Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 411
Filtrar
1.
Biomacromolecules ; 25(5): 2762-2769, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38689446

RESUMO

Protein-based encapsulin nanocompartments, known for their well-defined structures and versatile functionalities, present promising opportunities in the fields of biotechnology and nanomedicine. In this investigation, we effectively developed a sortase A-mediated protein ligation system in Escherichia coli to site-specifically attach target proteins to encapsulin, both internally and on its surfaces without any further in vitro steps. We explored the potential applications of fusing sortase enzyme and a protease for post-translational ligation of encapsulin to a green fluorescent protein and anti-CD3 scFv. Our results demonstrated that this system could attach other proteins to the nanoparticles' exterior surfaces without adversely affecting their folding and assembly processes. Additionally, this system enabled the attachment of proteins inside encapsulins which varied shapes and sizes of the nanoparticles due to cargo overload. This research developed an alternative enzymatic ligation method for engineering encapsulin nanoparticles to facilitate the conjugation process.


Assuntos
Aminoaciltransferases , Proteínas de Bactérias , Cisteína Endopeptidases , Escherichia coli , Processamento de Proteína Pós-Traducional , Aminoaciltransferases/metabolismo , Aminoaciltransferases/química , Cisteína Endopeptidases/metabolismo , Cisteína Endopeptidases/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Escherichia coli/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Fluorescência Verde/química , Nanopartículas/química , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/metabolismo
2.
Biochem Biophys Res Commun ; 697: 149498, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38262291

RESUMO

Regulatory T cells (Tregs) are lymphocytes that play a central role in peripheral immune tolerance. Tregs are promising targets for the prevention and suppression of autoimmune diseases, allergies, and graft-versus-host disease, and treatments aimed at regulating their functions are being developed. In this study, we created a new modality consisting of a protein molecule that suppressed excessive immune responses by effectively and preferentially expanding Tregs. Recent studies reported that tumor necrosis factor receptor type 2 (TNFR2) expressed on Tregs is involved in the proliferation and activation of Tregs. Therefore, we created a functional immunocytokine, named TNFR2-ICK-Ig, consisting of a fusion protein of an anti-TNFR2 single-chain Fv (scFv) and a TNFR2 agonist TNF-α mutant protein, as a new modality that strongly enhances TNFR2 signaling. The formation of agonist-receptor multimerization (TNFR2 cluster) is effective for the induction of a strong TNFR2 signal, similar to the TNFR2 signaling mechanism exhibited by membrane-bound TNF. TNFR2-ICK-Ig improved the TNFR2 signaling activity and promoted TNFR2 cluster formation compared to a TNFR2 agonist TNF-α mutant protein that did not have an immunocytokine structure. Furthermore, the Treg expansion efficiency was enhanced. TNFR2-ICK-Ig promotes its effects via scFv, which crosslinks receptors whereas the agonists transmit stimulatory signals. Therefore, this novel molecule expands Tregs via strong TNFR2 signaling by the formation of TNFR2 clustering.


Assuntos
Anticorpos de Cadeia Única , Linfócitos T Reguladores , Proteínas de Transporte/metabolismo , Proteínas Mutantes/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/genética , Receptores Tipo II do Fator de Necrose Tumoral/agonistas , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/farmacologia , Anticorpos de Cadeia Única/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Humanos , Animais , Camundongos
3.
J Vis Exp ; (201)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38009747

RESUMO

Single-chain fragment variable (scFv) antibodies were previously constructed of variable light and heavy chains joined by a (Gly4-Ser) 3 linker. The linker was created using molecular modeling software as a loop structure. Here, we introduce a protocol forin silico analysis of a complete scFv antibody that interacts with the epidermal growth factor receptor (EGFR). The homology modeling, with Pyrx of protein-protein docking and molecular dynamic simulation of the interacting scFv antibody and EGFR First, the authors used a protein structure modeling program and Python for homology modeling, and the antibody scFv structure was modeled for homology. The investigators downloaded Pyrx software as a platform in the docking study. The Molecular dynamic simulation was run using modeling software. Results show that when the MD simulation was subjected to energy minimization, the protein model had the lowest binding energy (-5.4 kcal/M). In addition, the MD simulation in this study showed that the docked EGFR-scFv antibody was stable for 20-75 ns when the movement of the structure increased sharply to 7.2 Å. In conclusion, in silicoanalysiswas performed, and the molecular docking and molecular dynamics simulations of the scFv antibody proved the effectiveness of the designed immune-therapeutic drug scFv as a specific drug therapy for EGFR.


Assuntos
Anticorpos de Cadeia Única , Simulação de Acoplamento Molecular , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/metabolismo , Simulação de Dinâmica Molecular , Receptores ErbB/metabolismo
4.
Mol Cancer ; 22(1): 131, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563723

RESUMO

BACKGROUND: Chimeric antigen receptor (CAR) -T cell therapy is an efficient therapeutic strategy for specific hematologic malignancies. However, positive outcomes of this novel therapy in treating solid tumors are curtailed by the immunosuppressive tumor microenvironment (TME), wherein signaling of the checkpoint programmed death-1 (PD-1)/PD-L1 directly inhibits T-cell responses. Although checkpoint-targeted immunotherapy succeeds in increasing the number of T cells produced to control tumor growth, the desired effect is mitigated by the action of myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs) in the TME. Previous studies have confirmed that targeting triggering-receptor-expressed on myeloid cells 2 (TREM2) on TAMs and MDSCs enhances the outcomes of anti-PD-1 immunotherapy. METHODS: We constructed carcinoembryonic antigen (CEA)-specific CAR-T cells for colorectal cancer (CRC)-specific antigens with an autocrine PD-1-TREM2 single-chain variable fragment (scFv) to target the PD-1/PD-L1 pathway, MDSCs and TAMs. RESULTS: We found that the PD-1-TREM2-targeting scFv inhibited the activation of the PD-1/PD-L1 pathway. In addition, these secreted scFvs blocked the binding of ligands to TREM2 receptors present on MDSCs and TAMs, reduced the proportion of MDSCs and TAMs, and enhanced T-cell effector function, thereby mitigating immune resistance in the TME. PD-1-TREM2 scFv-secreting CAR-T cells resulted in highly effective elimination of tumors compared to that achieved with PD-1 scFv-secreting CAR-T therapy in a subcutaneous CRC mouse model. Moreover, the PD-1-TREM2 scFv secreted by CAR-T cells remained localized within tumors and exhibited an extended half-life. CONCLUSIONS: Together, these results indicate that PD-1-TREM2 scFv-secreting CAR-T cells have strong potential as an effective therapy for CRC.


Assuntos
Neoplasias Colorretais , Imunoterapia Adotiva , Anticorpos de Cadeia Única , Animais , Camundongos , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , Neoplasias Colorretais/terapia , Neoplasias Colorretais/metabolismo , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/metabolismo , Linfócitos T , Microambiente Tumoral
5.
Colloids Surf B Biointerfaces ; 224: 113192, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36791518

RESUMO

Single-chain variable fragment antibody (scFv) is a small molecular weight antibody that can be used for both therapeutic and diagnostic purposes. To visualize the interaction with the target biomolecules, scFv must be labeled with fluorescent molecules. In this study, to achieve the efficient labeling of scFv, we developed scFv-fluorescent nanoparticle conjugates to utilize scFv as bioprobes. As fluorescent carriers, cadmium-free ZnS-AgInS2/ZnS core/shell nanoparticles were used, and scFv was immobilized onto the nanoparticles via the interaction of nickel ions on nitrilotriacetic acid and hexahistidine (His-tag) fused with scFv. UV-Vis, fluorescence spectra, NMR, and dynamic laser scattering were used to characterize the scFv immobilized fluorescent nanoparticles (scFv-FNPs). The amounts of scFv on FNPs were controlled by the concentration of scFv. The scFv-FNPs that were prepared were non-toxic and selectively bound to cancer cells. The scFv-FNPs could be used as bioanalytical tools, and the immobilization method described here is a promising method for labeling biomolecules with the His-tag.


Assuntos
Anticorpos de Cadeia Única , Técnicas Biossensoriais , Nanopartículas , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/metabolismo , Sulfetos
6.
Cytotherapy ; 25(6): 615-624, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36828738

RESUMO

BACKGROUND AIMS: Most current chimeric antigen receptor (CAR) T cells are generated by viral transduction, which induces persistent expression of CARs and may cause serious undesirable effects. Messenger RNA (mRNA)-based approaches in manufacturing CAR T cells are being developed to overcome these challenges. However, the most common method of delivering mRNA to T cells is electroporation, which can be toxic to cells. METHODS: The authors designed and engineered an exosome delivery platform using the bacteriophage MS2 system in combination with the highly expressed protein lysosome-associated membrane protein 2 isoform B on exosomes. RESULTS: The authors' delivery platform achieved specific loading and delivery of mRNA into target cells and achieved expression of specific proteins, and anti-CD3/CD28 single-chain variable fragments (scFvs) expressed outside the exosomal membrane effectively activated primary T cells in a similar way to commercial magnetic beads. CONCLUSIONS: The delivery of CAR mRNA and anti-CD3/CD28 scFvs via designed exosomes can be used for ex vivo production of CAR T cells with cancer cell killing capacity. The authors' results indicate the potential applications of the engineered exosome delivery platform for direct conversion of primary T cells to CAR T cells while providing a novel strategy for producing CAR T cells in vivo.


Assuntos
Exossomos , Receptores de Antígenos Quiméricos , Anticorpos de Cadeia Única , Humanos , Linfócitos T , Receptores de Antígenos Quiméricos/metabolismo , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/metabolismo , Antígenos CD28 , Exossomos/genética , Exossomos/metabolismo , Imunoterapia Adotiva/métodos , Linhagem Celular Tumoral , Engenharia Celular/métodos , Receptores de Antígenos de Linfócitos T
7.
Mol Ther ; 31(2): 409-419, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36369741

RESUMO

The accumulation of soluble oligomers of the amyloid-ß peptide (AßOs) in the brain has been implicated in synapse failure and memory impairment in Alzheimer's disease. Here, we initially show that treatment with NUsc1, a single-chain variable-fragment antibody (scFv) that selectively targets a subpopulation of AßOs and shows minimal reactivity to Aß monomers and fibrils, prevents the inhibition of long-term potentiation in hippocampal slices and memory impairment induced by AßOs in mice. As a therapeutic approach for intracerebral antibody delivery, we developed an adeno-associated virus vector to drive neuronal expression of NUsc1 (AAV-NUsc1) within the brain. Transduction by AAV-NUsc1 induced NUsc1 expression and secretion in adult human brain slices and inhibited AßO binding to neurons and AßO-induced loss of dendritic spines in primary rat hippocampal cultures. Treatment of mice with AAV-NUsc1 prevented memory impairment induced by AßOs and, remarkably, reversed memory deficits in aged APPswe/PS1ΔE9 Alzheimer's disease model mice. These results support the feasibility of immunotherapy using viral vector-mediated gene delivery of NUsc1 or other AßO-specific single-chain antibodies as a potential therapeutic approach in Alzheimer's disease.


Assuntos
Doença de Alzheimer , Anticorpos de Cadeia Única , Camundongos , Ratos , Humanos , Animais , Idoso , Doença de Alzheimer/genética , Doença de Alzheimer/terapia , Doença de Alzheimer/metabolismo , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/metabolismo , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Sinapses/metabolismo , Neurônios/metabolismo , Transtornos da Memória/genética , Transtornos da Memória/terapia
8.
Mol Biol Rep ; 50(2): 1191-1202, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36435922

RESUMO

BACKGROUND: Interleukin-1 receptor accessory protein (IL-1RAP) is one of the most promising therapeutic targets proposed for myeloid leukemia. Antibodies (Abs) specific to IL-1RAP could be valuable tools for targeted therapy of this lethal malignancy. This study is about the preparation of a difficult-to-produce single-chain variable fragment (scFv) construct against the membrane-bound isoform of human IL-1RAP using Escherichia coli (E. coli). METHODS: Different approaches were examined for refolding and characterization of the scFv. Binding activities of antibody fragments were comparatively evaluated using cell-based enzyme-linked immunosorbent assay (ELISA). Homogeneity and secondary structure of selected scFv preparation were analyzed using analytical size exclusion chromatography (SEC) and circular dichroism (CD) spectroscopy, respectively. The activity of the selected preparation was evaluated after long-term storage, repeated freeze-thaw cycles, or following incubation with normal and leukemic serum. RESULTS: Strategies for soluble expression of the scFv failed. Even with the help of Trx, ≥ 98% of proteins were expressed as inclusion bodies (IBs). Among three different refolding methods, the highest recovery rate was obtained from the dilution method (11.2%). Trx-tag substantially enhanced the expression level (18%, considering the molecular weight (MW) differences), recovery rate (˃1.6-fold), and binding activity (˃2.6-fold increase in absorbance450nm). The produced scFv exhibited expected secondary structure as well as acceptable bio-functionality, homogeneity, and stability. CONCLUSION: We were able to produce  21 mg/L culture functional and stable anti-IL-1RAP scFv via recovering IBs by pulse dilution procedure. The produced scFv as a useful targeting agent could be used in scheming new therapeutics or diagnostics for myeloid malignancies.


Assuntos
Leucemia Mieloide , Anticorpos de Cadeia Única , Humanos , Ensaio de Imunoadsorção Enzimática , Escherichia coli/metabolismo , Proteína Acessória do Receptor de Interleucina-1/metabolismo , Anticorpos de Cadeia Única/metabolismo , Corpos de Inclusão
9.
Int J Mol Sci ; 23(23)2022 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-36499634

RESUMO

Traditional sanitation practices remain the main strategy for controlling Bombyx mori infections caused by microsporidia Nosema bombycis. This actualizes the development of new approaches to increase the silkworm resistance to this parasite. Here, we constructed a mouse scFv library against the outer loops of N. bombycis ATP/ADP carriers and selected nine scFv fragments to the transporter, highly expressed in the early stages of the parasite intracellular growth. Expression of selected scFv genes in Sf9 cells, their infection with different ratios of microsporidia spores per insect cell, qPCR analysis of N. bombycis PTP2 and Spodoptera frugiperda COXI transcripts in 100 infected cultures made it possible to select the scFv fragment most effectively inhibiting the parasite growth. Western blot analysis of 42 infected cultures with Abs against the parasite ß-tubulin confirmed its inhibitory efficiency. Since the VL part of this scFv fragment was identified as a human IgG domain retained from the pSEX81 phagemid during library construction, its VH sequence should be a key antigen-recognizing determinant. Along with the further selection of new recombinant Abs, this suggests the searching for its natural mouse VL domain or "camelization" of the VH fragment by introducing cysteine and hydrophilic residues, as well as the randomization of its CDRs.


Assuntos
Bombyx , Microsporídios não Classificados , Nosema , Parasitos , Anticorpos de Cadeia Única , Humanos , Camundongos , Animais , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/metabolismo , Nosema/genética , Nosema/metabolismo , Bombyx/genética , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo
10.
Nat Commun ; 13(1): 6292, 2022 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-36272973

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) has a poor 5-year overall survival rate. Patients with PDAC display limited benefits after undergoing chemotherapy or immunotherapy modalities. Herein, we reveal that chemotherapy upregulates placental growth factor (PlGF), which directly activates cancer-associated fibroblasts (CAFs) to induce fibrosis-associated collagen deposition in PDAC. Patients with poor prognosis have high PIGF/VEGF expression and an increased number of PIGF/VEGF receptor-expressing CAFs, associated with enhanced collagen deposition. We also develop a multi-paratopic VEGF decoy receptor (Ate-Grab) by fusing the single-chain Fv of atezolizumab (anti-PD-L1) to VEGF-Grab to target PD-L1-expressing CAFs. Ate-Grab exerts anti-tumor and anti-fibrotic effects in PDAC models via the PD-L1-directed PlGF/VEGF blockade. Furthermore, Ate-Grab synergizes with gemcitabine by relieving desmoplasia. Single-cell RNA sequencing identifies that a CD141+ CAF population is reduced upon Ate-Grab and gemcitabine combination treatment. Overall, our results elucidate the mechanism underlying chemotherapy-induced fibrosis in PDAC and highlight a combinatorial therapeutic strategy for desmoplastic cancers.


Assuntos
Antineoplásicos , Fibroblastos Associados a Câncer , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Anticorpos de Cadeia Única , Feminino , Humanos , Fibroblastos Associados a Câncer/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator de Crescimento Placentário/genética , Fator de Crescimento Placentário/metabolismo , Anticorpos de Cadeia Única/metabolismo , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/genética , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Antineoplásicos/farmacologia , Fibrose , Neoplasias Pancreáticas
11.
Biotechnol Lett ; 44(10): 1231-1242, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36074282

RESUMO

PURPOSE: Escherichia coli is an attractive and cost-effective cell factory for producing recombinant proteins such as single-chain variable fragments (scFvs). AntiEpEX-scFv is a small antibody fragment that has received considerable attention for its ability to target the epithelial cell adhesion molecule (EpCAM), a cancer-associated biomarker of solid tumors. Due to its metabolic burden, scFv recombinant expression causes a remarkable decrease in the maximum specific growth rate of the scFv-producing strain. In the present study, a genome-scale metabolic model (GEM)-guided engineering strategy is proposed to identify gene targets for improved antiEpEX-scFv production in E. coli. METHODS: In this study, a genome-scale metabolic model of E. coli (iJO1366) and a metabolic modeling tool (FVSEOF) were employed to find appropriate genes to be amplified in order to improve the strain for incresed production of antiEpEX-scFv. To validate the model predictions, one target gene was overexpressed in the parent strain Escherichia coli BW25113 (DE3). RESULTS: For improving scFv production, we applied the FVSEOF method to identify a number of potential genetic engineering targets. These targets were found to be localized in the glucose uptake system and pentose phosphate pathway. From the predicted targets, the glk gene encoding glucokinase was chosen to be overexpressed in the parent strain Escherichia coli BW25113 (DE3). By overexpressing glk, the growth capacity of the recombinant E. coli strain was recovered. Moreover, the engineered strain with glk overexpression successfully led to increased scFv production. CONCLUSION: The genome-scale metabolic modeling can be considered for the improvement of the production of other recombinant proteins.


Assuntos
Escherichia coli , Engenharia Metabólica , Anticorpos de Cadeia Única , Biomarcadores/metabolismo , Molécula de Adesão da Célula Epitelial/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Glucoquinase , Glucose/metabolismo , Engenharia Metabólica/métodos , Proteínas Recombinantes/metabolismo , Anticorpos de Cadeia Única/biossíntese , Anticorpos de Cadeia Única/metabolismo
12.
J Immunol ; 209(8): 1586-1594, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36104110

RESUMO

Lymphocyte activation gene 3 protein (LAG3; CD223) is an inhibitory receptor that is highly upregulated on exhausted T cells in tumors and chronic viral infection. Consequently, LAG3 is now a major immunotherapeutic target for the treatment of cancer, and many mAbs against human (h) LAG3 (hLAG3) have been generated to block its inhibitory activity. However, little or no information is available on the epitopes they recognize. We selected a panel of seven therapeutic mAbs from the patent literature for detailed characterization. These mAbs were expressed as Fab or single-chain variable fragments and shown to bind hLAG3 with nanomolar affinities, as measured by biolayer interferometry. Using competitive binding assays, we found that the seven mAbs recognize four distinct epitopes on hLAG3. To localize the epitopes, we carried out epitope mapping using chimeras between hLAG3 and mouse LAG3. All seven mAbs are directed against the first Ig-like domain (D1) of hLAG3, despite their different origins. Three mAbs almost exclusively target a unique 30-residue loop of D1 that forms at least part of the putative binding site for MHC class II, whereas four mainly recognize D1 determinants outside this loop. However, because all the mAbs block binding of hLAG3 to MHC class II, each of the epitopes they recognize must at least partially overlap the MHC class II binding site.


Assuntos
Antígenos CD/imunologia , Anticorpos de Cadeia Única , Animais , Anticorpos Monoclonais , Mapeamento de Epitopos , Epitopos , Humanos , Camundongos , Anticorpos de Cadeia Única/metabolismo , Linfócitos T , Proteína do Gene 3 de Ativação de Linfócitos
13.
Front Immunol ; 13: 991092, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36119032

RESUMO

Ciltacabtagene autoleucel (also known as cilta-cel) is a chimeric antigen receptor (CAR) T-cell therapy that targets B-cell maturation antigen (BCMA) on the surface of cancer cells in B cell malignancies, such as multiple myeloma (MM). It is a second-generation CAR that is outfitted with an ectodomain comprising two BCMA-binding single chain variable fragment (ScFv) domains, a transmembrane domain, and an endodomain possessing CD3ζ and 4-1BB. Cilta-cel is an autologous, gene-edited CAR T-cell that is prepared by collecting and modifying the recipient's T-cells to create a patient personalized treatment in the laboratory to be infused back. This CAR T-cell product exceptionally entails CARs with two BCMA-targeting single-domain antibodies that detect two epitopes of BCMA expressed on the malignant cells of MM. Cilta-cel is the current addition to the treatment armamentarium of relapsed or refractory (r/r) MM after its approval by the FDA on February 28, 2022, based on the results of the Phase 1b/2 CARTITUDE-1 study. It was the second approved anti-BCMA CAR T-cell product after idecabtagene vicleucel (ide-cel) to treat myeloma patients. It induces early, deep, and long-lasting responses with a tolerable safety profile in r/r MM. Cilta-cel-treated myeloma patients may potentially experience adverse effects ranging from mild to life-threatening, but they are mostly manageable toxicities. Besides, it has a consistent safety profile upon a longer follow-up of patients. Cilta-cel generally outperforms ide cel in terms of efficacy in MM, but shows comparable adverse events. This review highlights the current updates on cilta-cel efficacy, adverse events, comparison with ide-cel, and its future direction in the treatment of MM.


Assuntos
Mieloma Múltiplo , Receptores de Antígenos Quiméricos , Anticorpos de Cadeia Única , Anticorpos de Domínio Único , Antígeno de Maturação de Linfócitos B , Ensaios Clínicos Fase I como Assunto , Ensaios Clínicos Fase II como Assunto , Epitopos/metabolismo , Humanos , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/metabolismo , Anticorpos de Domínio Único/metabolismo , Linfócitos T
14.
Bioconjug Chem ; 33(9): 1595-1601, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-35944553

RESUMO

Efficient and cell-specific delivery of DNA is essential for the effective and safe use of gene delivery technologies. Consequently, a large variety of technologies have been developed and applied in a wide range of ex vivo and in vivo applications, including multiple approaches based on viral vectors. However, widespread success of a technology is largely determined by the versatility of the method and the ease of use. The rationally designed adapter technology previously developed redirects widely used human adenovirus serotype 5 (HAdV-C5) to a defined cell population, by binding and blocking the adenoviral knob tropism while simultaneously allowing fusions of an N-terminal retargeting module. Here we expand modularity, and thus applicability of this adapter technology, by extending the nature of the cell-binding portion. We report successful receptor-specific transduction mediated by a retargeting module consisting of either a DARPin, a single-chain variable fragment (scFv) of an antibody, a peptide, or a small molecule ligand. Furthermore, we show that an adapter can be engineered to carry more than one specificity, allowing dual targeting. Specific HAdV-C5 retargeting was thus demonstrated to human epidermal growth factor receptor 2 (HER2), human folate receptor α, and neurotensin receptor 1, effective at vector concentrations as low as a multiplicity of infection of 2.5. Therefore, we report a modular design which allows plug-and-play combinations of different binding modules, leading to efficient and specific mono- or dual-targeting while circumventing tedious optimization procedures. This extends the technology to combinational applications of cell-specific binding, supporting research in gene therapy, synthetic biology, and biotechnology.


Assuntos
Adenoviridae , Anticorpos de Cadeia Única , Adenoviridae/genética , Receptor 1 de Folato/metabolismo , Terapia Genética , Vetores Genéticos , Humanos , Ligantes , Receptores de Neurotensina/metabolismo , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/metabolismo
15.
Fish Shellfish Immunol ; 127: 508-520, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35768048

RESUMO

White spot syndrome virus (WSSV) is extremely pathogenic and causes huge economic losses in the shrimp farming industry. Neutralizing antibodies against WSSV is expected to be an effective means of preventing infection with the virus. In the present study, eight monoclonal antibodies (mAbs) against VP28 were developed by immunizing BALB/c mice with WSSV-VP28 recombinant protein. Among them, three mAbs named 3B7, 2G3 and 5D2 were determined to be able to delay the mortality of WSSV-infected shrimp in vivo neutralization assay, suggesting their neutralizing ability against WSSV infection. Immunoblotting results showed that the three mAbs reacted specifically with native VP28 of WSSV, and could also recognize the virions in the gills of WSSV-infected shrimp by IFA. Furthermore, the single chain variable fragment (scFv) genes specific for WSSV-VP28 were cloned from the three hybridoma cells and expressed in Escherichia coli. After purification and refolding, three biologically active scFv recombinant proteins were all capable of recognizing the native VP28 of WSSV and delayed the mortality of WSSV-infected shrimp, indicating their neutralizing capacity against WSSV. Subsequently, the eukaryotic expression plasmids of three scFv genes were constructed and the transcriptional properties of expression vectors in shrimp were analyzed. Animal experiments also proved that the scFv eukaryotic expression plasmids were able to partially neutralize WSSV infection. Thus, the production of neutralizing mAb and recombinant scFv antibodies against WSSV has a promising therapeutic potential in prevention and treatment of white spot disease of shrimp.


Assuntos
Penaeidae , Doenças dos Roedores , Anticorpos de Cadeia Única , Viroses , Vírus da Síndrome da Mancha Branca 1 , Animais , Anticorpos Monoclonais/metabolismo , Camundongos , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/metabolismo , Proteínas do Envelope Viral
16.
Breast Cancer Res ; 24(1): 39, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35659040

RESUMO

BACKGROUND: Chimeric antigen receptor (CAR)-T cells can induce powerful immune responses in patients with hematological malignancies but have had limited success against solid tumors. This is in part due to the immunosuppressive tumor microenvironment (TME) which limits the activity of tumor-infiltrating lymphocytes (TILs) including CAR-T cells. We have developed a next-generation armored CAR (F i-CAR) targeting receptor tyrosine kinase-like orphan receptor 1 (ROR1), which is expressed at high levels in a range of aggressive tumors including poorly prognostic triple-negative breast cancer (TNBC). The F i-CAR-T is designed to release an anti-PD-1 checkpoint inhibitor upon CAR-T cell activation within the TME, facilitating activation of CAR-T cells and TILs while limiting toxicity. METHODS: To bolster potency, we developed a F i-CAR construct capable of IL-2-mediated, NFAT-induced secretion of anti-PD-1 single-chain variable fragments (scFv) within the tumor microenvironment, following ROR1-mediated activation. Cytotoxic responses against TNBC cell lines as well as levels and binding functionality of released payload were analyzed in vitro by ELISA and flow cytometry. In vivo assessment of potency of F i-CAR-T cells was performed in a TNBC NSG mouse model. RESULTS: F i-CAR-T cells released measurable levels of anti-PD-1 payload with 5 h of binding to ROR1 on tumor and enhanced the cytotoxic effects at challenging 1:10 E:T ratios. Treatment of established PDL1 + TNBC xenograft model with F i-CAR-T cells resulted in significant abrogation in tumor growth and improved survival of mice (71 days), compared to non-armored CAR cells targeting ROR1 (F CAR-T) alone (49 days) or in combination with systemically administered anti-PD-1 antibody (57 days). Crucially, a threefold increase in tumor-infiltrating T cells was observed with F i-CAR-T cells and was associated with increased expression of genes related to cytotoxicity, migration and proliferation. CONCLUSIONS: Our next-generation of ROR1-targeting inducible armored CAR platform enables the release of an immune stimulating payload only in the presence of target tumor cells, enhancing the therapeutic activity of the CAR-T cells. This technology provided a significant survival advantage in TNBC xenograft models. This coupled with its potential safety attributes merits further clinical evaluation of this approach in TNBC patients.


Assuntos
Receptores de Antígenos Quiméricos , Anticorpos de Cadeia Única , Neoplasias de Mama Triplo Negativas , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/metabolismo , Linfócitos T , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/terapia , Microambiente Tumoral
17.
J Biol Chem ; 298(7): 102097, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35660020

RESUMO

Hepatitis B virus (HBV) infection is a major global health problem with no established cure. Dedicator of cytokinesis 11 (DOCK11), known as a guanine nucleotide exchange factor (GEF) for Cdc42, is reported to be essential for the maintenance of HBV. However, potential therapeutic strategies targeting DOCK11 have not yet been explored. We have previously developed an in vitro virus method as a more efficient tool for the analysis of proteomics and evolutionary protein engineering. In this study, using the in vitro virus method, we screened and identified a novel antiasialoglycoprotein receptor (ASGR) antibody, ASGR3-10M, and a DOCK11-binding peptide, DCS8-42A, for potential use in HBV infection. We further constructed a fusion protein (10M-D42AN) consisting of ASGR3-10M, DCS8-42A, a fusogenic peptide, and a nuclear localization signal to deliver the peptide inside hepatocytes. We show using immunofluorescence staining that 10M-D42AN was endocytosed into early endosomes and released into the cytoplasm and nucleus. Since DCS8-42A shares homology with activated cdc42-associated kinase 1 (Ack1), which promotes EGFR endocytosis required for HBV infection, we also found that 10M-D42AN inhibited endocytosis of EGFR and Ack1. Furthermore, we show 10M-D42AN suppressed the function of DOCK11 in the host DNA repair system required for covalently closed circular DNA synthesis and suppressed HBV proliferation in mice. In conclusion, this study realizes a novel hepatocyte-specific drug delivery system using an anti-ASGR antibody, a fusogenic peptide, and DOCK11-binding peptide to provide a novel treatment for HBV.


Assuntos
Sistemas de Liberação de Medicamentos , Fatores de Troca do Nucleotídeo Guanina , Vírus da Hepatite B , Hepatite B , Anticorpos de Cadeia Única , Animais , DNA Circular/genética , Receptores ErbB/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Hepatite B/tratamento farmacológico , Vírus da Hepatite B/patogenicidade , Vírus da Hepatite B/fisiologia , Hepatócitos/metabolismo , Hepatócitos/virologia , Humanos , Camundongos , Peptídeos/metabolismo , Anticorpos de Cadeia Única/metabolismo , Replicação Viral/genética
18.
Sci Rep ; 12(1): 6719, 2022 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-35468972

RESUMO

Domain 1 of CD147 participates in matrix metalloproteinase (MMP) production and is a candidate for targeted therapy to prevent cancer invasion and metastasis. A functional mouse anti-CD147 monoclonal antibody, M6-1B9, was found to recognize domain 1 of CD147, and its respective mouse single-chain variable fragment (ScFvM61B9) was subsequently generated. The EDLGS epitope candidate for M6-1B9 was identified using the phage display peptide technique in this study. For future clinical applications, humanized ScFv specific to domain 1 of CD147 (HuScFvM61B9) was partially adopted from the hypervariable sequences of parental mouse ScFvM61B9 and grafted onto suitable human immunoglobulin frameworks. Molecular modelling and simulation were performed in silico to generate the conformational structure of HuScFvM61B9. These results elucidated the amino acid residues that contributed to the interactions between CDRs and the epitope motif. The expressed HuScFvM61B9 specifically interacted with CD147 at the same epitope as the original mAb, M6-1B9, and retained immunoreactivity against CD147 in SupT1 cells. The reactivity of HuScFvM61B9 was confirmed using CD147 knockout Jurkat cells. In addition, the inhibitory effect of HuScFvM61B9 on OKT3-induced T-cell proliferation as M6-1B9 mAb was preserved. As domain 1 is responsible for cancer invasion and metastasis, HuScFvM61B9 would be a candidate for cancer targeted therapy in the future.


Assuntos
Anticorpos de Cadeia Única , Animais , Epitopos , Humanos , Células Jurkat , Ativação Linfocitária , Camundongos , Anticorpos de Cadeia Única/metabolismo
19.
ACS Chem Biol ; 17(2): 404-413, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35050570

RESUMO

Therapeutic antibodies have become one of the most widely used classes of biotherapeutics due to their unique antigen specificity and their ability to be engineered against diverse disease targets. There is significant interest in utilizing truncated antibody fragments as therapeutics, as their small size affords favorable properties such as increased tumor penetration as well as the ability to utilize lower-cost prokaryotic production methods. Their small size and simple architecture, however, also lead to rapid blood clearance, limiting the efficacy of these potentially powerful therapeutics. A common approach to circumvent these limitations is to enable engagement with the half-life extending neonatal Fc receptor (FcRn). This is usually achieved via fusion with a large Fc domain, which negates the benefits of the antibody fragment's small size. In this work, we show that modifying antibody fragments with short FcRn-binding peptide domains that mimic native IgG engagement with FcRn enables binding and FcRn-mediated recycling and transmembrane transcytosis in cell-based assays. Further, we show that rational, single amino acid mutations to the peptide sequence have a significant impact on the receptor-mediated function and investigate the underlying structural basis for this effect using computational modeling. Finally, we report the identification of a short peptide from human serum albumin that enables FcRn-mediated function when grafted onto a single-chain variable fragment (scFv) scaffold, establishing an approach for the rational selection of short-peptide domains from full-length proteins that could enable the transfer of non-native functions to small recombinant proteins without significantly impacting their size or structure.


Assuntos
Anticorpos de Cadeia Única , Especificidade de Anticorpos , Meia-Vida , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Recém-Nascido , Receptores Fc/genética , Receptores Fc/metabolismo , Proteínas Recombinantes de Fusão/genética , Anticorpos de Cadeia Única/metabolismo , Transcitose
20.
Sci Rep ; 12(1): 1136, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35064152

RESUMO

Anti-tumor therapies that seek to exploit and redirect the cytotoxic killing and effector potential of autologous or syngeneic T cells have shown extraordinary promise and efficacy in certain clinical settings. Such cells, when engineered to express synthetic chimeric antigen receptors (CARs) acquire novel targeting and activation properties which are governed and orchestrated by, typically, antibody fragments specific for a tumor antigen of interest. However, it is becoming increasingly apparent that not all antibodies are equal in this regard, with a growing appreciation that 'optimal' CAR performance requires a consideration of multiple structural and contextual parameters. Thus, antibodies raised by classical approaches and intended for other applications often perform poorly or not at all when repurposed as CARs. With this in mind, we have explored the potential of an in vitro phenotypic CAR library discovery approach that tightly associates antibody-driven bridging of tumor and effector T cells with an informative and functionally relevant CAR activation reporter signal. Critically, we demonstrate the utility of this enrichment methodology for 'real world' de novo discovery by isolating several novel anti-mesothelin CAR-active scFv candidates.


Assuntos
Neoplasias/terapia , Receptores de Antígenos Quiméricos/isolamento & purificação , Linfócitos T Citotóxicos/imunologia , Linhagem Celular Tumoral , Biblioteca Gênica , Células HEK293 , Voluntários Saudáveis , Humanos , Imunoterapia Adotiva/métodos , Neoplasias/imunologia , Neoplasias/patologia , Cultura Primária de Células , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/imunologia , Anticorpos de Cadeia Única/imunologia , Anticorpos de Cadeia Única/metabolismo , Linfócitos T Citotóxicos/metabolismo , Linfócitos T Citotóxicos/transplante
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA