Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microbiol Res ; 286: 127830, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39004025

RESUMO

Antimony is pervasive environmental toxic substance, and numerous genes encoding mechanisms to resist, transform and extrude the toxic metalloid antimony have been discovered in various microorganisms. Here we identified a major facilitator superfamily (MFS) transporter, AntB, on the chromosome of the arsenite-oxidizing bacterium Ensifer adhaerens E-60 that confers resistance to Sb(III) and Sb(V). The antB gene is adjacent to gene encoding a LysR family transcriptional regulator termed LysRars, which is an As(III)/Sb(III)-responsive transcriptional repressor that is predicted to control expression of antB. Similar antB and lysRars genes are found in related arsenic-resistant bacteria, especially strains of Ensifer adhaerens, and the lysRars gene adjacent to antB encodes a member of a divergent subgroup of putative LysR-type regulators. Closely related AntB and LysRars orthologs contain three conserved cysteine residues, which are Cys17, Cys99, and Cys350 in AntB and Cys81, Cys289 and Cys294 in LysRars, respectively. Expression of antB is induced by As(III), Sb(III), Sb(V) and Rox(III) (4-hydroxy-3-nitrophenyl arsenite). Heterologous expression of antB in E. coli AW3110 (Δars) conferred resistance to Sb(III) and Sb(V) and reduced the intracellular concentration of Sb(III). The discovery of the Sb(III) efflux transporter AntB enriches our knowledge of the role of the efflux transporter in the antimony biogeochemical cycle.


Assuntos
Antimônio , Regulação Bacteriana da Expressão Gênica , Antimônio/farmacologia , Antimônio/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Arsenitos/metabolismo , Arsenitos/farmacologia , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Oxalobacteraceae/genética , Oxalobacteraceae/metabolismo , Roxarsona/farmacologia , Roxarsona/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Arsênio/metabolismo , Arsênio/farmacologia , Filogenia , Sequência de Aminoácidos , Farmacorresistência Bacteriana/genética
2.
BMC Plant Biol ; 24(1): 364, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38702592

RESUMO

BACKGROUND: This study aimed to investigate the alterations in biochemical and physiological responses of oat plants exposed to antimony (Sb) contamination in soil. Specifically, we evaluated the effectiveness of an arbuscular mycorrhizal fungus (AMF) and olive mill waste (OMW) in mitigating the effects of Sb contamination. The soil was treated with a commercial strain of AMF (Rhizophagus irregularis) and OMW (4% w/w) under two different levels of Sb (0 and 1500 mg kg-1 soil). RESULTS: The combined treatment (OMW + AMF) enhanced the photosynthetic rate (+ 40%) and chlorophyll a (+ 91%) and chlorophyll b (+ 50%) content under Sb condition, which in turn induced more biomass production (+ 67-78%) compared to the contaminated control plants. More photosynthesis in OMW + AMF-treated plants gives a route for phenylalanine amino acid synthesis (+ 69%), which is used as a precursor for the biosynthesis of secondary metabolites, including flavonoids (+ 110%), polyphenols (+ 26%), and anthocyanins (+ 63%) compared to control plants. More activation of phenylalanine ammonia-lyase (+ 38%) and chalcone synthase (+ 26%) enzymes in OMW + AMF-treated plants under Sb stress indicated the activation of phenylpropanoid pathways in antioxidant metabolites biosynthesis. There was also improved shifting of antioxidant enzyme activities in the ASC/GSH and catalytic pathways in plants in response to OMW + AMF and Sb contamination, remarkably reducing oxidative damage markers. CONCLUSIONS: While individual applications of OMW and AMF also demonstrated some degree of plant tolerance induction, the combined presence of AMF with OMW supplementation significantly enhanced plant biomass production and adaptability to oxidative stress induced by soil Sb contamination.


Assuntos
Antimônio , Micorrizas , Olea , Poluentes do Solo , Micorrizas/fisiologia , Olea/microbiologia , Poluentes do Solo/metabolismo , Antimônio/metabolismo , Adaptação Fisiológica , Resíduos Industriais , Fotossíntese/efeitos dos fármacos , Biodegradação Ambiental , Biomassa
3.
Sci Total Environ ; 926: 171937, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38527534

RESUMO

The tremendous application potentiality of transitional metal dichalcogenides (TMDs), such as molybdenum disulfide (MoS2) nanosheets, will unavoidably lead to increasing release into the environment, which could influence the fate and toxicity of co-existed contaminants. The present study discovered that 59.8 % of trivalent antimony [Sb(III)] was transformed by MoS2 to pentavalent Sb [Sb(V)] in aqueous solutions under light illumination, which was due to hole oxidation on the nanosheet surfaces. A synergistic toxicity between MoS2 and Sb(III, V) to algae (Chlorella vulgaris) was observed, as demonstrated by the lower median-effect concentrations of MoS2 + Sb(III)/Sb(V) (13.1 and 20.9 mg/L, respectively) than Sb(III)/Sb(V) (38.8 and 92.5 mg/L, respectively) alone. Particularly, MoS2 at noncytotoxic doses notably increased the bioaccumulation of Sb(III, V) in algae, causing aggravated oxidative damage, photosynthetic inhibition, and structural alterations. Metabolomics indicated that oxidative stress and membrane permeabilization were primarily associated with down-regulated amino acids involved in glutathione biosynthesis and unsaturated fatty acids. MoS2 co-exposure remarkably decreased the levels of thiol antidotes (glutathione and phytochelatins) and aggravated the inhibition on energy metabolism and ATP synthesis, compromising the Sb(III, V) detoxification and efflux. Additionally, extracellular P was captured by the nanosheets, also contributing to the uptake of Sb(V). Our findings emphasized the nonignorability of TMDs even at environmental levels in affecting the ecological hazard of metalloids, providing insight into comprehensive safety assessment of TMDs.


Assuntos
Chlorella vulgaris , Dissulfetos , Metaloides , Antimônio/metabolismo , Molibdênio/toxicidade , Adsorção , Chlorella vulgaris/metabolismo , Glutationa
4.
Ecotoxicol Environ Saf ; 270: 115948, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38184976

RESUMO

The increasing production and prevalence of antimony (Sb)-related products raise concerns regarding its potential hazards to reproductive health. Upon environmental exposure, Sb reportedly induces testicular toxicity during spermatogenesis; moreover, it is known to affect various testicular cell populations, particularly germline stem cell populations. However, the cell-cell communication resulting from Sb exposure within the testicular niche remains poorly understood. To address this gap, herein we analyzed testicular single-cell RNA sequencing data from Sb-exposed Drosophila. Our findings revealed that the epidermal growth factor receptor (EGFR) and WNT signaling pathways were associated with the stem cell niche in Drosophila testes, which may disrupt the homeostasis of the testicular niche in Drosophila. Furthermore, we identified several ligand-receptor pairs, facilitating the elucidation of intercellular crosstalk involved in Sb-mediated reproductive toxicology. We employed scRNA-seq analysis and conducted functional verification to investigate the expression patterns of core downstream factors associated with EGFR and WNT signatures in the testes under the influence of Sb exposure. Altogether, our results shed light on the potential mechanisms of Sb exposure-mediated testicular cell-lineage communications.


Assuntos
Drosophila , Testículo , Masculino , Animais , Testículo/metabolismo , Drosophila/metabolismo , Antimônio/toxicidade , Antimônio/metabolismo , Comunicação Celular , Receptores ErbB/metabolismo , Análise de Sequência de RNA
5.
Food Chem Toxicol ; 181: 114107, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37858840

RESUMO

Antimony (Sb) is a metalloid widely present in plastics used for food contact packaging, toys and other household items. Since Sb can be released by these plastics and come into contact with humans, health concerns have been highlighted. The effect of Sb on human tissues is yet controversial, and biochemical mechanisms of toxicity are lacking. In the present study, the effect of very low nanomolar concentrations of Sb(III), able to mimicking chronic human exposure, was evaluated in 3T3-L1 murine cells during the differentiation process. Low nanomolar Sb exposure (from 0.05 to 5 nM) induced lipid accumulation and a marked increase in C/EBP-ß and PPAR-γ levels, the master regulators of adipogenesis. The Sb-induced PPAR-γ was reverted by the estrogen receptor antagonist ICI 182,780. Additionally, Sb stimulated preadipocytes proliferation inducing G2/M phase of cell cycle and this effect was associated to reduced cell-cycle inhibitor p21 levels. In addition to these metabolic dysfunctions, Sb activated the proinflammatory NF-κB pathway and altered endoplasmic reticulum (ER) homeostasis inducing ROS increase, ER stress markers XBP-1s and pEIF2a and downstream genes, such as Grp78 and CHOP. This study, for the first time, supports obesogenic effects of low concentrations exposure of Sb during preadipocytes differentiation.


Assuntos
Adipogenia , Antimônio , Humanos , Animais , Camundongos , Células 3T3-L1 , Antimônio/toxicidade , Antimônio/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Adipócitos , Diferenciação Celular , Retículo Endoplasmático/metabolismo , Homeostase , PPAR gama/metabolismo
6.
Aquat Toxicol ; 259: 106524, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37031539

RESUMO

Antimony (Sb) is a potentially toxic and carcinogenic cumulative contaminant that poses a serious threat to aquatic ecosystems. To better clarify the genotoxicity of Sb and its mechanism of action. In this study, we investigated DNA damage and genome-wide variation in the liver of a model organism, zebrafish (Danio rerio), under subacute Sb exposure and explored its potential toxicological mechanisms. The results showed that medium and high concentrations of Sb significantly reduced the total antioxidant capacity and increased the content of reactive oxygen species in zebrafish liver, and further studies revealed that it increased oxidative DNA damage and DNA-DNA cross-link (DDC), but had little effect on DNA-protein cross-link (DPC). The result of resequencing showed that the mutation sites of the genes with high concentrations of Sb were higher than those with medium concentrations, and the mutation was mainly a single nucleotide. The pathways significantly enriched for nonsynonymous single nucleotide polymorphisms (SNPs) and insertion/deletion mutations (InDels) variant genes in the coding regions of both the medium and high Sb-treated groups were ECM-receptor interactions, and the high Sb-treated group also included lysine degradation, hematopoietic cell lineage, and cytokine-cytokine receptor interactions. This suggests that ECM-receptor interactions play an important role in the mechanism of antimony toxicity to the liver of zebrafish.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Antimônio/toxicidade , Antimônio/metabolismo , Ecossistema , Poluentes Químicos da Água/toxicidade , Estresse Oxidativo , Fígado , Dano ao DNA , DNA/metabolismo
7.
Ecotoxicol Environ Saf ; 249: 114409, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36508805

RESUMO

Some antimony (Sb) contaminated areas are used for rice cultivation in response to economic demands. However, little is known about the effects of Sb stress on the growth and metabolism of rice roots. Thus, a hydroponic experiment was carried out on the growth, root anatomy, enzyme activity, and metabolism of Nipponbare rice (Oryza sativa L. ssp. japonica cv. Nipponbare) under varying levels of Sb (III) stress (0 mg L-1, 10 mg L-1, and 50 mg L-1). With the increase of Sb concentration, rice root length and root fresh weight declined by 67.8 % and 90.5 % for 10 mg L-1 Sb stress and 94.1 % and 98.4 % for 50 mg L-1 Sb stress, respectively. Anatomical analysis of cross-sections of Sb-treated roots showed an increase in cell wall thickness and an increase in the number of cell mitochondria. The 10 mg L-1 and 50 mg L-1 Sb stress increased the activity of enzyme superoxide dismutase (SOD) in root cells by 1.94 and 2.40 times, respectively. Compared to the control, 10 mg L-1 Sb treatment increased the activity of catalase (CAT) and peroxidase (POD), as well as the concentrations of antioxidant glutathione (GSH) in the root by 1.46, 1.38, and 0.52 times, respectively. However, 50 mg L-1 Sb treatment significantly decreased the activity or content of CAT, POD and GSH by 28.1 %, 13.5 % and 28.2 %, respectively. Nontargeted LC/MS-based metabolomics analysis identified 23 and 13 significantly differential metabolites in rice roots exposed to 10 mg L-1 and 50 mg L-1 Sb, respectively, compared to the control. These differential metabolites were involved in four main metabolic pathways including the tricarboxylic acid cycle (TCA cycle), butanoate metabolism, alanine, aspartate and glutamate metabolism, and alpha-linolenic acid metabolism. Taken together, these findings indicate that Sb stress destroys the structure of rice roots, changes the activity of enzymes, and affects the metabolic pathway, thereby reducing the growth of rice roots and leading to toxicity.


Assuntos
Oryza , Oryza/metabolismo , Antimônio/toxicidade , Antimônio/metabolismo , Antioxidantes/metabolismo , Glutationa/metabolismo , Peroxidase/metabolismo , Raízes de Plantas/metabolismo , Plântula
8.
J Hazard Mater ; 437: 129433, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35897190

RESUMO

Antimony (Sb) is a toxic metalloid, and excess Sb causes damage to the plant photosynthetic system. However, the underlying mechanisms of Sb toxicity in the plant photosynthetic system are not clear. Hydroponic culture experiments were conducted to illustrate the toxicity differences of antimonite [Sb(III)] and antimonate [Sb(V)] to the photosynthetic system in a rice plant (Yangdao No. 6). The results showed that Sb(III) showed a higher toxicity than Sb(V), judging from (1) lower shoot and root biomass, leaf water moisture content, water use efficiency, stomatal conductance, net photosynthetic rate, and transpiration rate; (2) higher water vapor deficit, soluble sugar content, starch content, and oligosaccharide content (sucrose, stachyose, and 1-kestose). To further analyze the direction of the photosynthetic products, we conducted a metabonomic analysis. More glycosyls were allocated to the synthesis pathways of oligosaccharides (sucrose, stachyose, and 1-kestose), anthocyanins, salicylic acid, flavones, flavonols, and lignin under Sb stress to quench excess oxygen free radicals (ROS), strengthen the cell wall structure, rebalance the cell membrane, and/or regulate cell permeability. This study provides a complete mechanism to elucidate the toxicity differences of Sb(III) and Sb(V) by exploring their effects on photosynthesis, saccharide synthesis, and the subsequent flow directions of glycosyls.


Assuntos
Antimônio , Oryza , Antocianinas , Antimônio/metabolismo , Antimônio/toxicidade , Carbono/metabolismo , Elétrons , Metaboloma , Oryza/metabolismo , Fotossíntese , Folhas de Planta/metabolismo , Sacarose
9.
Ecotoxicol Environ Saf ; 237: 113519, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35453021

RESUMO

Occupational and environmental Sb exposure has been associated with increased risk of respiratory diseases and lung cancer, but the toxicities and molecular mechanisms of Sb have been less investigated. In the present study, we first analyzed the Sb toxicity profile of lung adenocarcinoma A549 cells, and found that Sb dose-dependently decreased the cell viability and arrested cell cycle at G2/M but did not induce apoptosis. We next investigated the role of reactive oxygen species (ROS) involved in Sb-induced cytotoxicity. The results showed that Sb did not significantly induce cytosolic ROS production by NADPH oxidase (NOX) and the NOX inhibitors did not ameliorate the Sb-induced cell viability loss in A549 cells. However, the level of mitochondrial ROS (mtROS) was significantly increased in Sb-exposed cells and the mitochondria-targeted antioxidant significantly improved cell viability. These results suggested that mitochondria but not NOX is the major source of ROS production and mtROS plays a critical role in Sb-induced cytotoxicity. Furthermore, we found that Sb induced mitochondria dysfunction including the significant decrease of ATP level and mitochondrial membrane potential. Finally, Sb exposure decreased the activity of complex I and complex III, the level of -SH and GSH in mitochondria, and the activity of mitochondrial GR, GPx and TrxR, but increased the mitochondrial SOD activity, suggesting the disruption of mitochondrial redox homeostasis. Taken together, these findings suggested that Sb impaired mitochondrial redox homeostasis, resulting in formation of mtROS, thereby inhibited mitochondrial function and led to cytotoxicity.


Assuntos
Antimônio , Mitocôndrias , Antimônio/metabolismo , Antimônio/toxicidade , Homeostase , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , NADPH Oxidases/metabolismo , Oxirredução , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
10.
Cell Rep ; 39(2): 110622, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35417717

RESUMO

The tumor suppressor p53 is inactivated by over hundreds of heterogenous mutations in cancer. Here, we purposefully selected phenotypically reversible temperature-sensitive (TS) p53 mutations for pharmacological rescue with thermostability as the compound-screening readout. This rational screening identified antiparasitic drug potassium antimony tartrate (PAT) as an agent that can thermostabilize the representative TS mutant p53-V272M via noncovalent binding. PAT met the three basic criteria for a targeted drug: availability of a co-crystal structure, compatible structure-activity relationship, and intracellular target specificity, consequently exhibiting antitumor activity in a xenograft mouse model. At the antimony dose in clinical antiparasitic therapy, PAT effectively and specifically rescued p53-V272M in patient-derived primary leukemia cells in single-cell RNA sequencing. Further scanning of 815 frequent p53-missense mutations identified 65 potential PAT-treatable mutations, most of which were temperature sensitive. These results lay the groundwork for repurposing noncovalent antiparasitic antimonials for precisely treating cancers with the 65 p53 mutations.


Assuntos
Neoplasias , Proteína Supressora de Tumor p53 , Animais , Antimônio/metabolismo , Antimônio/farmacologia , Antimônio/uso terapêutico , Antiparasitários , Reposicionamento de Medicamentos , Humanos , Camundongos , Mutação/genética , Neoplasias/genética , Temperatura , Proteína Supressora de Tumor p53/metabolismo
11.
Sci Total Environ ; 754: 142393, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33254899

RESUMO

Antimony, like arsenic, is a toxic metalloid widely distributed in the environment. Microbial detoxification of antimony has recently been identified. Here we describe a novel bacterial P1B-type antimonite (Sb(III))-translocating ATPase from the antimony-mining bacterium Comamonas testosterone JL40 that confers resistance to Sb(III). In a comparative proteomics analysis of strain JL40, an operon (ant operon) was up-regulated by Sb(III). The ant operon includes three genes, antR, antC and antA. AntR belongs to the ArsR/SmtB family of metalloregulatory proteins that regulates expression of the ant operon. AntA belongs to the P1B family of the P-type cation-translocating ATPases. It has both similarities to and differences from other members of the P1B-1 subfamily and appears to be the first identified member of a distinct subfamily that we designate P1B-8. Expression AntA in E. coli AW3110 (Δars) conferred resistance to Sb(III) and reduced the intracellular concentration of Sb(III) but not As(III) or other metals. Everted membrane vesicles from cells expressing antA accumulated Sb(III) but not As(III), where uptake in everted vesicles reflects efflux from cells. AntC is a small protein with a potential Sb(III) binding site, and co-expression of AntC with AntA increased resistance to Sb(III). We propose that AntC functions as an Sb(III) chaperone to AntA, augmenting Sb(III) efflux. The identification of a novel Sb(III)-translocating ATPase enhances our understanding of the biogeochemical cycling of environmental antimony by bacteria.


Assuntos
Comamonas testosteroni , ATPases do Tipo-P , Adenosina Trifosfatases/genética , Antimônio/metabolismo , Comamonas testosteroni/metabolismo , Escherichia coli/metabolismo
12.
Protoplasma ; 257(1): 319-330, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31359225

RESUMO

Owing to its essentiality for cellular metabolism, phosphate (PO43-) plays a pivotal role in ecosystem dynamics. Frequent testing of phosphate levels is necessary to monitor ecosystem health. Present investigations were aimed to identify the key factors that are essential for proper quantification of PO43-. Primarily, H+ levels played a critical role in the development of molybdenum blue complex by ammonium molybdate and PO43- with ascorbic acid as a reductant. Molybdenum blue complex formed in the presence of 8 to 12 mmol of H+ in 3 ml reaction mixture remained stable even after 72 h. Of different concentrations of ammonium molybdate and ascorbic acid tested, best molybdenum blue complex was formed when their concentrations were 24.3 and 5.68 µmol, respectively. More or less similar intensity of molybdenum blue complex (due to reduction of phosphomolybdic acid and not molybdic acid) was formed in the presence of H+ at levels ranging from 8 to 10 mmol in 3 ml reaction mixture. Our findings unequivocally demonstrated that (i) the reaction mixture containing 3% ammonium molybdate, 0.1% ascorbic acid and 5 M H2SO4 in the ratio of 1:1:1 is ideal for PO43- quantification; (ii) antimony (Sb) significantly curbs the formation of molybdenum blue under these ideal conditions; (iii) this fine-tuned protocol for PO43- quantification could be extended without any problem for determining the level of PO43- both in plant as well as soil samples; and (iv) Azotobacter possesses potential to enhance levels of total PO43- in leaves and grains and soluble/active PO43- in rhizosphere soils of wheat.


Assuntos
Ácido Ascórbico/farmacologia , Fosfatos/metabolismo , Substâncias Redutoras/farmacologia , Antimônio/metabolismo , Azotobacter/metabolismo , Concentração de Íons de Hidrogênio , Molibdênio/metabolismo , Reprodutibilidade dos Testes , Solo/química , Triticum/metabolismo
13.
Artigo em Inglês | MEDLINE | ID: mdl-28971869

RESUMO

We have identified and characterized ABCI3 as a new mitochondrial ABC transporter from Leishmania major Localization studies using confocal microscopy, a surface biotinylation assay, and trypsin digestion after digitonin permeabilization suggested that ABCI3 presents a dual localization in both mitochondria and the plasma membrane. From studies using parasites with a single knockout of ABCI3 (ABCI3+/-), we provide evidence that ABCI3 is directly involved in susceptibility to the trivalent form of antimony (SbIII) and metal ions. Attempts to obtain parasites with a double knockout of ABCI3 were unsuccessful, suggesting that ABCI3 could be an essential gene in L. majorABCI3+/- promastigotes were 5-fold more resistant to SbIII than the wild type, while ABCI3+/- amastigotes were approximately 2-fold more resistant to pentavalent antimony (SbV). This resistance phenotype was associated with decreased SbIII accumulation due to decreased SbIII uptake. ABCI3+/- parasites presented higher ATP levels and generated less mitochondrial superoxide after SbIII incubation. Finally, we observed that ABCI3+/- parasites showed a slightly higher infection capacity than wild-type and add-back ABCI3+/-::3×FABCI3 parasites; however, after 72 h the number of ABCI3+/- intracellular parasites per macrophage increased significantly. Our results show that ABCI3 is responsible for SbIII transport inside mitochondria, where it contributes to enhancement of the general toxic effects caused by SbIII To our knowledge, ABCI3 is the first ABC transporter which is involved in susceptibility toward antimony, conferring SbIII resistance to parasites when it is partially deleted.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Antimônio/metabolismo , Antiprotozoários/farmacologia , Leishmania major , Animais , Antimônio/farmacologia , Antiprotozoários/metabolismo , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/genética , Células Cultivadas , Resistência a Medicamentos/genética , Técnicas de Inativação de Genes , Leishmania major/efeitos dos fármacos , Leishmania major/genética , Leishmania major/metabolismo , Macrófagos/parasitologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Mitocôndrias/metabolismo , Testes de Sensibilidade Parasitária , Estrutura Secundária de Proteína , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
14.
BMC Microbiol ; 16(1): 279, 2016 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-27884113

RESUMO

BACKGROUND: Microbial antimonite [Sb(III)] oxidation converts toxic Sb(III) into less toxic antimonate [Sb(V)] and plays an important role in the biogeochemical Sb cycle. Currently, little is known about the mechanisms underlying bacterial Sb(III) resistance and oxidation. RESULTS: In this study, Tn5 transposon mutagenesis was conducted in the Sb(III)-oxidizing strain Pseudomonas stutzeri TS44 to isolate the genes responsible for Sb(III) resistance and oxidation. An insertion mutation into gshA, encoding a glutamate cysteine ligase involved in glutathione biosynthesis, generated a strain called P. stutzeri TS44-gshA540. This mutant strain was complemented with a plasmid carrying gshA to generate strain P. stutzeri TS44-gshA-C. The transcription of gshA, the two superoxide dismutase (SOD)-encoding genes sodB and sodC as well as the catalase-encoding gene katE was monitored because gshA-encoded glutamate cysteine ligase is responsible for the biosynthesis of glutathione (GSH) and involved in the cellular stress defense system as are superoxide dismutase and catalase responsible for the conversion of ROS. In addition, the cellular content of total ROS and in particular H2O2 was analyzed. Compared to the wild type P. stutzeri TS44 and TS44-gshA-C, the mutant P. stutzeri TS44-gshA540 had a lower GSH content and exhibited an increased content of total ROS and H2O2 and increased the Sb(III) oxidation rate. Furthermore, the transcription of sodB, sodC and katE was induced by Sb(III). A positive linear correlation was found between the Sb(III) oxidation rate and the H2O2 content (R 2 = 0.97), indicating that the accumulated H2O2 is correlated to the increased Sb(III) oxidation rate. CONCLUSIONS: Based on the results, we propose that a disruption of the pathway involved in ROS-protection allowed H2O2 to accumulate. In addition to the previously reported enzyme mediated Sb(III) oxidation, the mechanism of bacterial oxidation of Sb(III) to Sb(V) includes a non-enzymatic mediated step using H2O2 as the oxidant.


Assuntos
Antimônio/química , Peróxido de Hidrogênio/metabolismo , Oxirredução , Pseudomonas stutzeri/metabolismo , Espécies Reativas de Oxigênio/farmacologia , Antimônio/metabolismo , Antimônio/toxicidade , Proteínas de Bactérias/genética , Catalase/metabolismo , Elementos de DNA Transponíveis , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos/efeitos dos fármacos , Glutamato-Cisteína Ligase/metabolismo , Glutationa/biossíntese , Glutationa/metabolismo , Mutagênese , Mutação , Oxidantes , Pseudomonas stutzeri/efeitos dos fármacos , Pseudomonas stutzeri/enzimologia , Pseudomonas stutzeri/genética , Estresse Psicológico , Superóxido Dismutase/genética
15.
Environ Toxicol Chem ; 34(12): 2732-8, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26076768

RESUMO

Antimony (Sb) is a metalloid belonging to group 15 of the periodic table. Chemical similarities between arsenic (As) and Sb produce concerns about potential health effects of Sb and enrichment in the environment. Antimony is found in oxic environments predominately as an oxyanionic species, antimonite (Sb[OH](6-)). As a result of its net negative charge, Sb[OH](6-) was not initially predicted to have strong interactions with natural organic matter. Oxyanionic species could bind the negatively charged organic matter via a ternary complexation mechanism, in which cationic metals mediate the strong association between organic matter functional groups and oxyanions. However, these interactions are poorly understood in how they influence the bioavailability of oxyanionic contaminants to plants. Iron (Fe) additions to organic soils have been found to increase the number of organically complexed Fe sites suitable for Sb exchange, resulting in a reduced bioavailable fraction of Sb. The bioavailability of Sb to maize seedlings as a function of organically complexed Fe was examined using a greenhouse study. A significant increase in plant tissue Sb was observed as organically complexed Fe increased, which was not predicted by methods commonly used to assess bioavailable Sb. Extraction of soils with organic acids common to the maize rhizosphere suggested that organic acid exudation can readily mobilize Sb bound by organic Fe complexes.


Assuntos
Antimônio/metabolismo , Compostos de Ferro/metabolismo , Plântula/metabolismo , Poluentes do Solo/química , Zea mays/metabolismo , Antimônio/análise , Compostos de Ferro/química , Compostos Organometálicos , Rizosfera , Solo/química , Zea mays/química , Zea mays/crescimento & desenvolvimento
16.
Environ Pollut ; 204: 133-40, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25947970

RESUMO

Although iron (Fe) plaque has been shown to significantly affect the uptake of toxic antimony (Sb) by rice, knowledge about the influence of iron plaque on antimony (Sb) (amount, mechanisms, etc) is, however, limited. Here, the effect of Fe plaque on Sb(III) and Sb(V) (nominal oxidation states) uptake by rice (Oryza sativa L.) was investigated using hydroponic experiments and synchrotron-based techniques. The results showed that iron plaque immobilized Sb on the surface of rice roots. Although the binding capacity of iron plaque for Sb(III) was markedly greater than that for Sb(V), significantly more Sb(III) was taken up by roots and transported to shoots. In the presence of Fe plaque, Sb uptake into rice roots was significantly reduced, especially for Sb(III). However, this did not translate into decreasing Sb concentrations in rice shoots and even increased shoot Sb concentrations during high Fe-Sb(III) treatment.


Assuntos
Antimônio/metabolismo , Ferro/metabolismo , Oryza/metabolismo , Hidroponia , Oryza/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo
17.
Environ Microbiol ; 17(6): 1950-62, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24674103

RESUMO

Microbial arsenite (AsIII) oxidation forms a critical piece of the arsenic cycle in nature, though our understanding of how and why microorganisms oxidize AsIII remains rudimentary. Our model organism Agrobacterium tumefaciens 5A contains two distinct ars operons (ars1 and ars2) that are similar in their coding region content. The ars1 operon is located nearby the aio operon that is essential for AsIII oxidation. The AsIII/H(+) anti-porters encoded by acr3-1 and acr3-2 are required for maximal AsIII and antimonite (SbIII) resistance, but acr3-1 (negatively regulated by ArsR-1) appears more active in this regard and also required for AsIII oxidation and expression of aioBA. A malate-phosphate anti-porter DctA is regulated by RpoN and AsIII, and is required for normal growth with malate as a sole carbon source. Qualitatively, a ΔdctA mutant was normal for AsIII oxidation and AsIII/SbIII resistance at metalloid concentrations inhibitory to the Δacr3-1 mutant; however, aioBA induction kinetics was significantly phase-shift delayed. Acr3 involvement in AsIII/SbIII resistance is reasonably well understood, but the role of Acr3 and DctA anti-porters in AsIII oxidation and its regulation is unexpected, and suggests that controlled AsIII trafficking across the cytoplasmic membrane is important to a process understood to occur in the periplasm.


Assuntos
Agrobacterium tumefaciens/metabolismo , Arsenitos/metabolismo , Proteínas de Bactérias/genética , Transportadores de Ácidos Dicarboxílicos/metabolismo , Transportadores de Ânions Orgânicos/genética , Agrobacterium tumefaciens/genética , Antimônio/metabolismo , Transporte Biológico/genética , Transportadores de Ácidos Dicarboxílicos/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Malatos/metabolismo , Óperon , Oxirredução
18.
Biochim Biophys Acta ; 1840(5): 1583-91, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24291688

RESUMO

BACKGROUND: Aquaporins (AQPs), members of a superfamily of transmembrane channel proteins, are ubiquitous in all domains of life. They fall into a number of branches that can be functionally categorized into two major sub-groups: i) orthodox aquaporins, which are water-specific channels, and ii) aquaglyceroporins, which allow the transport of water, non-polar solutes, such as urea or glycerol, the reactive oxygen species hydrogen peroxide, and gases such as ammonia, carbon dioxide and nitric oxide and, as described in this review, metalloids. SCOPE OF REVIEW: This review summarizes the key findings that AQP channels conduct bidirectional movement of metalloids into and out of cells. MAJOR CONCLUSIONS: As(OH)3 and Sb(OH)3 behave as inorganic molecular mimics of glycerol, a property that allows their passage through AQP channels. Plant AQPs also allow the passage of boron and silicon as their hydroxyacids, boric acid (B(OH)3) and orthosilicic acid (Si(OH)4), respectively. Genetic analysis suggests that germanic acid (GeO2) is also a substrate. While As(III), Sb(III) and Ge(IV) are toxic metalloids, borate (B(III)) and silicate (Si(IV)) are essential elements in higher plants. GENERAL SIGNIFICANCE: The uptake of environmental metalloids by aquaporins provides an understanding of (i) how toxic elements such as arsenic enter the food chain; (ii) the delivery of arsenic and antimony containing drugs in the treatment of certain forms of leukemia and chemotherapy of diseases caused by pathogenic protozoa; and (iii) the possibility that food plants such as rice could be made safer by genetically modifying them to exclude arsenic while still accumulating boron and silicon. This article is part of a Special Issue entitled Aquaporins.


Assuntos
Aquagliceroporinas/metabolismo , Arsênio/metabolismo , Animais , Antimônio/metabolismo , Humanos
19.
Antimicrob Agents Chemother ; 57(8): 3719-30, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23716044

RESUMO

The characterization of ABCI4, a new intracellular ATP-binding cassette (ABC) half-transporter in Leishmania major, is described. We show that ABCI4 is involved in heavy metal export, thereby conferring resistance to Pentostam, to Sb(III), and to As(III) and Cd(II). Parasites overexpressing ABCI4 showed a lower mitochondrial toxic effect of antimony by decreasing reactive oxygen species production and maintained higher values of both the mitochondrial electrochemical potential and total ATP levels with respect to controls. The ABCI4 half-transporter forms homodimers as determined by a coimmunoprecipitation assay. A combination of subcellular localization studies under a confocal microscope and a surface biotinylation assay using parasites expressing green fluorescent protein- and FLAG-tagged ABCI4 suggests that the transporter presents a dual localization in both mitochondria and the plasma membrane. Parasites overexpressing ABCI4 present an increased replication in mouse peritoneal macrophages. We have determined that porphyrins are substrates for ABCI4. Consequently, the overexpression of ABCI4 confers resistance to some toxic porphyrins, such as zinc-protoporphyrin, due to the lower accumulation resulting from a significant efflux, as determined using the fluorescent zinc-mesoporphyrin, a validated heme analog. In addition, ABCI4 has a significant ability to efflux thiol after Sb(III) incubation, thus meaning that ABCI4 could be considered to be a potential thiol-X-pump that is able to recognize metal-conjugated thiols. In summary, we have shown that this new ABC transporter is involved in drug sensitivity to antimony and other compounds by efflux as conjugated thiol complexes.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Antimônio/farmacologia , Resistência a Medicamentos , Leishmania major/efeitos dos fármacos , Proteínas de Protozoários/metabolismo , Animais , Antimônio/metabolismo , Gluconato de Antimônio e Sódio/farmacologia , Antiprotozoários/farmacologia , Transporte Biológico , Cádmio/metabolismo , Cádmio/farmacologia , Clorofila/análogos & derivados , Clorofila/metabolismo , Clorofila/farmacologia , Proteínas de Fluorescência Verde/metabolismo , Leishmania major/metabolismo , Macrófagos/efeitos dos fármacos , Masculino , Potencial da Membrana Mitocondrial , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Membranas Mitocondriais/efeitos dos fármacos , Membranas Mitocondriais/metabolismo , Multimerização Proteica , Protoporfirinas/metabolismo , Protoporfirinas/farmacologia , Compostos de Sulfidrila/metabolismo
20.
Environ Sci Technol ; 46(11): 6252-60, 2012 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-22606949

RESUMO

The relative bioavailability of arsenic, antimony, cadmium, and lead for the ingestion pathway was measured in 16 soils contaminated by either smelting or mining activities using a juvenile swine model. The soils contained 18 to 25,000 mg kg(-1) As, 18 to 60,000 mg kg(-1) Sb, 20 to 184 mg kg(-1) Cd, and 1460 to 40,214 mg kg(-1) Pb. The bioavailability in the soils was measured in kidney, liver, bone, and urine relative to soluble salts of the four elements. The variety of soil types, the total concentrations of the elements, and the range of bioavailabilities found were considered to be suitable for calibrating the in vitro Unified BARGE bioaccessibility method. The bioaccessibility test has been developed by the BioAccessibility Research Group of Europe (BARGE) and is known as the Unified BARGE Method (UBM). The study looked at four end points from the in vivo measurements and two compartments in the in vitro study ("stomach" and "stomach and intestine"). Using benchmark criteria for assessing the "fitness for purpose" of the UBM bioaccessibility data to act as an analogue for bioavailability in risk assessment, the study shows that the UBM met criteria on repeatability (median relative standard deviation value <10%) and the regression statistics (slope 0.8 to 1.2 and r-square > 0.6) for As, Cd, and Pb. The data suggest a small bias in the UBM relative bioaccessibility of As and Pb compared to the relative bioavailability measurements of 3% and 5% respectively. Sb did not meet the criteria due to the small range of bioaccessibility values found in the samples.


Assuntos
Arsênio/metabolismo , Monitoramento Ambiental/métodos , Metais Pesados/metabolismo , Solo/química , Suínos/metabolismo , Animais , Antimônio/metabolismo , Antimônio/urina , Arsênio/urina , Disponibilidade Biológica , Cádmio/metabolismo , Europa (Continente) , Saúde , Chumbo/metabolismo , Modelos Lineares , Dinâmica não Linear , Padrões de Referência , Reprodutibilidade dos Testes , Poluentes do Solo/metabolismo , Suínos/urina , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA