Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
1.
Hum Immunol ; 85(5): 111090, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39214066

RESUMO

Breast cancer is considered as the most common malignancy in women and the second leading cause of death related to cancer. Recombinant DNA technologies accelerated the development of antibody-based cancer therapy, which is effective in a broad range of cancers. The objective of the present study was to perform a systematic review on breast cancer immunotherapy using single-chain fragment variable (scFv) antibody formats. Searches were performed up to March 2023 using PubMed, Scopus, and Web of Science (ISI) databases. Three reviewers independently assessed study eligibility, data extraction, and evaluated the methodological quality of included primary studies. Different immunotherapy approaches have been identified and the most common approaches were scFv-conjugates, followed by simple scFvs and chimeric antigen receptor (CAR) therapy, respectively. Among breast cancer antigens, HER superfamily, CD family, and EpCAM were applied as the most important breast cancer immunotherapy targets. The present study shed more lights on scFv-based breast cancer immunotherapy approaches.


Assuntos
Neoplasias da Mama , Imunoterapia , Anticorpos de Cadeia Única , Humanos , Anticorpos de Cadeia Única/imunologia , Anticorpos de Cadeia Única/uso terapêutico , Neoplasias da Mama/terapia , Neoplasias da Mama/imunologia , Feminino , Imunoterapia/métodos , Antígenos de Neoplasias/imunologia , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/genética , Imunoterapia Adotiva/métodos , Animais
2.
Int Immunopharmacol ; 136: 112273, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38810311

RESUMO

Cholangiocarcinoma (CCA) presents a significant clinical challenge which is often identified in advanced stages, therby restricting the effectiveness of surgical interventions for most patients. The high incidence of cancer recurrence and resistance to chemotherapy further contribute to a bleak prognosis and low survival rates. To address this pressing need for effective therapeutic strategies, our study focuses on the development of an innovative cellular immunotherapy, specifically utilizing chimeric antigen receptor (CAR)-engineered natural killer (NK) cells designed to target the cMET receptor tyrosine kinase. In this investigation, we initiated the screening of a phage library displaying human single-chain variable fragment (ScFv) to identify novel ScFv molecules with specificity for cMET. Remarkably, ScFv11, ScFv72, and ScFv114 demonstrated exceptional binding affinity, confirmed by molecular docking analysis. These selected ScFvs, in addition to the well-established anti-cMET ScFvA, were integrated into a CAR cassette harboring CD28 transmembrane region-41BB-CD3ζ domains. The resulting anti-cMET CAR constructs were transduced into NK-92 cells, generating potent anti-cMET CAR-NK-92 cells. To assess the specificity and efficacy of these engineered cells, we employed KKU213A cells with high cMET expression and KKU055 cells with low cMET levels. Notably, co-culture of anti-cMET CAR-NK-92 cells with KKU213A cells resulted in significantly increased cell death, whereas no such effect was observed with KKU055 cells. In summary, our study identified cMET as a promising therapeutic target for CCA. The NK-92 cells, armed with the anti-cMET CAR molecule, have shown strong ability to kill cancer cells specifically, indicating their potential as a promising treatment for CCA in the future.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Células Matadoras Naturais , Proteínas Proto-Oncogênicas c-met , Receptores de Antígenos Quiméricos , Anticorpos de Cadeia Única , Humanos , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/uso terapêutico , Anticorpos de Cadeia Única/imunologia , Colangiocarcinoma/terapia , Colangiocarcinoma/imunologia , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Células Matadoras Naturais/imunologia , Linhagem Celular Tumoral , Neoplasias dos Ductos Biliares/terapia , Neoplasias dos Ductos Biliares/imunologia , Proteínas Proto-Oncogênicas c-met/metabolismo , Proteínas Proto-Oncogênicas c-met/imunologia , Imunoterapia Adotiva/métodos , Imunoterapia/métodos , Medicina de Precisão
3.
Int Immunopharmacol ; 132: 111926, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38552297

RESUMO

Mortality due to malignant tumors is one of the major factors affecting the life expectancy of the global population. Therapeutic antibodies are a cutting-edge treatment method for restricting tumor growth. B7-H3 is highly expressed in tumor tissues, but rarely in normal tissues. B7-H3 is closely associated with poor prognosis in patients with tumors. B7-H3 is an important target for antitumor therapy. In this study, the fully human anti-B7H3 single-chain antibodies (scFvs) were isolated and screened from the fully human phage immune library with B7H3 as the target. The antibodies screened from a fully human phage library had low immunogenicity and high affinity, which was more beneficial for clinical application. Leveraging B7-H3 scFvs as a foundation, we constructed two distinct recombinant antibody formats, scFv-Fc and IgG1, characterized by elevated affinity and a prolonged half-life. The results demonstrated that the recombinant antibodies had high specificity and affinity for the B7-H3 antigen and inhibited tumor cell growth by enhancing the ADCC. After treatment with anti-B7H3 recombinant antibody, the number of infiltrating T cells in the tumor increased and the secretion of IFN- γ by infiltrating T cells increased in vivo. Additionally, the use of pleural fluid samples obtained from tumor-afflicted patients revealed the ability of anti-B7-H3 recombinant antibodies to reverse CD8+ T cell exhaustion. In summary, we screened the fully human anti-B7H3 recombinant antibodies with specificity and high affinity that increase immune cell infiltration and IFN-γ secretion, thereby inhibiting tumor cell growth to a certain extent. This finding provides a theoretical basis for the development of therapeutic tumor antibodies and could help promote further development of antibody-based drugs.


Assuntos
Antígenos B7 , Anticorpos de Cadeia Única , Antígenos B7/imunologia , Antígenos B7/metabolismo , Antígenos B7/genética , Antígenos B7/antagonistas & inibidores , Humanos , Animais , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/imunologia , Anticorpos de Cadeia Única/farmacologia , Anticorpos de Cadeia Única/uso terapêutico , Linhagem Celular Tumoral , Camundongos , Feminino , Linfócitos T/imunologia , Linfócitos do Interstício Tumoral/imunologia , Antineoplásicos Imunológicos/farmacologia , Antineoplásicos Imunológicos/uso terapêutico , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/uso terapêutico , Camundongos Endogâmicos C57BL , Masculino , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Interferon gama/metabolismo , Interferon gama/imunologia , Citotoxicidade Celular Dependente de Anticorpos
4.
J Nanobiotechnology ; 21(1): 357, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37784150

RESUMO

Colorectal cancer (CRC) is one of the deadliest cancers worldwide, with the 5 year survival rate in metastatic cases limited to 12%. The design of targeted and effective therapeutics remains a major unmet clinical need in CRC treatment. Carcinoembryonic antigen (CEA), a glycoprotein overexpressed in most colorectal tumors, may constitute a promising molecule for generating novel CEA-targeted therapeutic strategies for CRC treatment. Here, we developed a smart nanoplatform based on chemical conjugation of an anti-CEA single-chain variable fragment (scFv), MFE-23, with PLGA-PEG polymers to deliver the standard 5-Fluorouracil (5-FU) chemotherapy to CRC cells. We confirmed the specificity of the developed CEA-targeted NPs on the internalization by CEA-expressing CRC cells, with an enhance of threefold in the cell uptake. Additionally, CEA-targeted NPs loaded with 5-FU induced higher cytotoxicity in CEA-expressing cells, after 24 h and 48 h of treatment, reinforcing the specificity of the targeted NPs. Lastly, the safety of CEA-targeted NPs loaded with 5-FU was evaluated in donor-isolated macrophages, with no relevant impact on their metabolic activity nor polarization. Altogether, this proof of concept supports the CEA-mediated internalization of targeted NPs as a promising chemotherapeutic strategy for further investigation in different CEA-associated cancers and respective metastatic sites.Authors: Please confirm if the author names are presented accurately and in the correct sequence (given name, middle name/initial, family name). Author 1 Given name: [Maria José] Last name [Silveira]. Author 7 Given name: [Maria José] Last name [Oliveira]. Also, kindly confirm the details in the metadata are correctokAffiliations: Please check and confirm that the authors and their respective affiliations have been correctly identified and amend if necessary.ok.


Assuntos
Neoplasias Colorretais , Nanopartículas , Anticorpos de Cadeia Única , Humanos , Antígeno Carcinoembrionário/metabolismo , Anticorpos de Cadeia Única/uso terapêutico , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Neoplasias Colorretais/metabolismo , Nanopartículas/química
5.
Chem Biol Drug Des ; 101(6): 1406-1415, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36862057

RESUMO

Antibody-directed drugs for targeted cancer treatment have become a hot topic in new anticancer drug development; however, antibody-fused therapeutic peptides were rarely documented. Herein, we designed a fusion protein with a cetuximab-derived single-chain variable fragment targeting epidermal growth factor receptor (anti-EGFR scFv) and the anticancer lytic peptide (ACLP) ZXR2, connected by a linker (G4 S)3 and MMP2 cleavage site. The anti-EGFR scFv-ZXR2 recombinant protein showed specific anticancer activity on EGFR-overexpressed cancer cell lines in a concentration- and time-dependent manner, as it can bind to EGFR on cancer cell surfaces. This fusion protein caused cell membrane lysis as ZXR2, and showed improved stability in serum compared with ZXR2. These results suggest that scFv-ACLP fusion proteins may be potential anticancer drug candidates for targeted cancer treatment, which also provide a feasible idea for targeted drug design.


Assuntos
Antineoplásicos , Neoplasias , Anticorpos de Cadeia Única , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Cetuximab/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Proteínas Recombinantes de Fusão/uso terapêutico , Proteínas Recombinantes/uso terapêutico , Anticorpos de Cadeia Única/farmacologia , Anticorpos de Cadeia Única/uso terapêutico
6.
Int Immunopharmacol ; 113(Pt B): 109442, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36435066

RESUMO

Adoptive T cell therapy using second-generation anti-CD19 chimeric antigen receptor T cells (anti-CD19-CAR2-T) induced complete remission in many heavily pretreated patients with B cell acute lymphoblastic leukemia (B-ALL) or diffuse large B cell lymphoma (DLBCL). However, poor clinical efficacy was observed in treating aggressive B cell lymphomas (BCL). The limited T cell function was reported by programmed cell death protein 1 ligand (PD-L1) expressed on BCL cells bound to the PD-1 receptor on T cells. To overcome this problem, we generated anti-CD19-CAR4-T cells secreting anti-PD-L1 single-chain variable fragment (scFv), namely anti-CD19-CAR5-T cells, and evaluated their functions in vitro. Both anti-CD19-CAR-T cells contain an anti-CD19 scFv derived from a monoclonal antibody, FMC63, linked to CD28/4-1BB/CD27/CD3ζ. The secreting anti-PD-L1 scFv is derived from atezolizumab. Our results showed that secreted anti-PD-L1 scFv could bind to PD-L1 and block the binding of anti-PD-L1 monoclonal antibodies on PD-L1high tumor cells. Anti-CD19-CAR4-T and anti-CD19-CAR5-T cells efficiently killed CD19+ target tumor cells in two-dimensional (2D) and three-dimensional (3D) co-culture systems. However, anti-CD19-CAR5-T cells demonstrated superior proliferative ability. Interestingly, at a low effector (E) to target (T) ratio of 0.5:1, anti-CD19-CAR5-T cells showed higher cytotoxicity against CD19+/PD-L1high cells compared to that of anti-CD19-CAR4-T cells. The cytotoxicity of anti-CD19-CAR4-T cells against CD19+/PD-L1high could be restored by adding anti-PD-L1 scFv. Our findings demonstrate the combination antitumor efficiency of anti-CD19-CAR4-T cells and anti-PD-L1 scFv against CD19+/PD-L1high tumors. As such, anti-CD19-CAR5-T cells should be further investigated in vivo antitumor efficiency and clinical trials as a treatment for aggressive B cell lymphoma.


Assuntos
Receptores de Antígenos Quiméricos , Anticorpos de Cadeia Única , Humanos , Anticorpos de Cadeia Única/uso terapêutico , Ligantes , Linfócitos T , Antígenos CD19 , Proteínas Adaptadoras de Transdução de Sinal
7.
Nat Med ; 28(9): 1802-1812, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35927581

RESUMO

Clearing amyloid-ß (Aß) through immunotherapy is one of the most promising therapeutic approaches to Alzheimer's disease (AD). Although several monoclonal antibodies against Aß have been shown to substantially reduce Aß burden in patients with AD, their effects on improving cognitive function remain marginal. In addition, a significant portion of patients treated with Aß-targeting antibodies experience brain edema and microhemorrhage associated with antibody-mediated Fc receptor activation in the brain. Here, we develop a phagocytosis inducer for Aß consisting of a single-chain variable fragment of an Aß-targeting monoclonal antibody fused with a truncated receptor binding domain of growth arrest-specific 6 (Gas6), a bridging molecule for the clearance of dead cells via TAM (TYRO3, AXL, and MERTK) receptors. This chimeric fusion protein (αAß-Gas6) selectively eliminates Aß plaques through TAM receptor-dependent phagocytosis without inducing NF-kB-mediated inflammatory responses or reactive gliosis. Furthermore, αAß-Gas6 can induce synergistic clearance of Aß by activating both microglial and astrocytic phagocytosis, resulting in better behavioral outcomes with substantially reduced synapse elimination and microhemorrhage in AD and cerebral amyloid angiopathy model mice compared with Aß antibody treatment. Our results suggest that αAß-Gas6 could be a novel immunotherapeutic agent for AD that overcomes the side effects of conventional antibody therapy.


Assuntos
Doença de Alzheimer , Anticorpos de Cadeia Única , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/terapia , Peptídeos beta-Amiloides/metabolismo , Animais , Anti-Inflamatórios/uso terapêutico , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , NF-kappa B , Placa Amiloide/tratamento farmacológico , Receptores Fc/uso terapêutico , Anticorpos de Cadeia Única/uso terapêutico , c-Mer Tirosina Quinase
8.
Cancer Commun (Lond) ; 42(9): 804-827, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35822503

RESUMO

The efficacy and specificity of conventional monoclonal antibody (mAb) drugs in the clinic require further improvement. Currently, the development and application of novel antibody formats for improving cancer immunotherapy have attracted much attention. Variable region-retaining antibody fragments, such as antigen-binding fragment (Fab), single-chain variable fragment (scFv), bispecific antibody, and bi/trispecific cell engagers, are engineered with humanization, multivalent antibody construction, affinity optimization and antibody masking for targeting tumor cells and killer cells to improve antibody-based therapy potency, efficacy and specificity. In this review, we summarize the application of antibody variable region engineering and discuss the future direction of antibody engineering for improving cancer therapies.


Assuntos
Neoplasias , Anticorpos de Cadeia Única , Anticorpos Monoclonais/uso terapêutico , Humanos , Imunoterapia , Células Matadoras Naturais , Neoplasias/terapia , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/uso terapêutico
9.
Am J Hematol ; 97(6): 711-718, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35179242

RESUMO

CD19-targeted chimeric antigen receptor T (CAR-T) cells using murine single-chain variable fragment (scFv) has shown substantial clinical efficacy in treating relapsed/refractory acute lymphoblastic leukemia (R/R ALL). However, potential immunogenicity of the murine scFv domain may limit the persistence of CAR-T cells. In this study, we treated 52 consecutive subjects with R/R ALL with humanized CD19-specific CAR-T cells (hCART19s). Forty-six subjects achieved complete remission (CR) (N = 43) or CR with incomplete count recovery (CRi) (N = 3) within 1 month post infusion. During the follow-up with a median time of 20 months, the 1-year cumulative incidence of relapse was 25% (95% confidence interval [CI] 13-46), and 1-year event-free survival was 45% (95% CI 29-60). To the cutoff date, 20 patients presented CD19+ relapse and 2 had CD19- relapse. Among the 22 relapsed patients, 14 had treatment-mediated and treatment-boosted antidrug antibodies (ADA) as detected in a sensitive and specific cell-based assay. ADA positivity was correlated with the disease relapse risk. ADA-positive patients had a significantly lower CAR copy number than ADA-negative patients at the time of recurrence (p < .001). In conclusion, hCART19s therapy is safe and highly active in R/R ALL patients, and the hCART19s treatment could induce the emergence of ADA, which is related to the recurrence of the primary disease.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Receptores de Antígenos Quiméricos , Anticorpos de Cadeia Única , Proteínas Adaptadoras de Transdução de Sinal , Animais , Antígenos CD19 , Contagem de Células , Humanos , Camundongos , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/uso terapêutico
10.
J Biol Chem ; 298(4): 101772, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35218775

RESUMO

Dengue is one of the most dominant arthropod-borne viral diseases, infecting at least 390 million people every year throughout the world. Despite this, there is no effective treatment against dengue, and the only available vaccine has already been withdrawn owing to the significant adverse effects. Therefore, passive immunotherapy using monoclonal antibodies is now being sought as a therapeutic option. To date, many dengue monoclonal antibodies have been identified, most of which are serotype-specific, and only a few of which are cross-reactive. Furthermore, antibodies that cross-react within serotypes are weakly neutralizing and frequently induce antibody-dependent enhancement, which promotes viral entry and replication. Therefore, broadly neutralizing antibodies with no risk of antibody-dependent enhancement are required for the treatment of dengue. Here, we developed a single-chain variable fragment (scFv) antibody from an anti-fusion loop E53 antibody (PDB: 2IGF). We introduced previously predicted favorable complementarity-determining region (CDR) mutations into the gene encoding the scFv antibody for affinity maturation, and the resultant variants were tested in vitro against the highly conserved fusion and bc epitope of the dengue virus envelope protein. We show some of these scFv variants with two to three substitution mutations in three different CDRs possess affinity constants (KD) ranging from 20 to 200 nM. The scFv-mutant15, containing D31L, Y105W, and S227W substitutions, showed the lowest affinity constant, (KD = 24 ± 7 nM), approximately 100-fold lower than its parental construct. We propose that the scFv-derivative antibody may be a good candidate for the development of an effective and safe immunotherapy.


Assuntos
Anticorpos Antivirais , Vírus da Dengue , Dengue , Epitopos , Anticorpos de Cadeia Única , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Dengue/terapia , Vírus da Dengue/imunologia , Epitopos/imunologia , Humanos , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/imunologia , Anticorpos de Cadeia Única/uso terapêutico , Proteínas do Envelope Viral/imunologia
11.
Mol Pharm ; 18(11): 4131-4139, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34658237

RESUMO

Methods to optimize the solution behavior of therapeutic proteins are frequently time-consuming, provide limited information, and often use milligram quantities of material. Here, we present a simple, versatile method that provides valuable information to guide the identification and comparison of formulation conditions for, in principle, any biopharmaceutical drug. The subject protein is incubated with a designed synthetic peptide microarray; the extent of binding to each peptide is dependent on the solution conditions. The array is washed, and the adhesion of the subject protein is detected using a secondary antibody. We exemplify the method using a well-characterized human single-chain Fv and a selection of human monoclonal antibodies. Correlations of peptide adhesion profiles can be used to establish quantitative relationships between different solution conditions, allowing subgrouping into dendrograms. Multidimensional reduction methods, such as t-distributed stochastic neighbor embedding, can be applied to compare how different monoclonals vary in their adhesion properties under different solution conditions. Finally, we screened peptide binding profiles using a selection of monoclonal antibodies for which a range of biophysical measurements were available under specified buffer conditions. We used a neural network method to train the data against aggregation temperature, kD, percentage recovery after incubation at 25 °C, and melting temperature. The results demonstrate that peptide binding profiles can indeed be effectively trained on these indicators of protein stability and self-association in solution. The method opens up multiple possibilities for the application of machine learning methods in therapeutic protein formulation.


Assuntos
Anticorpos Monoclonais/química , Produtos Biológicos/química , Peptídeos/química , Análise Serial de Proteínas/métodos , Anticorpos de Cadeia Única/química , Anticorpos Monoclonais/uso terapêutico , Produtos Biológicos/uso terapêutico , Química Farmacêutica/métodos , Humanos , Aprendizado de Máquina , Estabilidade Proteica , Anticorpos de Cadeia Única/uso terapêutico
12.
J Hematol Oncol ; 14(1): 152, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34556152

RESUMO

Chimeric antigen receptor T-cell (CAR-T) therapy has shown tremendous success in eradicating hematologic malignancies. However, this success has not yet been extrapolated to solid tumors due to the limited infiltration and persistence of CAR-T cells in the tumor microenvironment (TME). In this study, we screened a novel anti-CD70 scFv and generated CD70 CAR-T cells that showed effective antitumor functions against CD70+ renal carcinoma cells (RCCs) both in vitro and in vivo. We further evaluated the effect and explored the molecular mechanism of a PARP inhibitor (PARPi) in CAR-T cell immunotherapy by administering the PARPi to mouse xenografts model derived from human RCC cells. Treatment with the PARPi promoted CAR-T cell infiltration by stimulating a chemokine milieu that promoted CAR-T cell recruitment and the modulation of immunosuppression in the TME. Moreover, our data demonstrate that PARPi modulates the TME by activating the cGAS-STING pathway, thereby altering the balance of immunostimulatory signaling and enabling low-dose CAR-T cell treatment to induce effective tumor regression. These data demonstrate the application of CD70 CAR-T cell therapeutic strategies for RCC and the cross-talk between targeting DNA damage responses and antitumor CAR-T cell therapy. These findings provide insight into the mechanisms of PARPis in CAR-T cell therapy for RCC and suggest a promising adjuvant therapeutic strategy for CAR-T cell therapy in solid tumors.


Assuntos
Ligante CD27/antagonistas & inibidores , Carcinoma de Células Renais/terapia , Imunoterapia Adotiva/métodos , Neoplasias Renais/terapia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Anticorpos de Cadeia Única/uso terapêutico , Animais , Ligante CD27/imunologia , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/imunologia , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Humanos , Neoplasias Renais/genética , Neoplasias Renais/imunologia , Proteínas de Membrana/imunologia , Camundongos , Nucleotidiltransferases/imunologia , Transdução de Sinais
13.
Viruses ; 13(8)2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34452359

RESUMO

Tick-borne encephalitis virus (TBEV) causes 5-7 thousand cases of human meningitis and encephalitis annually. The neutralizing and protective antibody ch14D5 is a potential therapeutic agent. This antibody exhibits a high affinity for binding with the D3 domain of the glycoprotein E of the Far Eastern subtype of the virus, but a lower affinity for the D3 domains of the Siberian and European subtypes. In this study, a 2.2-fold increase in the affinity of single-chain antibody sc14D5 to D3 proteins of the Siberian and European subtypes of the virus was achieved using rational design and computational modeling. This improvement can be further enhanced in the case of the bivalent binding of the full-length chimeric antibody containing the identified mutation.


Assuntos
Anticorpos Antivirais/imunologia , Desenho Assistido por Computador , Vírus da Encefalite Transmitidos por Carrapatos/imunologia , Vírus da Encefalite Transmitidos por Carrapatos/metabolismo , Anticorpos de Cadeia Única/imunologia , Anticorpos de Cadeia Única/metabolismo , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/química , Anticorpos Antivirais/uso terapêutico , Sítios de Ligação de Anticorpos , Vírus da Encefalite Transmitidos por Carrapatos/classificação , Encefalite Transmitida por Carrapatos/imunologia , Encefalite Transmitida por Carrapatos/terapia , Humanos , Camundongos , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/uso terapêutico , Proteínas do Envelope Viral/imunologia
14.
J Immunol Res ; 2021: 5575260, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34189144

RESUMO

CD47 is a cell surface glycoprotein molecule, belonging to the immunoglobulin superfamily, binding to various proteins including integrins, thrombospondin-1, and signal regulatory protein α (SIRPα). CD47 is an important tumor antigen for the development and progression of various cancers. This study designed the chimeric antigen receptor T-cell (CAR-T) to bind to the CD47 to inhibit the expression of CD47. We used the complementarity-determining regions (CDRs) of the B6H12 mouse antibody grafted onto the IgG1 framework to create the humanized single-chain variable fragment (scFv) with linker (G4S)x3. scFv was used to design the chimeric antigen receptor with the structure CD8signal-CD47scFv-CD8a hinge-CD4TM-CD28-41BB-CD3ζ, which was then transformed into T lymphocytes by the lentivirus to create third generation of CAR-T. Results revealed that the new CAR-T cells efficiently killed A549 cancer cells. CAR-T inhibited the expression of genes involved in metastasis and invasion of cells A549 including beta actin, calreticulin, and cyclooxygenase 2 at mRNA levels.


Assuntos
Adenocarcinoma/terapia , Antígeno CD47/imunologia , Linfócitos T CD8-Positivos/fisiologia , Imunoterapia Adotiva/métodos , Neoplasias Pulmonares/terapia , Receptores de Antígenos Quiméricos/genética , Anticorpos de Cadeia Única/uso terapêutico , Células A549 , Adenocarcinoma/imunologia , Animais , Linfócitos T CD8-Positivos/transplante , Citotoxicidade Imunológica , Regulação Neoplásica da Expressão Gênica , Vetores Genéticos/genética , Células HEK293 , Humanos , Lentivirus/genética , Neoplasias Pulmonares/imunologia , Camundongos , Invasividade Neoplásica/genética , Metástase Neoplásica/genética
15.
Theranostics ; 11(13): 6293-6314, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995659

RESUMO

Radioimmunotherapy (RIT) is FDA-approved for the clinical management of liquid malignancies, however, its use for solid malignancies remains a challenge. The putative benefit of RIT lies in selective targeting of antigens expressed on the tumor surface using monoclonal antibodies, to systemically deliver cytotoxic radionuclides. The past several decades yielded dramatic improvements in the quality, quantity, recent commercial availability of alpha-, beta- and Auger Electron-emitting therapeutic radiometals. Investigators have created new or improved existing bifunctional chelators. These bifunctional chelators bind radiometals and can be coupled to antigen-specific antibodies. In this review, we discuss approaches to develop radiometal-based RITs, including the selection of radiometals, chelators and antibody platforms (i.e. full-length, F(ab')2, Fab, minibodies, diabodies, scFv-Fc and nanobodies). We cite examples of the performance of RIT in the clinic, describe challenges to its implementation, and offer insights to address gaps toward translation.


Assuntos
Radioimunoterapia/métodos , Compostos Radiofarmacêuticos/uso terapêutico , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/uso terapêutico , Antígenos de Neoplasias/imunologia , Antineoplásicos Imunológicos/administração & dosagem , Antineoplásicos Imunológicos/metabolismo , Antineoplásicos Imunológicos/uso terapêutico , Quelantes/administração & dosagem , Quelantes/metabolismo , Química Click , Ensaios Clínicos como Assunto , Fracionamento da Dose de Radiação , Sistemas de Liberação de Medicamentos , Previsões , Humanos , Fragmentos Fab das Imunoglobulinas/administração & dosagem , Fragmentos Fab das Imunoglobulinas/uso terapêutico , Linfoma não Hodgkin/radioterapia , Camundongos , Terapia de Alvo Molecular , Proteínas de Neoplasias/antagonistas & inibidores , Neoplasias Experimentais/diagnóstico por imagem , Neoplasias Experimentais/radioterapia , Especificidade de Órgãos , Medicina de Precisão , Tolerância a Radiação , Compostos Radiofarmacêuticos/administração & dosagem , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Anticorpos de Cadeia Única/administração & dosagem , Anticorpos de Cadeia Única/uso terapêutico , Anticorpos de Domínio Único/administração & dosagem , Anticorpos de Domínio Único/uso terapêutico , Radioisótopos de Ítrio/administração & dosagem , Radioisótopos de Ítrio/uso terapêutico
16.
Sci Rep ; 11(1): 10475, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34006961

RESUMO

Infection by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes COVID-19 disease. Therapeutic antibodies are being developed that interact with the viral spike proteins to limit viral infection of epithelium. We have applied a method to dramatically improve the performance of anti-SARS-CoV-2 antibodies by enhancing avidity through multimerization using simple engineering to yield tetrameric antibodies. We have re-engineered six anti-SARS-CoV-2 antibodies using the human p53 tetramerization domain, including three clinical trials antibodies casirivimab, imdevimab and etesevimab. The method yields tetrameric antibodies, termed quads, that retain efficient binding to the SARS-CoV-2 spike protein, show up to two orders of magnitude enhancement in neutralization of pseudovirus infection and retain potent interaction with virus variant of concern spike proteins. The tetramerization method is simple, general and its application is a powerful methodological development for SARS-CoV-2 antibodies that are currently in pre-clinical and clinical investigation.


Assuntos
SARS-CoV-2/metabolismo , Anticorpos de Cadeia Única/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/uso terapêutico , Reações Antígeno-Anticorpo , COVID-19/virologia , Ensaio de Imunoadsorção Enzimática , Células HEK293 , Humanos , Testes de Neutralização , Domínios Proteicos , Multimerização Proteica , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/uso terapêutico , SARS-CoV-2/imunologia , SARS-CoV-2/isolamento & purificação , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/uso terapêutico , Ressonância de Plasmônio de Superfície , Proteína Supressora de Tumor p53/química , Tratamento Farmacológico da COVID-19
17.
Lancet Haematol ; 8(6): e446-e461, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34048683

RESUMO

Chimeric antigen receptors (CAR) are fusion proteins containing an antigen-recognition domain coupled to a T-cell activation domain (eg, CD3ζ [CD247]) and to a costimulatory domain (eg, CD28 or 4-1BB [TNFRSF9, also known as CD137]). The B-cell maturation antigen (BCMA; TNFRSF17) is an attractive target for CAR T-cell therapy because it is only expressed by normal and malignant plasma cells and by a subset of mature B cells. Several trials of anti-BCMA CAR T cells have shown high-quality responses, including minimal residual disease-negativity in patients with multiple myeloma who were heavily pretreated. Phase 3 trials are currently evaluating CAR T-cell therapy versus standard-of-care regimens in patients in earlier stages of the disease. Trials are also ongoing in newly diagnosed patients with high-risk cytogenetic profiles or with residual disease after transplantation. CAR T cells targeting other multiple myeloma antigens, such as CD19, CD38, CD138 (SYND1), and SLAMF7, are also being explored. Toxicities associated with CAR T cells include cytokine-release syndrome, different types of cytopenia, infections, and neurotoxicity. Although some subsets of patients have sustained responses for more than 1 year, most patients eventually relapse, which might be related to the loss of CAR T cells, loss of antigen expression on the tumour cell surface, or to an immunosuppressive microenvironment that impairs the activity of T cells. Efforts to improve the effectiveness of CAR T-cell therapy include optimising CAR design and adapting the manufacturing process to generate cell products enriched for specific subsets of T cells (eg, early memory cells). Other strategies explored in trials include dual-antigen targeting to prevent antigen escape and rational combination therapy to enhance persistence. Several approaches are also being developed to improve the safety of CAR T-cell therapy, such as the incorporation of a suicide gene safety system.


Assuntos
Imunoterapia Adotiva , Mieloma Múltiplo/terapia , Animais , Síndrome da Liberação de Citocina/etiologia , Resistencia a Medicamentos Antineoplásicos , Humanos , Imunoterapia Adotiva/efeitos adversos , Síndromes Neurotóxicas/etiologia , Receptores de Antígenos Quiméricos/metabolismo , Receptores de Antígenos Quiméricos/uso terapêutico , Anticorpos de Cadeia Única/uso terapêutico
18.
Aging (Albany NY) ; 13(9): 13006-13022, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33910164

RESUMO

Although immunotherapy has achieved great clinical success in clinical outcomes, especially the anti-PD-1 or anti-PD-L1 antibodies, not all patients respond to anti-PD-1 immunotherapy. It is urgently required for a clinical diagnosis to develop non-invasive imaging meditated strategy for assessing the expression level of PD-L1 in tumors. In this work, a 68Ga-labeled single-domain antibody tracer, 68Ga-NOTA-Nb109, was designed for specific and noninvasive imaging of PD-L1 expression in an MC38 tumor-bearing mouse model. Comprehensive studies including Positron Emission Tomography (PET), biodistribution, blocking studies, immunohistochemistry, and immunotherapy, have been performed in differences PD-L1 expression tumor-bearing models. These results revealed that 68Ga-NOTA-Nb109 specifically accumulated in the MC38-hPD-L1 tumor. The content of this nanobody in MC38 hPD-L1 tumor and MC38 Mixed tumor was 8.2 ± 1.3, 7.3 ± 1.2, 3.7 ± 1.5, 2.3 ± 1.2%ID/g and 7.5 ± 1.4, 3.6 ± 1.7, 1.7 ± 0.6, 1.2 ± 0.5%ID/g at 0.5, 1, 1.5, 2 hours post-injection, respectively. 68Ga-NOTA-Nb109 has the potential to further noninvasive PET imaging and therapy effectiveness assessments based on the PD-L1 status in tumors. To explore the possible synergistic effects of immunotherapy combined with chemotherapy, MC38 xenografts with different sensitivity to PD-L1 blockade were established. In addition, we found that PD-1 blockade also had efficacy on the PD-L1 knockout tumors. RT-PCR and immunofluorescence analysis were used to detect the expression of PD-L1. It was observed that both mouse and human PD-L1 expressed among three types of MC38 tumors. These results suggest that PD-L1 on tumor cells affect the efficacy, but it on host myeloid cells might be essential for checkpoint blockade. Moreover, anti-PD-1 treatment activates tumor-reactive CD103+ CD39+ CD8+T cells (TILs) in tumor microenvironment.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Antígeno B7-H1/análise , Imagem Molecular/métodos , Neoplasias/tratamento farmacológico , Anticorpos de Cadeia Única/farmacologia , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral/transplante , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/imunologia , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Radioisótopos de Gálio/administração & dosagem , Radioisótopos de Gálio/farmacologia , Radioisótopos de Gálio/uso terapêutico , Técnicas de Inativação de Genes , Humanos , Camundongos , Camundongos Transgênicos , Neoplasias/diagnóstico , Neoplasias/imunologia , Tomografia por Emissão de Pósitrons/métodos , Prognóstico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/metabolismo , Anticorpos de Cadeia Única/uso terapêutico , Distribuição Tecidual , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
19.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33731480

RESUMO

Developing therapeutic agents with potent antitumor activity that spare normal tissues remains a significant challenge. Clonal loss of heterozygosity (LOH) is a widespread and irreversible genetic alteration that is exquisitely specific to cancer cells. We hypothesized that LOH events can be therapeutically targeted by "inverting" the loss of an allele in cancer cells into an activating signal. Here we describe a proof-of-concept approach utilizing engineered T cells approximating NOT-gate Boolean logic to target counterexpressed antigens resulting from LOH events in cancer. The NOT gate comprises a chimeric antigen receptor (CAR) targeting the allele of human leukocyte antigen (HLA) that is retained in the cancer cells and an inhibitory CAR (iCAR) targeting the HLA allele that is lost in the cancer cells. We demonstrate that engineered T cells incorporating such NOT-gate logic can be activated in a genetically predictable manner in vitro and in mice to kill relevant cancer cells. This therapeutic approach, termed NASCAR (Neoplasm-targeting Allele-Sensing CAR), could, in theory, be extended to LOH of other polymorphic genes that result in altered cell surface antigens in cancers.


Assuntos
Biomarcadores Tumorais , Imunoterapia , Perda de Heterozigosidade , Terapia de Alvo Molecular , Neoplasias/etiologia , Neoplasias/terapia , Alelos , Antígenos de Neoplasias/imunologia , Terapia Baseada em Transplante de Células e Tecidos , Antígenos HLA/genética , Antígenos HLA/imunologia , Humanos , Imunoterapia/métodos , Imunoterapia Adotiva , Terapia de Alvo Molecular/efeitos adversos , Terapia de Alvo Molecular/métodos , Anticorpos de Cadeia Única/farmacologia , Anticorpos de Cadeia Única/uso terapêutico
20.
Sci Rep ; 11(1): 7154, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33785781

RESUMO

Pseudomonas aeruginosa (PA) is a leading cause of nosocomial infections and death in cystic fibrosis patients. The study was conducted to evaluate the physicochemical structure, biological activity and serum stability of a recombinant anti-PcrV single chain variable antibody fragment genetically attached to the mCH3cc domain. The stereochemical properties of scFv-mCH3 (YFL001) and scFv (YFL002) proteins as well as molecular interactions towards Pseudomonas aeruginosa PcrV were evaluated computationally. The subcloned fragments encoding YFL001 and YFL002 in pET28a were expressed within the E. coli BL21-DE3 strain. After Ni-NTA affinity chromatography, the biological activity of the proteins in inhibition of PA induced hemolysis as well as cellular cytotoxicity was assessed. In silico analysis revealed the satisfactory stereochemical quality of the models as well as common residues in their interface with PcrV. The structural differences of proteins through circular dichroism spectroscopy were confirmed by NMR analysis. Both proteins indicated inhibition of ExoU positive PA strains in hemolysis of red blood cells compared to ExoU negative strains as well as cytotoxicity effect on lung epithelial cells. The ELISA test showed the longer serum stability of the YFL001 molecule than YFL002. The results were encouraging to further evaluation of these two scFv molecules in animal models.


Assuntos
Antibacterianos/farmacologia , Toxinas Bacterianas/antagonistas & inibidores , Infecção Hospitalar/tratamento farmacológico , Proteínas Citotóxicas Formadoras de Poros/antagonistas & inibidores , Infecções por Pseudomonas/tratamento farmacológico , Anticorpos de Cadeia Única/farmacologia , Antibacterianos/isolamento & purificação , Antibacterianos/uso terapêutico , Antígenos de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Linhagem Celular Tumoral , Clonagem Molecular , Simulação por Computador , Infecção Hospitalar/imunologia , Infecção Hospitalar/microbiologia , Meia-Vida , Humanos , Simulação de Acoplamento Molecular , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/imunologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/isolamento & purificação , Anticorpos de Cadeia Única/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA