Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
1.
Acta Trop ; 254: 107190, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38508372

RESUMO

Pentavalent antimonials are the mainstay treatment against different clinical forms of leishmaniasis. The emergence of resistant isolates in endemic areas has led to treatment failure. Unraveling the underlying resistance mechanism would assist in improving the treatment strategies against resistant isolates. This study aimed to investigate the RNA expression level of glutathione synthetase (GS), Spermidine synthetase (SpS), trypanothione synthetase (TryS) genes involved in trypanothione synthesis, and thiol-dependent reductase (TDR) implicated in drug reduction, in antimony-sensitive and -resistant Leishmania tropica isolates. We investigated 11 antimony-resistant and 11 antimony-sensitive L. tropica clinical isolates from ACL patients. Drug sensitivity of amastigotes was determined in mouse macrophage cell line J774A.1. The RNA expression level in the promastigote forms was analyzed by quantitative real-time PCR. The results revealed a significant increase in the average expression of GS, SpS, and TrpS genes by 2.19, 1.56, and 2.33-fold in resistant isolates compared to sensitive ones. The average expression of TDR was 1.24-fold higher in resistant isolates, which was insignificant. The highest correlation coefficient between inhibitory concentration (IC50) values and gene expression belonged to the TryS, GS, SpS, and TDR genes. Moreover, the intracellular thiol content was increased 2.17-fold in resistant isolates compared to sensitive ones and positively correlated with IC50 values. Our findings suggest that overexpression of trypanothione biosynthesis genes and increased thiol content might play a key role in the antimony resistance of L. tropica clinical isolates. In addition, the diversity of gene expression in the trypanothione system and thiol content among L. tropica clinical isolates highlighted the phenotypic heterogeneity of antimony resistance among the parasite population.


Assuntos
Antimônio , Antiprotozoários , Resistência a Medicamentos , Glutationa , Glutationa/análogos & derivados , Leishmania tropica , Espermidina/análogos & derivados , Leishmania tropica/genética , Leishmania tropica/efeitos dos fármacos , Resistência a Medicamentos/genética , Animais , Antimônio/farmacologia , Humanos , Antiprotozoários/farmacologia , Camundongos , Glutationa/metabolismo , Linhagem Celular , Macrófagos/parasitologia , Concentração Inibidora 50 , Leishmaniose Cutânea/parasitologia , Leishmaniose Cutânea/tratamento farmacológico , Feminino , Adulto , Testes de Sensibilidade Parasitária , Masculino , Reação em Cadeia da Polimerase em Tempo Real
2.
J Inorg Biochem ; 251: 112452, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38070433

RESUMO

Three gold(I) linear compounds, sharing the general formula [AuI(LPh3)], have been synthesized and characterized. The nature of the ligand has been modified by moving down among some of the elements of group 15, i.e. phosphorus, arsenic and antimony. The structures of derived compounds have been solved through XRD and the reactivity behaviour towards selected biomolecules has been investigated through a multi-technique approach involving NMR, high-resolution mass spectrometry and IR. Moreover, the biological activity of the investigated compounds has been comparatively analyzed through classical methodologies and the disclosed differences are discussed in detail.


Assuntos
Antineoplásicos , Auranofina , Auranofina/química , Antimônio/farmacologia , Ligantes , Antineoplásicos/farmacologia , Antineoplásicos/química
3.
J Biochem Mol Toxicol ; 38(1): e23548, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37867459

RESUMO

Four novel antimony (III) and bismuth(III) complexes of the kind Cl-Sb-O-C(OR)-CH(CH3 )C-NH-(CH2 )2 -NH-C(CH3 )CH:C(OR)-O [where R = -CH3 , M = Sb (1a); R = -C2 H5 , M = Sb (1b); R = -CH3, M = Bi (1c); R = -C2 H5 , M = Bi (1d)] were successfully prepared by reacting antimony(III)chloride and bismuth(III)chloride with sodium salt of ß-enamino esters in 1:1 stoichiometry, which were further structurally characterized by physicochemical and IR, 1 H, 13 C NMR spectral and mass spectrometry. Structural analysis revealed that all four derivatives of both antimony and bismuth display octahedarl geometry which has been optimized through computational studies. These derivatives along with their parent ligands were subsequently assayed in vitro for antibacterial (Bacillus subtilis, Pseudomonas aeruginosa) and antifungal (Aspergillus niger and Candida albicans) activities. Synthesized complexes were more efficacious in terms of biological activities as compared to parent ligands Further synthesized compounds were evaluated for their in vitro cytotoxic activity against lung cancer cell line A549 using MTT method. IC50 value for all four complexes was determined and all of them are found active. Computational studies of the representative complexes have been done using B3LYP/631-G* basis sets to provide optimized geometry.


Assuntos
Anti-Infecciosos , Antineoplásicos , Antimônio/farmacologia , Bismuto/farmacologia , Bismuto/química , Teoria da Densidade Funcional , Cloretos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Testes de Sensibilidade Microbiana
4.
Plant Physiol Biochem ; 201: 107904, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37506651

RESUMO

Selenium (Se) is a microelement that can counteract (a)biotic stresses in plants. Excess antimony (Sb) will inhibit plant photosynthesis, which can be alleviated by appropriate doses of Se but the associated mechanisms at the molecular levels have not been fully explored. Here, a rice variety (Yongyou 9) was exposed to selenite [Se(IV), 0.2 and 0.8 mg L-1] alone or combined with antimonite [Sb(III), 5 and 10 mg L-1]. When compared to the 10 mg L-1 Sb treatment alone, addition of Se in a dose-dependent manner 1) reduced the heat dissipation efficiency resulting from the inhibited donors, Sb concentrations in shoots and roots, leaf concentrations of fructose, H2O2 and O2•-; 2) enhanced heat dissipation efficiency resulting from the inhibited accepters value, concentrations of Chl a, sucrose and starch, and the enzyme activity of adenosine diphosphate glucose pyrophosphorylase, sucrose phosphate synthase, and sucrose synthase; but 3) did not alter gas exchange parameters, concentrations of Chl b and total Chl, enzyme activity of soluble acid invertase, and values of maximum P700 signal, photochemical efficiency of PSI and electron transport rate of PSI. Se alleviated the damage caused by Sb to the oxygen-evolving complex and promoted the transfer of electrons from QA to QB. When compared to the 10 mg L-1 Sb treatment alone, addition of Se 1) up-regulated genes correlated to synthesis pathways of Chl, carotenoid, sucrose and glucose; 2) disturbed signal transduction pathway of abscisic acid; and 3) upregulated gene expression correlated to photosynthetic complexes (OsFd1, OsFER1 and OsFER2).


Assuntos
Oryza , Selênio , Transporte de Elétrons , Antimônio/farmacologia , Oryza/genética , Oryza/metabolismo , Ácido Selenioso/farmacologia , Ácido Selenioso/metabolismo , Transcriptoma , Peróxido de Hidrogênio/metabolismo , Elétrons , Fotossíntese , Selênio/farmacologia , Folhas de Planta/metabolismo , Ciclo do Carbono , Sacarose/metabolismo , Clorofila/metabolismo
5.
Angew Chem Int Ed Engl ; 61(41): e202210019, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-35975881

RESUMO

Herein, a giant Sb-rich polyoxometalate (POM) {Sb21 Tb7 W56 } is reported, which contains the largest number of Sb atoms in a POM so far. The Sb-rich POM has many interesting structural features and is a rare example of a soluble and water-stable giant POM. Biomedical studies indicate that the Sb-rich POM exhibits broad-spectrum antitumor activity against various cancer cell lines by reactivating the P53-dependent apoptotic processes and disrupting the mitochondrial membrane. In addition, this Sb-rich POM was capable of suppressing the growth and metastasis of a breast cancer in vivo. This work demonstrates that Sb-rich POMs are promising candidates for the development of new anticancer drugs.


Assuntos
Antineoplásicos , Compostos de Tungstênio , Ânions , Antimônio/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Humanos , Polieletrólitos , Proteína Supressora de Tumor p53 , Compostos de Tungstênio/química , Compostos de Tungstênio/farmacologia , Água
6.
Cell Rep ; 39(2): 110622, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35417717

RESUMO

The tumor suppressor p53 is inactivated by over hundreds of heterogenous mutations in cancer. Here, we purposefully selected phenotypically reversible temperature-sensitive (TS) p53 mutations for pharmacological rescue with thermostability as the compound-screening readout. This rational screening identified antiparasitic drug potassium antimony tartrate (PAT) as an agent that can thermostabilize the representative TS mutant p53-V272M via noncovalent binding. PAT met the three basic criteria for a targeted drug: availability of a co-crystal structure, compatible structure-activity relationship, and intracellular target specificity, consequently exhibiting antitumor activity in a xenograft mouse model. At the antimony dose in clinical antiparasitic therapy, PAT effectively and specifically rescued p53-V272M in patient-derived primary leukemia cells in single-cell RNA sequencing. Further scanning of 815 frequent p53-missense mutations identified 65 potential PAT-treatable mutations, most of which were temperature sensitive. These results lay the groundwork for repurposing noncovalent antiparasitic antimonials for precisely treating cancers with the 65 p53 mutations.


Assuntos
Neoplasias , Proteína Supressora de Tumor p53 , Animais , Antimônio/metabolismo , Antimônio/farmacologia , Antimônio/uso terapêutico , Antiparasitários , Reposicionamento de Medicamentos , Humanos , Camundongos , Mutação/genética , Neoplasias/genética , Temperatura , Proteína Supressora de Tumor p53/metabolismo
7.
ACS Appl Mater Interfaces ; 14(4): 4980-4994, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35050589

RESUMO

Regulating the level of reactive oxygen species (ROS) in a tumor is an efficient and innovative anticancer strategy. However, the therapeutic efficacy of ROS-based therapies, such as chemodynamic therapy (CDT) and photodynamic therapy (PDT), offers finite outcomes due to the oxygen dependence and limited concentration of hydrogen peroxide (H2O2) and overexpression of glutathione (GSH) within the tumor microenvironment (TME), so a single therapeutic strategy is insufficient to completely eliminate tumors. Therefore, we demonstrated an omnipotent nanoplatform MnO2/Ag3SbS3 (abbreviated as MA) with strong optical absorbance in the NIR-II biowindow and oxygen self-sufficient ROS-mediated ability, which not only relieves tumor hypoxia significantly but also enhances the photothermal therapy (PTT)/PDT/CDT efficacy. By 1064 nm laser irradiation, MnO2/Ag3SbS3 nanoparticles (NPs) reveal a favorable photothermal conversion efficiency of 23.15% and achieve a single-laser-triggered NIR-II PTT/PDT effect, resulting in effective tumor elimination. Once internalized into the tumor, MnO2/Ag3SbS3 NPs will be degraded to Mn2+ and Ag3SbS3. The released Ag3SbS3 NPs as a NIR-II phototherapy agent could be utilized for photoacoustic imaging-guided NIR-II PDT/PTT. Mn2+ could be used as a Fenton-like catalyst to continuously catalyze endogenous H2O2 for generating highly virulent hydroxyl radicals (•OH) for CDT and O2 for PDT, enhancing the efficiency of PDT and CDT, respectively. Meanwhile, Mn2+ realizes magnetic resonance imaging-guided accurate tumor therapy. Moreover, the MnO2/Ag3SbS3 NPs could deplete intracellular GSH in TME to promote oxidative stress of the tumor, further strengthening ROS-mediated antitumor treatment efficacy. Overall, this work presents a distinctive paradigm of TME-responsive PDT/CDT/PTT in the second near-infrared biowindow by depleting GSH and decomposing H2O2 for efficient and precise cancer treatment.


Assuntos
Antineoplásicos/farmacologia , Materiais Biocompatíveis/farmacologia , Lasers , Fármacos Fotossensibilizantes/farmacologia , Nanomedicina Teranóstica , Animais , Antimônio/química , Antimônio/farmacologia , Antineoplásicos/química , Materiais Biocompatíveis/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Raios Infravermelhos , Compostos de Manganês/química , Compostos de Manganês/farmacologia , Teste de Materiais , Camundongos , Óxidos/química , Óxidos/farmacologia , Tamanho da Partícula , Fotoquimioterapia , Fármacos Fotossensibilizantes/química , Prata/química , Prata/farmacologia , Enxofre/química , Enxofre/farmacologia , Propriedades de Superfície , Células Tumorais Cultivadas
8.
Nat Commun ; 13(1): 539, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-35087022

RESUMO

Metallic and semimetallic mesoporous frameworks are of great importance owing to their unique properties and broad applications. However, semimetallic mesoporous structures cannot be obtained by the traditional template-mediated strategies due to the inevitable hydrolytic reaction of semimetal compounds. Therefore, it is yet challenging to fabricate mesoporous semimetal nanostructures, not even mention controlling their pore sizes. Here we develop a facile and robust selective etching route to synthesize monodispersed mesoporous antimony nanospheres (MSbNSs). The pore sizes of MSbNSs are tunable by carefully controlling the partial oxidation of Sb nuclei and the selective etching of the as-formed Sb2O3. MSbNSs show a wide absorption from visible to second near-infrared (NIR-II) region. Moreover, PEGylated MSbNSs are degradable and the degradation mechanism is further explained. The NIR-II photothermal performance of MSbNSs is promising with a high photothermal conversion efficiency of ~44% and intensive NIR-II photoacoustic signal. MSbNSs show potential as multifunctional nanomedicines for NIR-II photoacoustic imaging guided synergistic photothermal/chemo therapy in vivo. Our selective etching process would contribute to the development of various semimetallic mesoporous structures and efficient multimodal nanoplatforms for theranostics.


Assuntos
Antimônio/química , Antimônio/farmacologia , Nanosferas/química , Nanosferas/uso terapêutico , Medicina de Precisão/métodos , Animais , Diagnóstico por Imagem , Sistemas de Liberação de Medicamentos , Tratamento Farmacológico , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/química , Nanoestruturas/química , Neoplasias/terapia , Técnicas Fotoacústicas/métodos , Fototerapia , Nanomedicina Teranóstica/métodos
9.
Anticancer Res ; 41(12): 6061-6065, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34848460

RESUMO

BACKGROUND/AIM: Antimony is a chemical element used in the therapy of parasitic diseases with a promising anticancer potential. The aim of this study was to evaluate in vitro activity of free or liposomal vesicle-packed antimony trioxide (AT or LAT) in the t(15;17)(q22;q21) translocation-positive acute promyelocytic leukemia (APL) cell line NB4. MATERIALS AND METHODS: Cytotoxicity was analysed with trypan blue exclusion, the MTT assay and neutral red exclusion assay; cell proliferation with PicoGreen®; and reactive oxygen species (ROS) production with DCFDA. RESULTS: Liposomal particles did not change the pH of the cell culture medium and entered the cells. Both formulations resulted in a time- and concentration-dependent cytotoxicity and production of ROS. LAT showed higher toxicity at lower concentrations compared to AT. CONCLUSION: LAT may be used to decrease drug dosage and maintain high anti-tumoral effects on APL cells.


Assuntos
Antimônio/administração & dosagem , Antimônio/farmacologia , Lipossomos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos , Humanos , Leucemia Promielocítica Aguda , Sistemas de Liberação de Fármacos por Nanopartículas , Espécies Reativas de Oxigênio/metabolismo
10.
Parasit Vectors ; 14(1): 419, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34419127

RESUMO

BACKGROUND: Leishmaniasis is a neglected tropical disease caused by several species of Leishmania. The resistance phenotype of these parasites depends on the characteristics of each species, which contributes to increased therapeutic failures. Understanding the mechanism used by the parasite to survive under treatment pressure in order to identify potential common and specific therapeutic targets is essential for the control of leishmaniasis. The aim of this study was to investigate the expression profiles and potential shared and specific resistance markers of the main Leishmania species of medical importance [subgenus L. (Leishmania): L. donovani, L. infantum and L. amazonensis; subgenus L. (Viannia): L. panamensis and L. braziliensis)] resistant and sensitive to trivalent stibogluconate (SbIII). METHODS: We conducted comparative analysis of the transcriptomic profiles (only coding sequences) of lines with experimentally induced resistance to SbIII from biological replicates of five Leishmania species available in the databases of four articles based on ortholog attribution. Simultaneously, we carried out functional analysis of ontology and reconstruction of metabolic pathways of the resulting differentially expressed genes (DEGs). RESULTS: Resistant lines for each species had differential responses in metabolic processes, compound binding, and membrane components concerning their sensitive counterpart. One hundred and thirty-nine metabolic pathways were found, with the three main pathways comprising cysteine and methionine metabolism, glycolysis, and the ribosome. Differentially expressed orthologous genes assigned to species-specific responses predominated, with 899 self-genes. No differentially expressed genes were found in common among the five species. Two common upregulated orthologous genes were found among four species (L. donovani, L. braziliensis, L. amazonensis, and L. panamensis) related to an RNA-binding protein and the NAD(P)H cytochrome-B5-oxidoreductase complex, associated with transcriptional control and de novo synthesis of linoleic acid, critical mechanisms in resistance to antimonials. CONCLUSION: Herein, we identified potential species-specific genes related to resistance to SbIII. Therefore, we suggest that future studies consider a treatment scheme that is species-specific. Despite the limitations of our study, this is the first approach toward unraveling the pan-genus genetic mechanisms of resistance in leishmaniasis.


Assuntos
Antimônio/farmacologia , Antiprotozoários/farmacologia , Resistência a Medicamentos/genética , Leishmania/efeitos dos fármacos , Leishmania/genética , Transcriptoma/efeitos dos fármacos , Antimônio/química , Antiprotozoários/química , Leishmania/classificação , Redes e Vias Metabólicas/efeitos dos fármacos , Redes e Vias Metabólicas/genética , Proteínas de Protozoários/genética
11.
Parasitol Res ; 120(8): 2959-2964, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34272999

RESUMO

Visceral leishmaniasis is a severe disease caused by protozoan parasites that include Leishmania (L.) infantum. The disease is established when parasites subvert the immune response of the host. Notably, chemotherapy-based use of antimonial compounds can partially alleviate disease burden. Unfortunately, the resistance to drug treatments is increasing in areas endemic to the disease. In this report, we investigated immune responses within macrophages infected with antimony-resistant L. infantum isolates from patients with a relapse in the disease. Results revealed that antimony-resistant parasites persist in the first 24 h of infection. Activation of macrophage or blocking of thiol production during infection shows enhanced clearance of parasites, which is coordinately associated with increased production of pro-inflammatory cytokines. Taken together, these results suggest that the mechanism of antimony resistance in L. infantum isolates may be related to a decrease in macrophage microbicidal functions.


Assuntos
Antimônio , Resistência a Medicamentos , Leishmania infantum , Leishmaniose/imunologia , Macrófagos/imunologia , Antimônio/farmacologia , Humanos , Leishmania infantum/efeitos dos fármacos , Leishmaniose/tratamento farmacológico , Macrófagos/parasitologia , Antimoniato de Meglumina
12.
Mol Microbiol ; 116(2): 427-437, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33786926

RESUMO

The ant operon of the antimony-mining bacterium Comamonas testosterone JL40 confers resistance to Sb(III). The operon is transcriptionally regulated by the product of the first gene in the operon, antR. AntR is a member of ArsR/SmtB family of metal/metalloid-responsive repressors resistance. We purified and characterized C. testosterone AntR and demonstrated that it responds to metalloids in the order Sb(III) = methylarsenite (MAs(III) >> As(III)). The protein was crystallized, and the structure was solved at 2.1 Å resolution. The homodimeric structure of AntR adopts a classical ArsR/SmtB topology architecture. The protein has five cysteine residues, of which Cys103a from one monomer and Cys113b from the other monomer, are proposed to form one Sb(III) binding site, and Cys113a and Cys103b forming a second binding site. This is the first report of the structure and binding properties of a transcriptional repressor with high selectivity for environmental antimony.


Assuntos
Antimônio/farmacologia , Arsênio/farmacologia , Comamonas testosteroni/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Proteínas Repressoras/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Sequência de Aminoácidos , Arsenicais/farmacologia , Sítios de Ligação , Comamonas testosteroni/efeitos dos fármacos , Comamonas testosteroni/genética , Regulação Bacteriana da Expressão Gênica/genética , Conformação Proteica , Proteínas Repressoras/metabolismo , Fatores de Transcrição/efeitos dos fármacos , Fatores de Transcrição/genética , Transcrição Gênica/genética
13.
Angew Chem Int Ed Engl ; 60(15): 8344-8351, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33491871

RESUMO

The 10-nuclear heteroatom cluster modified {SbW8 O30 } was successfully synthesized and exhibited inhibitory activity (IC50 =0.29 µM). Based on proteomics analysis, Na4 Ni2 Sb2 W2 -SbW8 inhibited ATP production by affecting the expression of 16 related proteins, hindering metabolic functions in vivo and cell proliferation due to reactive oxygen species (ROS) stress. In particular, the low expression of FAD/FMN-binding redox enzymes (relative expression ratio of the experimental group to the control=0.43843) could be attributed to the redox mechanism of Na4 Ni2 Sb2 W2 -SbW8 , which was consistent with the effect of polyoxometalates (POMs) and FMN-binding proteins on ATP formation. An electrochemical study showed that Na4 Ni2 Sb2 W2 -SbW8 combined with FMN to form Na4 Ni2 Sb2 W2 -SbW8 -2FMN complex through a one-electron process of the W atoms. Na4 Ni2 Sb2 W2 -SbW8 acted as catalase and glutathione peroxidase to protect the cell from ROS stress, and the inhibition rates were 63.3 % at 1.77 µM of NADPH and 86.06 % at 10.62 µM of 2-hydroxyterephthalic acid. Overall, our results showed that POMs can be specific oxidative/antioxidant regulatory agents.


Assuntos
Trifosfato de Adenosina/antagonistas & inibidores , Antioxidantes/farmacologia , Mitocôndrias/efeitos dos fármacos , Proteômica , Análise de Célula Única , Tetrahymena thermophila/efeitos dos fármacos , Trifosfato de Adenosina/biossíntese , Antimônio/química , Antimônio/farmacologia , Antioxidantes/química , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Oxigênio/química , Oxigênio/farmacologia , Tetrahymena thermophila/crescimento & desenvolvimento , Tungstênio/química , Tungstênio/farmacologia
14.
Parasite Immunol ; 43(3): e12805, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33131089

RESUMO

Leishmania braziliensis is the main causative agent of American tegumentary leishmaniasis in Brazil. Current treatment includes different drugs that have important side effects and identification of cases of parasite resistance to treatment support the search for new therapeutic strategies. Recent findings have indicated that CXCL10, a chemokine that recruits and activates Th1 cells, NK cells, macrophages, dendritic cells and B lymphocytes, is a potential alternative to treat Leishmania infection. Here, we tested CXCL10 immunotherapy against experimental infection caused by an antimony-resistant isolate of Leishmania braziliensis. Following infection, mice were treated with CXCL10 for 7 days after onset of lesions. We demonstrate that mice treated with CXCL10 controlled lesion progression and parasite burden more efficiently comparing to controls. An increased IFN-γ, IL-10, TGF-ß and low IL-4 production combined with a distinct inflammatory infiltrate composed by activated macrophages, lymphocytes and granulomas was observed in the CXCL10-treated group comparing to controls. However, CXCL10 and Glucantime combined therapy did not improve CXCL10-induced protective effect. Our findings reinforce the potential of CXCL10 immunotherapy as an alternative treatment against infection caused by L. braziliensis resistant to conventional chemotherapy.


Assuntos
Quimiocina CXCL10/uso terapêutico , Fatores Imunológicos/uso terapêutico , Leishmania braziliensis/efeitos dos fármacos , Leishmaniose Cutânea/tratamento farmacológico , Leishmaniose Cutânea/parasitologia , Animais , Antimônio/farmacologia , Brasil , Feminino , Interleucina-10/imunologia , Leishmania braziliensis/imunologia , Leishmania braziliensis/isolamento & purificação , Leishmaniose Cutânea/imunologia , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Óxido Nítrico/farmacologia , Células Th1/imunologia
15.
Chem Soc Rev ; 50(4): 2260-2279, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33367452

RESUMO

Pnictogens (the non-metal phosphorus, metalloids arsenic and antimony, and metal bismuth) possess diverse chemical characteristics that support the formation of extended molecular structures. As witnessed by the centuries-old (and ongoing) clinical utilities, pnictogen-based compounds have secured their places in history as "magic bullet" therapeutic drugs in medicinal contexts. Moreover, with the development of recent metalloproteomics and bio-coordination chemistry, the pnictogen-based drugs functionally binding to proteins/enzymes in biological systems have been underlaid for "drug repurposing" with promising opportunities. Furthermore, advances in the modern materials science and nonotechnology have stimulated a revolution in other newly discovered forms of pnictogens-phosphorene, arsenene, antimonene, and bismuthine (layered pnictogens). Based on their favorable optoelectronic properties, layered pnictogens have shown dramatic superiority as emerging photonic nanomedicines for the treatment of various diseases. This tutorial review outlines the history and mechanism of action of ancient pnictogen-based drugs (e.g., arsenical compounds in traditional Chinese medicine) and their repurposing into modern therapeutics. Then, the revolutionary use of emerging layered pnictogens as photonic nanomedicines, alongside assessments of their in vivo biosafety, is discussed. Finally, the challenges to further development of pnictogens are set forth and insights for further exploration of their appealing properties are offered. This tutorial review may also provide some deep insights into the fields of integrated traditional Chinese and Western medicines from the perspective of materials science and nanotechnology.


Assuntos
Antimônio/química , Arsenicais/química , Bismuto/química , Nanoestruturas/química , Preparações Farmacêuticas/química , Compostos de Fósforo/química , Animais , Antimônio/farmacologia , Arsenicais/farmacologia , Materiais Biocompatíveis/química , Bismuto/farmacologia , Humanos , Imunoterapia , Estrutura Molecular , Nanomedicina , Dispositivos Ópticos , Compostos de Fósforo/farmacologia , Fototerapia , Ligação Proteica , Radioterapia
16.
Artigo em Inglês | MEDLINE | ID: mdl-32413766

RESUMO

Control of both human and canine leishmaniasis is based on a very short list of chemotherapeutic agents, headed by antimonial derivatives (Sb). The utility of these molecules is severely threatened by high rates of drug resistance. The ABC transporter MRPA is one of the few key Sb resistance proteins described to date, whose role in detoxification has been thoroughly studied in Leishmania parasites. Nonetheless, its rapid amplification during drug selection complicates the discovery of other mechanisms potentially involved in Sb resistance. In this study, stepwise drug-resistance selection and next-generation sequencing were combined in the search for novel Sb-resistance mechanisms deployed by parasites when MRPA is abolished by targeted gene disruption. The gene mrpA is not essential in L. infantum, and its disruption leads to an Sb hypersensitive phenotype in both promastigotes and amastigotes. Five independent mrpA-/- mutants were selected for antimony resistance. These mutants displayed major changes in their ploidy, as well as extrachromosomal linear amplifications of the subtelomeric region of chromosome 23, which includes the genes coding for ABCC1 and ABCC2. Overexpression of ABCC2, but not of ABCC1, resulted in increased Sb tolerance in the mrpA-/- mutant. SNP analyses revealed three different heterozygous mutations in the gene coding for a serine acetyltransferase (SAT) involved in de novo cysteine synthesis in Leishmania. Overexpression of satQ390K, satG321R and satG325R variants led to a 2-3.2 -fold increase in Sb resistance in mrpA-/- parasites. Only satG321R and satG325R induced increased Sb resistance in wild-type parasites. These results reinforce and expand knowledge on the complex nature of Sb resistance in Leishmania parasites.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Antimônio/farmacologia , Leishmania infantum , Serina O-Acetiltransferase/genética , Transportadores de Cassetes de Ligação de ATP/efeitos dos fármacos , Animais , Antiprotozoários/farmacologia , Cães , Resistência a Medicamentos/genética , Genes de Protozoários , Humanos , Leishmania infantum/efeitos dos fármacos , Leishmania infantum/genética , Leishmaniose/tratamento farmacológico , Proteínas de Membrana Transportadoras/genética , Proteína 2 Associada à Farmacorresistência Múltipla , Mutação , Proteínas de Protozoários/genética , Serina O-Acetiltransferase/efeitos dos fármacos , Sequenciamento Completo do Genoma
17.
Inorg Chem ; 59(5): 2978-2987, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32037809

RESUMO

We have synthesized and structurally characterized three tetra-(p-tolyl)antimony(III)-containing heteropolytungstates, [{(p-tolyl)SbIII}4(A-α-XW9O34)2]n- [X = PV (1-P), AsV (1-As), or GeIV (1-Ge)], in aqueous solution using conventional, one-pot procedures. The polyanions 1-P, 1-As, and 1-Ge were fully characterized in the solid state and in solution and were shown to be soluble and stable in aqueous medium at pH 7. Biological studies demonstrated that all three polyanions possess significant antibacterial and antitumor activities. The minimum inhibitory concentrations of 1-P, 1-As, and 1-Ge were determined against four kinds of bacteria, including the two pathogenic bacteria strains, Vibrio parahaemolyticus and Vibrio vulnificus. The three novel polyanions also showed high cytotoxic potency in the human cell lines A549 (non-small cell lung cancer), CH1/PA-1 (ovarian teratocarcinoma), and SW480 (colon carcinoma).


Assuntos
Antibacterianos/farmacologia , Antimônio/farmacologia , Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Tungstênio/farmacologia , Células A549 , Antibacterianos/síntese química , Antibacterianos/química , Antimônio/química , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Bacillus subtilis/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Ensaios de Seleção de Medicamentos Antitumorais , Escherichia coli/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Células Tumorais Cultivadas , Tungstênio/química , Vibrio parahaemolyticus/efeitos dos fármacos , Vibrio vulnificus/efeitos dos fármacos
18.
Sci Rep ; 10(1): 2890, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-32076005

RESUMO

Inorganic arsenic oxides have been identified as carcinogens in several human tissues, including epidermis. Due to the chemical similarity between trivalent inorganic arsenic (arsenite) and antimony (antimonite), we hypothesized that common intracellular targets lead to similarities in cellular responses. Indeed, transcriptional and proteomic profiling revealed remarkable similarities in differentially expressed genes and proteins resulting from exposure of cultured human epidermal keratinocytes to arsenite and antimonite in contrast to comparisons of arsenite with other metal compounds. These data were analyzed to predict upstream regulators and affected signaling pathways following arsenite and antimonite treatments. A majority of the top findings in each category were identical after treatment with either compound. Inspection of the predicted upstream regulators led to previously unsuspected roles for oncostatin M, corticosteroids and ephrins in mediating cellular response. The influence of these predicted mediators was then experimentally verified. Together with predictions of transcription factor effects more generally, the analysis has led to model signaling networks largely accounting for arsenite and antimonite action. The striking parallels between responses to arsenite and antimonite indicate the skin carcinogenic risk of exposure to antimonite merits close scrutiny.


Assuntos
Antimônio/farmacologia , Arsenitos/farmacologia , Epiderme/metabolismo , Queratinócitos/metabolismo , Transdução de Sinais , Corticosteroides/metabolismo , Ensaio de Unidades Formadoras de Colônias , Efrinas/metabolismo , Perfilação da Expressão Gênica , Humanos , Queratinócitos/efeitos dos fármacos , Oncostatina M/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo
19.
Molecules ; 25(2)2020 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-31940910

RESUMO

Interest in the synthesis of Bi(III) and Sb(III) dithiocarbamate complexes is on the rise, and this has been attributed to their wide structural diversity and their interesting application as biological agents and in solid state/materials chemistry. The readily available binding sites of the two sulphur atoms within the dithiocarbamate moiety in the complexes confers a wide variety of geometry and interactions that often leads to supramolecular assemblies. Although none of the bismuth or antimony metals are known to play any natural biological function, their dithiocarbamate complexes, however, have proven very useful as antibacterial, antileishmanial, anticancer, and antifungal agents. The dithiocarbamate ligands modulate the associated toxicity of the metals, especially antimony, since bismuth is known to be benign, allowing the metal ion to get to the targeted sites; hence, making it less available for side and other damaging reactions. This review presents a concise chemistry and some known biological potentials of their trivalent dithiocarbamate complexes.


Assuntos
Antimônio/química , Bismuto/química , Complexos de Coordenação/síntese química , Tiocarbamatos/síntese química , Animais , Antibacterianos/síntese química , Antibacterianos/farmacologia , Antifúngicos/síntese química , Antifúngicos/farmacologia , Antimônio/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Antiprotozoários/síntese química , Antiprotozoários/farmacologia , Bismuto/farmacologia , Complexos de Coordenação/farmacologia , Humanos , Modelos Químicos , Tiocarbamatos/farmacologia
20.
Homeopathy ; 109(2): 79-86, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31604351

RESUMO

BACKGROUND: The mechanism by which highly diluted and agitated solutions have their effect is still unknown, but the development in recent years of new methods identifying changes in water and solute dipole moments is providing insights into potential modes of action. OBJECTIVE: The objective of the current study was to compare the biological effects of Antimonium crudum (AC) previously obtained by our group and already described in the literature with now measurable physico-chemical effects on solvatochromic dyes. METHODS: Different dilutions of AC and succussed water have been characterized with respect to their effect on the visible spectra of the solvatochromic dyes methylene violet (MV), a pyridinium phenolate (ET33), and a dimethylamino naphthalenone (BDN) compared with in-vitro action against Leishmania amazonensis-infected macrophages. RESULTS: Dye responses varied according to the dye used and the level of AC dilution and results were found to corroborate previously published in-vivo and in-vitro effects of AC. In addition, a very significant enhancement in the absorbance increase of MV was seen using the supernatant from AC 200cH-treated cells (15%; p < 0.0001) over that seen with AC 200cH itself (4%; p = 0.034), suggesting the amplification of ultra-high dilution effects by biological systems. Furthermore, supernatants from AC-treated cells increased the range of dilutions of AC that were capable of producing effects on the spectra of MV. The effect of AC dilutions on dye ET33 was eliminated by a weak electric current passed through potency solutions. CONCLUSION: The data confirm a correspondence between the biological effects of dilutions of AC in-vitro and physico-chemical effects on solvatochromic dyes as measured by changes in their visible spectra. Results also indicate high dilutions of AC are sensitive to exposure to electric currents and biological systems.


Assuntos
Antimônio/química , Antimônio/farmacologia , Corantes/química , Homeopatia , Solventes/química , Corantes/farmacologia , Leishmania mexicana/efeitos dos fármacos , Macrófagos , Solventes/farmacologia , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA