galanin in human plasma.


Assuntos
Anticorpos Monoclonais Murinos/química , Galanina/química , Peptídeos/química , Anticorpos Monoclonais Murinos/imunologia , Ensaio de Imunoadsorção Enzimática , Galanina/imunologia , Humanos , Peptídeos/imunologia , Radioimunoensaio
16.
J Immunol Methods ; 461: 44-52, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29772250

RESUMO

Ranibizumab (Lucentis®), a humanized antigen-binding fragment (Fab) monoclonal antibody that blocks VEGF-A activity, is currently approved for the treatment of several retinal degenerative diseases. The assessment of drug pharmacokinetics (PK) is essential for evaluating exposure as it relates to drug safety and efficacy. For drugs administered intravitreally, systemic drug levels during the course of clinical studies are typically 100 to 1000-fold lower than those of similar therapeutics dosed intravenously, posing a significant bioanalytical challenge for PK measurements. Thus, the development of a highly-sensitive assay for measuring pg/mL levels of ranibizumab in patients' sera after intravitreal administration was needed to support clinical studies. In this report, we describe the development of a novel method that utilizes a high-affinity murine monoclonal anti-ranibizumab-VEGF-complexes antibody (MARA) reagent to measure ranibizumab in human serum. The assay format utilizes a semi-homogeneous solution phase step using a monoclonal antibody (the MARA) that binds specifically to the ranibizumab-VEGF complex, but not to either alone. This unique reagent exhibited low non-specific binding and high selectivity, increasing signal-to-noise readouts and maximizing assay sensitivity. The resulting MARA enzyme-linked immunosorbent assay (ELISA) has a lower limit of quantification of 15 pg/mL in human serum. In the assay, serum samples are incubated overnight with a mixture containing biotinylated-VEGF and MARA, which form a three-molecule complex with ranibizumab in the sample. These complexes are then captured onto streptavidin-coated wells, followed by enzymatic detection using a horseradish peroxidase-labeled-anti-murine antibody reagent and a colorimetric reaction. The assay conditions were optimized to allow for quantitative detection of "total" ranibizumab levels in serum. The assay was fully validated, establishing its high tolerance to sample matrix, as well as its suitable specificity, accuracy, dilution linearity, as well as intra- and inter-assay precision. The MARA ELISA's novel and unique approach has resulted in a considerably more sensitive ranibizumab PK assay compared to earlier versions of this assay. The MARA ELISA has been used for PK measurements in multiple ranibizumab studies, supporting this drug's life-cycle management and related preclinical and clinical-development studies.


Assuntos
Anticorpos Monoclonais Murinos/química , Bevacizumab/farmacocinética , Degeneração Retiniana/sangue , Animais , Anticorpos Monoclonais Murinos/imunologia , Bevacizumab/imunologia , Bevacizumab/uso terapêutico , Ensaio de Imunoadsorção Enzimática/métodos , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Coelhos , Degeneração Retiniana/tratamento farmacológico , Degeneração Retiniana/imunologia , Fator A de Crescimento do Endotélio Vascular/sangue , Fator A de Crescimento do Endotélio Vascular/imunologia
17.
Sci Rep ; 8(1): 2578, 2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29416053

RESUMO

Elevated circulating Retinol-binding protein 4 (RBP4) has been associated with insulin resistance, dyslipidemia, and hypertension. However, many commonly used RBP4 ELISAs have limited dynamic range. We therefore developed an enzyme-linked immunosorbent sandwich assay (ELISA) employing a novel immunoglobulin A (IgA)-type capture mAb called AG102 instead of IgG subtypes, which was selected for its stability, capture efficiency, and specificity for human RBP 4. These features of RBP4 have hampered the development of quantitative immunological assays. Molecular analysis of AG102 revealed IgA heavy and light chains and a J chain, as expected. AG102 demonstrated notable detection of both bacterial- and HEK293-expressed RBP4 in Western blots. Serial and internal deletion experiments suggested that a putative epitope may be located in the first 35 amino acids of the mature RBP4. Compared with commercial ELISAs, the AG102-based system exhibited more significant recovery of RBP4 from serum or urine at any given dilution factor. To substantiate its quantitation capacity, comparison between RBP4 measurements from quantitative western blots and the AG102-based ELISA demonstrated a significant correlation (R2 = 0.859). After measurement for those analytes, our data suggested that IgA-based ELISA could be adapted for quantitative measurement of those analytes existing as major serum proteins or as multi-protein complexes like RBP4.


Assuntos
Anticorpos Monoclonais Murinos , Ensaio de Imunoadsorção Enzimática , Imunoglobulina A/imunologia , Proteínas Plasmáticas de Ligação ao Retinol/análise , Animais , Anticorpos Monoclonais Murinos/química , Anticorpos Monoclonais Murinos/imunologia , Especificidade de Anticorpos/imunologia , Células HEK293 , Humanos , Epitopos Imunodominantes/imunologia , Subunidades de Imunoglobulinas/imunologia , Imunoadsorventes/química , Camundongos , Estabilidade Proteica , Proteínas Plasmáticas de Ligação ao Retinol/imunologia , Proteínas Plasmáticas de Ligação ao Retinol/urina
18.
Cell Rep ; 22(1): 299-312, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29298430

RESUMO

The large number of mutations identified across all cancers represents an untapped reservoir of targets that can be useful for therapeutic targeting if highly selective, mutation-specific reagents are available. We report here our attempt to generate such reagents: monoclonal antibodies against the most common R175H, R248Q, and R273H hotspot mutants of the tumor suppressor p53. These antibodies recognize their intended specific alterations without any cross-reactivity against wild-type (WT) p53 or other p53 mutants, including at the same position (as exemplified by anti-R248Q antibody, which does not recognize the R248W mutation), evaluated by direct immunoblotting, immunoprecipitation, and immunofluorescence methods on transfected and endogenous proteins. Moreover, their clinical utility to diagnose the presence of specific p53 mutants in human tumor microarrays by immunohistochemistry is also shown. Together, the data demonstrate that antibodies against specific single-amino-acid alterations can be generated reproducibly and highlight their utility, which could potentially be extended to therapeutic settings.


Assuntos
Anticorpos Monoclonais Murinos/química , Especificidade de Anticorpos , Mutação , Proteína Supressora de Tumor p53/imunologia , Animais , Anticorpos Monoclonais Murinos/imunologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Medicina de Precisão , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/genética
19.
BMC Cancer ; 17(1): 811, 2017 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-29202724

RESUMO

BACKGROUND: Epithelial cell adhesion molecule (EpCAM) is a promising biomarker for squamous cell carcinoma (SCC) of the uterine cervix, because it is over-expressed in various cancers of epithelial origin. However, EpCAM expression reported in previous immunohistochemistry (IHC) studies was inconsistent. We hypothesize that the membrane-distal part of EpCAM may be lost during tissue preparation, leaving only the membrane-proximal part of EpCAM available for antibody binding and IHC staining. METHODS: Two new anti-EpCAM MAbs to the membrane-proximal part (WC-2) and the membrane-distal part (WC-1) of EpCAM were generated and characterized. WC-2 was selected for its ability to detect EpCAM in cervical tissues by IHC. One hundred thirty-five archival paraffin-embedded tissues previously diagnosed as cervical SCC (n=44), high-grade (HSIL) (n=43), or low-grade (LSIL) (n=48) squamous intraepithelial lesions were examined. IHC score was collected, recorded, and analyzed for distribution, intensity, and percentage of cancer cells stained for EpCAM. RESULTS: EpCAM expression was consistently detected on cervical tissues by WC-2, but not by WC-1. EpCAM was expressed with high IHC score in the majority of cervical SCC (37/44), but not in normal epithelial area adjacent to SCC. EpCAM was also highly expressed on precancerous lesion of the cervix, particularly in HSIL. More importantly, EpCAM expression could be used to distinguish between HSIL and LSIL, according to staining distribution. HSIL tissues displayed EpCAM expression in two-thirds to full thickness of the epithelium, while in LSIL the staining was limited to the lower one-third of the thickness. The IHC score of EpCAM expression was strongly correlated with cervical cancer and grades of precancerous lesions (r=0.875, p<0.001). CONCLUSION: Only the anti-EpCAM MAb to the membrane-proximal part is able to detect EpCAM on paraffin-embedded cervical cancer tissues. A strong positive correlation between EpCAM expression level and the grades of SILs provides the possibility that EpCAM can be used to predict prognosis and severity in these patients.


Assuntos
Anticorpos Monoclonais Murinos/química , Carcinoma de Células Escamosas/metabolismo , Molécula de Adesão da Célula Epitelial/metabolismo , Neoplasias do Colo do Útero/metabolismo , Animais , Anticorpos Monoclonais Murinos/metabolismo , Sítios de Ligação , Molécula de Adesão da Célula Epitelial/química , Molécula de Adesão da Célula Epitelial/imunologia , Feminino , Células HT29 , Humanos , Imuno-Histoquímica , Camundongos Endogâmicos BALB C , Domínios Proteicos/imunologia
20.
Oncogene ; 36(47): 6617-6626, 2017 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-28783166

RESUMO

Dysregulation of microRNAs (miRNAs) plays an important role in the pathogenesis of chronic lymphocytic leukemia (CLL). The Eµ-TCL1 transgenic mouse develops a form of leukemia that is similar to the aggressive type of human B-CLL, and this valuable model has been widely used for testing novel therapeutic approaches. Here, we adopted this model to investigate the potential effects of miR-26a, miR-130an and antimiR-155 in CLL therapy. Improved delivery of miRNA molecules into CLL cells was obtained by developing a novel system based on lipid nanoparticles conjugated with an anti-CD38 monoclonal antibody. This methodology has proven to be highly effective in delivering miRNA molecules into leukemic cells. Short- and long-term experiments showed that miR-26a, miR-130a and anti-miR-155 increased apoptosis after in vitro and in vivo treatment. Of this miRNA panel, miR-26a was the most effective in reducing leukemic cell expansion. Following long-term treatment, apoptosis was readily detectable by analyzing cleavage of PARP and caspase-7. These effects could be directly attributed to miR-26a, as confirmed by significant downregulation of its proven targets, namely cyclin-dependent kinase 6 and Mcl1. The results of this study are relevant to two distinct areas. The first is related to the design of a technical strategy and to the selection of CD38 as a molecular target on CLL cells, both consenting efficient and specific intracellular transfer of miRNA. The original scientific finding inferred from the above approach is that miR-26a can elicit in vivo anti-leukemic activities mediated by increased apoptosis.


Assuntos
ADP-Ribosil Ciclase 1/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Glicoproteínas de Membrana/antagonistas & inibidores , MicroRNAs/uso terapêutico , ADP-Ribosil Ciclase 1/genética , Animais , Anticorpos Monoclonais Murinos/química , Caspase 7/metabolismo , Linhagem Celular Tumoral , Quinase 6 Dependente de Ciclina/genética , Regulação para Baixo , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Lipídeos/química , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Transgênicos , MicroRNAs/administração & dosagem , MicroRNAs/antagonistas & inibidores , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Nanopartículas/química , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Proteínas Proto-Oncogênicas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA