Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
1.
Int J Mol Sci ; 25(8)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38673775

RESUMO

Solute carrier family 26 member 4 (SLC26A4) is a member of the SLC26A transporter family and is expressed in various tissues, including the airway epithelium, kidney, thyroid, and tumors. It transports various ions, including bicarbonate, chloride, iodine, and oxalate. As a multiple-ion transporter, SLC26A4 is involved in the maintenance of hearing function, renal function, blood pressure, and hormone and pH regulation. In this review, we have summarized the various functions of SLC26A4 in multiple tissues and organs. Moreover, the relationships between SLC26A4 and other channels, such as cystic fibrosis transmembrane conductance regulator, epithelial sodium channel, and sodium chloride cotransporter, are highlighted. Although the modulation of SLC26A4 is critical for recovery from malfunctions of various organs, development of specific inducers or agonists of SLC26A4 remains challenging. This review contributes to providing a better understanding of the role of SLC26A4 and development of therapeutic approaches for the SLC26A4-associated hearing loss and SLC26A4-related dysfunction of various organs.


Assuntos
Transportadores de Sulfato , Humanos , Transportadores de Sulfato/metabolismo , Transportadores de Sulfato/genética , Animais , Rim/metabolismo , Antiportadores de Cloreto-Bicarbonato/metabolismo , Antiportadores de Cloreto-Bicarbonato/genética , Especificidade de Órgãos , Cloretos/metabolismo , Transporte de Íons
2.
Cell Rep ; 42(6): 112601, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37270778

RESUMO

Acidic environments reduce the intracellular pH (pHi) of most cells to levels that are sub-optimal for growth and cellular functions. Yet, cancers maintain an alkaline cytoplasm despite low extracellular pH (pHe). Raised pHi is thought to be beneficial for tumor progression and invasiveness. However, the transport mechanisms underpinning this adaptation have not been studied systematically. Here, we characterize the pHe-pHi relationship in 66 colorectal cancer cell lines and identify the acid-loading anion exchanger 2 (AE2, SLC4A2) as a regulator of resting pHi. Cells adapt to chronic extracellular acidosis by degrading AE2 protein, which raises pHi and reduces acid sensitivity of growth. Acidity inhibits mTOR signaling, which stimulates lysosomal function and AE2 degradation, a process reversed by bafilomycin A1. We identify AE2 degradation as a mechanism for maintaining a conducive pHi in tumors. As an adaptive mechanism, inhibiting lysosomal degradation of AE2 is a potential therapeutic target.


Assuntos
Antiportadores de Cloreto-Bicarbonato , Proteínas de Membrana Transportadoras , Neoplasias , Proteínas de Transporte de Ânions/metabolismo , Antiporters/metabolismo , Linhagem Celular , Antiportadores de Cloreto-Bicarbonato/química , Antiportadores de Cloreto-Bicarbonato/metabolismo , Citoplasma/metabolismo , Concentração de Íons de Hidrogênio , Neoplasias/metabolismo , Humanos
3.
Int J Mol Sci ; 24(9)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37175979

RESUMO

Cholesterol-rich membrane domains, also called lipid rafts (LRs), are specialized membrane domains that provide a platform for intracellular signal transduction. Membrane proteins often cluster in LRs that further aggregate into larger platform-like structures that are enriched in ceramides and are called ceramide-rich platforms (CRPs). The role of CRPs in the regulation of intestinal epithelial functions remains unknown. Down-regulated in adenoma (DRA) is an intestinal Cl-/HCO3- antiporter that is enriched in LRs. However, little is known regarding the mechanisms involved in the regulation of DRA activity. The air-liquid interface (ALI) was created by removing apical media for a specified number of days; from 12-14 days post-confluency, Caco-2/BBe cells or a colonoid monolayer were grown as submerged cultures. Confocal imaging was used to examine the dimensions of membrane microdomains that contained DRA. DRA expression and activity were enhanced in Caco-2/BBe cells and human colonoids using an ALI culture method. ALI causes an increase in acid sphingomyelinase (ASMase) activity, an enzyme responsible for enhancing ceramide content in the plasma membrane. ALI cultures expressed a larger number of DRA-containing platforms with dimensions >2 µm compared to cells grown as submerged cultures. ASMase inhibitor, desipramine, disrupted CRPs and reduced the ALI-induced increase in DRA expression in the apical membrane. Exposing normal human colonoid monolayers to ALI increased the ASMase activity and enhanced the differentiation of colonoids along with basal and forskolin-stimulated DRA activities. ALI increases DRA activity and expression by increasing ASMase activity and platform formation in Caco-2/BBe cells and by enhancing the differentiation of colonoids.


Assuntos
Antiporters , Lipídeos de Membrana , Humanos , Células CACO-2 , Antiportadores de Cloreto-Bicarbonato/metabolismo , Antiporters/metabolismo , Diferenciação Celular , Transportadores de Sulfato/metabolismo
4.
Am J Physiol Cell Physiol ; 324(6): C1263-C1273, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37154494

RESUMO

In polarized intestinal epithelial cells, downregulated in adenoma (DRA) is an apical Cl-/[Formula: see text] exchanger that is part of neutral NaCl absorption under baseline conditions, but in cyclic adenosine monophosphate (cAMP)-driven diarrheas, it is stimulated and contributes to increased anion secretion. To further understand the regulation of DRA in conditions mimicking some diarrheal diseases, Caco-2/BBE cells were exposed to forskolin (FSK) and adenosine 5'-triphosphate (ATP). FSK and ATP stimulated DRA in a concentration-dependent manner, with ATP acting via P2Y1 receptors. FSK at 1 µM and ATP at 0.25 µM had minimal to no effect on DRA given individually; however, together, they stimulated DRA to levels seen with maximum concentrations of FSK and ATP alone. In Caco-2/BBE cells expressing the Ca2+ indicator GCaMP6s, ATP increased intracellular Ca2+ (Ca2+i) in a concentration-dependent manner, whereas FSK (1 µM), which by itself did not significantly alter Ca2+i, followed by 0.25 µM ATP produced a large increase in Ca2+ that was approximately equal to the elevation caused by 1 µM ATP. 1,2-Bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis(acetoxymethyl ester) (BAPTA-AM) pretreatment prevented the ATP and FSK/ATP synergistically increased the DRA activity and the increase in Ca2+i caused by FSK/ATP. FSK/ATP synergistic stimulation of DRA was similarly observed in human colonoids. In Caco-2/BBE cells, subthreshold concentrations of FSK (cAMP) and ATP (Ca2+) synergistically increased Ca2+i and stimulated DRA activity with both being blocked by BAPTA-AM pretreatment. Diarrheal diseases, such as bile acid diarrhea, in which both cAMP and Ca2+ are elevated, are likely to be associated with stimulated DRA activity contributing to increased anion secretion, whereas separation of DRA from Na+/H+ exchanger isoform-3 (NHE3) contributes to reduced NaCl absorption.NEW & NOTEWORTHY The BB Cl-/[Formula: see text] exchanger DRA takes part in both neutral NaCl absorption and stimulated anion secretion. Using intestinal cell line, Caco-2/BBE high concentrations of cAMP and Ca2+ individually stimulated DRA activity, whereas low concentrations, which had no/minimal effect, synergistically stimulated DRA activity that required a synergistic increase in intracellular Ca2+. This study increases understanding of diarrheal diseases, such as bile salt diarrhea, in which both cAMP and elevated Ca2+ are involved.


Assuntos
Células Epiteliais , Cloreto de Sódio , Humanos , Células CACO-2 , Células Epiteliais/metabolismo , Ânions/metabolismo , Trocador 3 de Sódio-Hidrogênio/metabolismo , Diarreia/metabolismo , Trifosfato de Adenosina/farmacologia , Trifosfato de Adenosina/metabolismo , Transportadores de Sulfato/genética , Transportadores de Sulfato/metabolismo , Antiportadores de Cloreto-Bicarbonato/genética , Antiportadores de Cloreto-Bicarbonato/metabolismo
5.
J Steroid Biochem Mol Biol ; 227: 106231, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36462760

RESUMO

BACKGROUND: Vitamin D receptor (VDR) and SLC26A3 (DRA) have been identified as pivotal protective factors in maintaining gut homeostasis in IBD patients. However, the specific mechanism underlying the increased intestinal susceptibility to inflammation induced by the loss of VDR and whether DRA participates in the role of VDR regulating intestinal epithelial barrier function are undefined. AIM: The current study is undertaken to elucidate the regulatory effects of VDR on DRA and VDR prevents intestinal epithelial barrier dysfunction via up-regulating the expression of DRA. METHODS: WT and VDR-/- mice are used as models for intestinal epithelial response. Paracellular permeability is measured by TEER and FD-4 assays. Immunohistochemistry, immunofluorescence, qPCR and immunoblotting are performed to determine the effects of VDR and DRA on gut epithelial barrier function. RESULTS: VDR-/- mice exhibits significant hyperpermeability of intestine with greatly decreased levels of ZO-1 and Claudin1 proteins. DRA is located on the intestinal epithelial apical membrane and is tightly modulated by VDR in vivo and in vitro via activating ERK1/2 MAPK signaling pathway. Notably, the current study for the first time demonstrates that VDR maintains intestinal epithelial barrier integrity via up-regulating DRA expression and the lack of DRA induced by VDR knockdown leads to a more susceptive condition for intestine to DSS-induced colitis. CONCLUSION: Our study provides evidence and deep comprehension regarding the role of VDR in modulating DRA expression in gut homeostasis and makes novel contributions to better generally understanding the links between VDR, DRA and intestinal epithelial barrier function.


Assuntos
Antiporters , Colite , Receptores de Calcitriol , Transportadores de Sulfato , Animais , Humanos , Camundongos , Antiporters/efeitos adversos , Antiporters/metabolismo , Células CACO-2 , Antiportadores de Cloreto-Bicarbonato/metabolismo , Antiportadores de Cloreto-Bicarbonato/farmacologia , Células Epiteliais/metabolismo , Mucosa Intestinal/metabolismo , Camundongos Endogâmicos C57BL , Receptores de Calcitriol/metabolismo , Transportadores de Sulfato/genética , Transportadores de Sulfato/metabolismo
6.
J Hepatol ; 78(1): 99-113, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35987275

RESUMO

BACKGROUND & AIMS: Primary biliary cholangitis (PBC) is characterised by ductopenia, ductular reaction, impairment of anion exchanger 2 (AE2) and the 'bicarbonate umbrella'. Ductulo-canalicular junction (DCJ) derangement is hypothesised to promote PBC progression. The secretin (Sct)/secretin receptor (SR) axis regulates cystic fibrosis transmembrane receptor (CFTR) and AE2, thus promoting choleresis. We evaluated the role of Sct/SR signalling on biliary secretory processes and subsequent injury in a late-stage PBC mouse model and human samples. METHODS: At 32 weeks of age, female and male wild-type and dominant-negative transforming growth factor beta receptor II (late-stage PBC model) mice were treated with Sct for 1 or 8 weeks. Bulk RNA-sequencing was performed in isolated cholangiocytes from mouse models. RESULTS: Biliary Sct/SR/CFTR/AE2 expression and bile bicarbonate levels were reduced in late-stage PBC mouse models and human samples. Sct treatment decreased bile duct loss, ductular reaction, inflammation, and fibrosis in late-stage PBC models. Sct reduced hepatic bile acid levels, modified bile acid composition, and restored the DCJ and 'bicarbonate umbrella'. RNA-sequencing identified that Sct promoted mature epithelial marker expression, specifically anterior grade protein 2 (Agr2). Late-stage PBC models and human samples exhibited reduced biliary mucin 1 levels, which were enhanced by Sct treatment. CONCLUSION: Loss of Sct/SR signalling in late-stage PBC results in a faulty 'bicarbonate umbrella' and reduced Agr2-mediated mucin production. Sct restores cholangiocyte secretory processes and DCJ formation through enhanced mature cholangiocyte phenotypes and bile duct growth. Sct treatment may be beneficial for individuals with late-stage PBC. IMPACT AND IMPLICATIONS: Secretin (Sct) regulates biliary proliferation and bicarbonate secretion in cholangiocytes via its receptor, SR, and in mouse models and human samples of late-stage primary biliary cholangitis (PBC), the Sct/SR axis is blunted along with loss of the protective 'bicarbonate umbrella'. We found that both short- and long-term Sct treatment ameliorated ductular reaction, immune cell influx, and liver fibrosis in late-stage PBC mouse models. Importantly, Sct treatment promoted bicarbonate and mucin secretion and hepatic bile acid efflux, thus reducing cholestatic and toxic bile acid-associated injury in late-stage PBC mouse models. Our work perpetuates the hypothesis that PBC pathogenesis hinges on secretory defects, and restoration of secretory processes that promote the 'bicarbonate umbrella' may be important for amelioration of PBC-associated damage.


Assuntos
Cirrose Hepática Biliar , Secretina , Masculino , Feminino , Humanos , Camundongos , Animais , Recém-Nascido , Secretina/metabolismo , Cirrose Hepática Biliar/metabolismo , Bicarbonatos/metabolismo , Via Secretória , Regulador de Condutância Transmembrana em Fibrose Cística , Ductos Biliares/metabolismo , Antiportadores de Cloreto-Bicarbonato/metabolismo , Ácidos e Sais Biliares/metabolismo , RNA/metabolismo , Mucinas/metabolismo , Mucoproteínas/metabolismo , Proteínas Oncogênicas/metabolismo
7.
Front Endocrinol (Lausanne) ; 13: 992875, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36120430

RESUMO

Diabetic neuropathy is regarded as one of the most debilitating outcomes of diabetes. It can affect both the peripheral and central nervous systems, leading to pain, decreased motility, cognitive decline, and dementia. S-palmitoylation is a reversible posttranslational lipid modification, and its dysregulation has been implicated in metabolic syndrome, cancers, neurological disorders, and infections. However, the role of S-palmitoylation in diabetic neuropathy remains unclear. Here we demonstrate a potential association between activating protein palmitoylation and diabetic neuropathy. We compared the proteomic data of lumbar dorsal root ganglia (DRG) of diabetes mice and palmitoylome profiling data of the HUVEC cell line. The mapping results identified peroxiredoxin-6 (PRDX6) as a novel target in diabetic neuropathy, whose biological mechanism was associated with S-palmitoylation. Bioinformatic prediction revealed that PRDX6 had two palmitoylation sites, Cys47 and Cys91. Immunofluorescence results indicated PRDX6 translocating between the cytoplasm and cell membrane. Protein function analysis proposed that increased palmitoylation could competitively inhibit the formation of disulfide-bond between Cys47 and Cys91 and change the spatial topology of PRDX6 protein. Cl-HCO3- anion exchanger 3 (AE3) was one of the AE family members, which was proved to express in DRG. AE3 activity evoked Cl- influx in neurons which was generally associated with increased excitability and susceptibility to pain. We demonstrated that the S-palmitoylation status of Cys47 could affect the interaction between PRDX6 and the C-terminal domain of AE3, thereby regulating the activity of AE3 anion exchanger enzyme in the nervous system. The results highlight a central role for PRDX6 palmitoylation in protection against diabetic neuropathy.


Assuntos
Diabetes Mellitus , Neuropatias Diabéticas , Animais , Antiportadores de Cloreto-Bicarbonato/metabolismo , Neuropatias Diabéticas/complicações , Dissulfetos/metabolismo , Lipídeos , Lipoilação , Camundongos , Dor , Peroxirredoxina VI/metabolismo , Proteínas/metabolismo , Proteômica
9.
J Physiol ; 600(8): 1851-1865, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35100665

RESUMO

Infections with non-typhoidal Salmonella spp. represent the most burdensome foodborne illnesses worldwide, yet despite their prevalence, the mechanism through which Salmonella elicits diarrhoea is not entirely known. Intestinal ion transporters play important roles in fluid and electrolyte homeostasis in the intestine. We have previously shown that infection with Salmonella caused decreased colonic expression of the chloride/bicarbonate exchanger SLC26A3 (down-regulated in adenoma; DRA) in a mouse model. In this study, we focused on the mechanism of DRA downregulation during Salmonella infection, by using murine epithelial enteroid-derived monolayers (EDMs). The decrease in DRA expression caused by infection was recapitulated in EDMs and accompanied by increased expression of Atonal Homolog 1 (ATOH1), the goblet cell marker Muc2 and the enteroendocrine cell marker ChgA. This suggested biased epithelial differentiation towards the secretory, rather than absorptive phenotype. In addition, the downstream Notch effector, Notch intracellular domain (NICD) and Hes1 were decreased following Salmonella infection. The relevance of Notch signalling was further investigated using a γ-secretase inhibitor, which recapitulated the downregulation in Hes1 and DRA as well as upregulation in ATOH1 and Muc2 seen following infection. Our findings suggest that Salmonella infection may result in a shift from absorptive to secretory cell types through Notch inhibition, which explains why there is a decreased capacity for absorption and ultimately the accumulation of diarrhoeal fluid. Our work also shows the value of EDMs as a model to investigate mechanisms that might be targeted for therapy of diarrhoea caused by Salmonella infection. KEY POINTS: Salmonella is a leading foodborne pathogen known to cause high-chloride-content diarrhoea. Salmonella infection of murine enteroid-derived monolayers decreased DRA expression. Salmonella infection resulted in upregulation of the secretory epithelial marker ATOH1, the goblet cell marker Muc2 and the enteroendocrine cell marker ChgA. Downregulation of DRA may result from infection-induced Notch inhibition, as reflected by decreased expression of Notch intracellular domain and Hes1, as well as from decreased HNF1α signalling. The imbalance in intestinal epithelial differentiation favouring secretory over absorptive cell types is a possible mechanism by which Salmonella elicits diarrhoea and may be relevant therapeutically.


Assuntos
Cloretos , Infecções por Salmonella , Animais , Antiporters/genética , Antiporters/metabolismo , Diferenciação Celular , Antiportadores de Cloreto-Bicarbonato/metabolismo , Cloretos/metabolismo , Diarreia , Mucosa Intestinal/metabolismo , Camundongos , Transportadores de Sulfato/genética , Transportadores de Sulfato/metabolismo
10.
Cells ; 10(12)2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34944008

RESUMO

Autoimmune polyendocrine syndrome (APS) is assumed to involve an immune system malfunction and entails several autoimmune diseases co-occurring in different tissues of the same patient; however, they are orphans of its accurate diagnosis, as its genetic basis and pathogenic mechanism are not understood. Our previous studies uncovered alterations in the ATPase H+/K+ Transporting Subunit Alpha (ATP4A) proton pump that triggered an internal cell acid-base imbalance, offering an autoimmune scenario for atrophic gastritis and gastric neuroendocrine tumors with secondary autoimmune pathologies. Here, we propose the genetic exploration of APS involving gastric disease to understand the underlying pathogenic mechanism of the polyautoimmune scenario. The whole exome sequencing (WES) study of five autoimmune thyrogastric families uncovered different pathogenic variants in SLC4A2, SLC26A7 and SLC26A9, which cotransport together with ATP4A. Exploratory in vitro studies suggested that the uncovered genes were involved in a pathogenic mechanism based on the alteration of the acid-base balance. Thus, we built a custom gene panel with 12 genes based on the suggested mechanism to evaluate a new series of 69 APS patients. In total, 64 filtered putatively damaging variants in the 12 genes of the panel were found in 54.17% of the studied patients and none of the healthy controls. Our studies reveal a constellation of solute carriers that co-express in the tissues affected with different autoimmune diseases, proposing a unique genetic origin for co-occurring pathologies. These results settle a new-fangled genetics-based mechanism for polyautoimmunity that explains not only gastric disease, but also thyrogastric pathology and disease co-occurrence in APS that are different from clinical incidental findings. This opens a new window leading to the prediction and diagnosis of co-occurring autoimmune diseases and clinical management of patients.


Assuntos
Antiporters/metabolismo , Tumores Neuroendócrinos/metabolismo , Poliendocrinopatias Autoimunes/metabolismo , Neoplasias Gástricas/metabolismo , Transportadores de Sulfato/metabolismo , Antiportadores de Cloreto-Bicarbonato/metabolismo , Humanos , Modelos Biológicos , Tumores Neuroendócrinos/genética , Tumores Neuroendócrinos/patologia , Poliendocrinopatias Autoimunes/genética , Poliendocrinopatias Autoimunes/patologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia
11.
Am J Physiol Cell Physiol ; 321(5): C798-C811, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34524930

RESUMO

Altered esophageal ion transport mechanisms play a key role in inflammatory and cancerous diseases of the esophagus, but epithelial ion processes have been less studied in the esophagus because of the lack of a suitable experimental model. In this study, we generated three-dimensional (3D) esophageal organoids (EOs) from two different mouse strains and characterized the ion transport processes of the EOs. EOs form a cell-filled structure with a diameter of 250-300 µm and were generated from epithelial stem cells as shown by FACS analysis. Using conventional PCR and immunostaining, the presence of Slc26a6 Cl-/HCO3- anion exchanger (AE), Na+/H+ exchanger (NHE), Na+/HCO3- cotransporter (NBC), cystic fibrosis transmembrane conductance regulator (CFTR), and anoctamin 1 Cl- channels was detected in EOs. Microfluorimetric techniques revealed high NHE, AE, and NBC activities, whereas that of CFTR was relatively low. In addition, inhibition of CFTR led to functional interactions between the major acid-base transporters and CFTR. We conclude that EOs provide a relevant and suitable model system for studying the ion transport mechanisms of esophageal epithelial cells, and they can be also used as preclinical tools to assess the effectiveness of novel therapeutic compounds in esophageal diseases associated with altered ion transport processes.


Assuntos
Células Epiteliais/metabolismo , Esôfago/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Organoides/metabolismo , Células-Tronco/metabolismo , Animais , Anoctamina-1/genética , Anoctamina-1/metabolismo , Antiporters/genética , Antiporters/metabolismo , Técnicas de Cultura de Células , Células Cultivadas , Antiportadores de Cloreto-Bicarbonato/genética , Antiportadores de Cloreto-Bicarbonato/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Esôfago/citologia , Feminino , Transporte de Íons , Masculino , Proteínas de Membrana Transportadoras/genética , Camundongos Endogâmicos C57BL , Organoides/citologia , Simportadores de Sódio-Bicarbonato/genética , Simportadores de Sódio-Bicarbonato/metabolismo , Trocadores de Sódio-Hidrogênio/genética , Trocadores de Sódio-Hidrogênio/metabolismo , Transportadores de Sulfato/genética , Transportadores de Sulfato/metabolismo
12.
Cell Mol Life Sci ; 78(17-18): 6283-6304, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34279699

RESUMO

Proper functioning of each secretory and endocytic compartment relies on its unique pH micro-environment that is known to be dictated by the rates of V-ATPase-mediated H+ pumping and its leakage back to the cytoplasm via an elusive "H+ leak" pathway. Here, we show that this proton leak across Golgi membranes is mediated by the AE2a (SLC4A2a)-mediated bicarbonate-chloride exchange, as it is strictly dependent on bicarbonate import (in exchange for chloride export) and the expression level of the Golgi-localized AE2a anion exchanger. In the acidic Golgi lumen, imported bicarbonate anions and protons then facilitate a common buffering reaction that yields carbon dioxide and water before their egress back to the cytoplasm via diffusion or water channels. The flattened morphology of the Golgi cisternae helps this process, as their high surface-volume ratio is optimal for water and gas exchange. Interestingly, this net acid efflux pathway is often upregulated in cancers and established cancer cell lines, and responsible for their markedly elevated Golgi resting pH and attenuated glycosylation potential. Accordingly, AE2 knockdown in SW-48 colorectal cancer cells was able to restore these two phenomena, and at the same time, reverse their invasive and anchorage-independent growth phenotype. These findings suggest a possibility to return malignant cells to a benign state by restoring Golgi resting pH.


Assuntos
Complexo de Golgi/metabolismo , Animais , Células COS , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Antiportadores de Cloreto-Bicarbonato/antagonistas & inibidores , Antiportadores de Cloreto-Bicarbonato/genética , Antiportadores de Cloreto-Bicarbonato/metabolismo , Chlorocebus aethiops , Glicosilação , Humanos , Concentração de Íons de Hidrogênio , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Regulação para Cima
13.
J Crohns Colitis ; 15(12): 2088-2102, 2021 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-34019628

RESUMO

BACKGROUND: SATB2 is a diagnostic biomarker and a favourable prognostic marker for colorectal cancer [CRC], but its role in colitis and colitis-associated colorectal cancer [CAC] is unknown. METHODS: Colitis was induced in intestinal epithelial-specific Satb2 knockout [Satb2 IEC-KO] and control mice using dextran sulphate sodium [DSS]. RNA-seq analysis was performed on colonic tissues, and 16S rDNA-Seq on faecal bacterial DNA from Satb2 IEC-KO and control mice. Immunohistochemistry and flow cytometry were performed to reveal the proportions of different immune cells. Chromatin immunoprecipitation [ChIP] and luciferase reporter were applied to show the regulatory role of SATB2 on SLC26A3, of which the Cl-/HCO3- exchange activity was measured fluorometrically by the pHi-sensitive dye. Bacteroides were detected by fluorescence in situ hybridisation [FISH] on colonic tissue. RESULTS: Satb2 IEC-KO mice suffered from intestinal epithelial damage spontaneously, and developed more severe colitis and CAC. The expression of SLC26A3 correlated well with SATB2 revealed by RNA-seq and The Cancer Genome Atlas [TCGA] data, and was governed by SATB2 confirmed by ChIP and luciferase reporter experiments. Decreased intestinal flora diversity was seen in Satb2 IEC-KO mice. Bacteroides were more abundant and could colonise into the inner layer of colonic mucosa in Satb2 IEC-KO mice. Faecal microbiome transplantation from Satb2 IEC-KO mice aggravated colitis and M1 macrophages infiltration. CONCLUSIONS: SATB2 plays a vital role in maintaining intestinal homeostasis, and its deficiency promotes the development of colitis and CAC by influencing the intestinal luminal environment and gut flora.


Assuntos
Antiportadores de Cloreto-Bicarbonato/metabolismo , Colite Ulcerativa/complicações , Neoplasias Colorretais/genética , Microbioma Gastrointestinal , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Fatores de Transcrição/metabolismo , Animais , Biomarcadores/metabolismo , Linhagem Celular Tumoral , Neoplasias Colorretais/complicações , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Knockout
14.
Int J Mol Sci ; 22(7)2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33806154

RESUMO

Knowledge on the mechanisms of acid and base secretion in airways has progressed recently. The aim of this review is to summarize the known mechanisms of airway surface liquid (ASL) pH regulation and their implication in lung diseases. Normal ASL is slightly acidic relative to the interstitium, and defects in ASL pH regulation are associated with various respiratory diseases, such as cystic fibrosis. Basolateral bicarbonate (HCO3-) entry occurs via the electrogenic, coupled transport of sodium (Na+) and HCO3-, and, together with carbonic anhydrase enzymatic activity, provides HCO3- for apical secretion. The latter mainly involves CFTR, the apical chloride/bicarbonate exchanger pendrin and paracellular transport. Proton (H+) secretion into ASL is crucial to maintain its relative acidity compared to the blood. This is enabled by H+ apical secretion, mainly involving H+/K+ ATPase and vacuolar H+-ATPase that carry H+ against the electrochemical potential gradient. Paracellular HCO3- transport, the direction of which depends on the ASL pH value, acts as an ASL protective buffering mechanism. How the transepithelial transport of H+ and HCO3- is coordinated to tightly regulate ASL pH remains poorly understood, and should be the focus of new studies.


Assuntos
Bicarbonatos/química , Anidrases Carbônicas/metabolismo , Epitélio/metabolismo , Mucosa Respiratória/metabolismo , Animais , Antiporters/metabolismo , Antiportadores de Cloreto-Bicarbonato/metabolismo , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Epiteliais/metabolismo , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Coelhos , Transportadores de Sulfato/metabolismo , Traqueia/metabolismo
15.
Int J Mol Sci ; 22(8)2021 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-33920650

RESUMO

Electrolytes (NaCl) and fluid malabsorption cause diarrhea in inflammatory bowel disease (IBD). Coupled NaCl absorption, mediated by Na+/H+ and Cl-/HCO3- exchanges on the intestinal villus cells brush border membrane (BBM), is inhibited in IBD. Arachidonic acid metabolites (AAMs) formed via cyclooxygenase (COX) or lipoxygenase (LOX) pathways are elevated in IBD. However, their effects on NaCl absorption are not known. We treated SAMP1/YitFc (SAMP1) mice, a model of spontaneous ileitis resembling human IBD, with Arachidonyl Trifluoro Methylketone (ATMK, AAM inhibitor), or with piroxicam or MK-886, to inhibit COX or LOX pathways, respectively. Cl-/HCO3- exchange, measured as DIDS-sensitive 36Cl uptake, was significantly inhibited in villus cells and BBM vesicles of SAMP1 mice compared to AKR/J controls, an effect reversed by ATMK. Piroxicam, but not MK-886, also reversed the inhibition. Kinetic studies showed that inhibition was secondary to altered Km with no effects on Vmax. Whole cell or BBM protein levels of Down-Regulated in Adenoma (SLC26A3) and putative anion transporter-1 (SLC26A6), the two key BBM Cl-/HCO3- exchangers, were unaltered. Thus, inhibition of villus cell Cl-/HCO3- exchange by COX pathway AAMs, such as prostaglandins, via reducing the affinity of the exchanger for Cl-, and thereby causing NaCl malabsorption, could significantly contribute to IBD-associated diarrhea.


Assuntos
Ácidos Araquidônicos/metabolismo , Antiportadores de Cloreto-Bicarbonato/metabolismo , Enterócitos/metabolismo , Ileíte/metabolismo , Prostaglandina-Endoperóxido Sintases/metabolismo , Ácido 4,4'-Di-Isotiocianoestilbeno-2,2'-Dissulfônico/farmacologia , Animais , Ácidos Araquidônicos/farmacologia , Células Cultivadas , Antiportadores de Cloreto-Bicarbonato/antagonistas & inibidores , Inibidores de Ciclo-Oxigenase/farmacologia , Enterócitos/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Ileíte/genética , Indóis/farmacologia , Lipoxigenase/metabolismo , Inibidores de Lipoxigenase/farmacologia , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Nucleares/genética , Piroxicam/farmacologia
16.
Sci Rep ; 11(1): 5990, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33727633

RESUMO

Anion exchanger 2 (AE2) plays crucial roles in regulating cell volume homeostasis and cell migration. We found that both IRBIT and Long-IRBIT (L-IRBIT) interact with anion exchanger 2 (AE2). The interaction occurred between the conserved AHCY-homologous domain of IRBIT/L-IRBIT and the N-terminal cytoplasmic region of AE2. Interestingly, AE2 activity was reduced in L-IRBIT KO cells, but not in IRBIT KO cells. Moreover, AE2 activity was slightly increased in IRBIT/L-IRBIT double KO cells. These changes in AE2 activity resulted from changes in the AE2 expression level of each mutant cell, and affected the regulatory volume increase and cell migration. The activity and expression level of AE2 in IRBIT/L-IRBIT double KO cells were downregulated if IRBIT, but not L-IRBIT, was expressed again in the cells, and the downregulation was cancelled by the co-expression of L-IRBIT. The mRNA levels of AE2 in each KO cell did not change, and the downregulation of AE2 in L-IRBIT KO cells was inhibited by bafilomycin A1. These results indicate that IRBIT binding facilitates the lysosomal degradation of AE2, which is inhibited by coexisting L-IRBIT, suggesting a novel regulatory mode of AE2 activity through the binding of two homologous proteins with opposing functions.


Assuntos
Antiportadores de Cloreto-Bicarbonato/metabolismo , Ativação do Canal Iônico , Lectinas Tipo C/metabolismo , Lisossomos/metabolismo , Proteínas de Membrana/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Bicarbonatos/metabolismo , Transporte Biológico , Linhagem Celular , Antiportadores de Cloreto-Bicarbonato/química , Cloretos/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Lectinas Tipo C/química , Lectinas Tipo C/genética , Melanoma Experimental , Proteínas de Membrana/química , Proteínas de Membrana/genética , Camundongos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas , Multimerização Proteica , Proteólise , Estresse Fisiológico
17.
J Cutan Pathol ; 48(7): 847-855, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33340147

RESUMO

Myoepithelial tumors comprise a group of mesenchymal lesions that show heterogeneous histomorphological features, including dual epithelial, neural, and myoid differentiation. Cutaneous myoepithelioma is a rare neoplasm that is composed primarily of myoepithelial cells and represents one end of a histopathological spectrum of cutaneous myoepithelial neoplasms including chondroid syringoma and myoepithelial carcinoma. These tumors display a wide histopathological spectrum and immunophenotypical profile often showing epithelial and myoepithelial differentiation. In this series, we studied 35 cases of cutaneous myoepitheliomas. Our cases highlighted the broad histopathological range where most cases showed a non-infiltrative and non-encapsulated tumor exclusively located in the dermis and with no subcutaneous involvement. The majority of our cases had a solid growth pattern (syncytial pattern) and the remainder of cases had a multinodular growth pattern. The tumor cells were epithelioid in 23 cases, spindled in eight cases and there was a mixture of epithelioid and spindled cells in four cases. Mitotic figures ranged from 0 to 5 per 10 HPF. By immunohistochemistry epithelial membrane antigen (EMA) was expressed in 59% of cases S100 was positive in 88% of cases, CAM 5.2 was positive in 16% of cases, AE1/AE3 was positive in 44% of cases, p63 was positive in 17% of cases, smooth muscle actin was positive in 38% of cases, desmin was positive in 6% of cases, calponin was positive in 22% of cases, and glial fibrillary acidic protein was positive in 36% of cases. In addition, there were five cases without EMA, keratin, or p63 expression that only showed S100 expression. We describe a large series of cutaneous myoepitheliomas delineating their histomorphological spectrum and immunophenotypical profile. Awareness of some of the unusual histopathological features and the heterogeneous immunohistochemical may pose difficulties for the diagnosis.


Assuntos
Imunofenotipagem/métodos , Mioepitelioma/diagnóstico , Mioepitelioma/metabolismo , Neoplasias Cutâneas/patologia , Actinas/metabolismo , Adenoma Pleomorfo/patologia , Adulto , Proteína 1 de Troca de Ânion do Eritrócito/metabolismo , Conscientização , Biomarcadores/metabolismo , Biomarcadores Tumorais/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Carcinoma/patologia , Antiportadores de Cloreto-Bicarbonato/metabolismo , Desmina/metabolismo , Diagnóstico Diferencial , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Imuno-Histoquímica/métodos , Queratinas/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Mucina-1/metabolismo , Mioepitelioma/patologia , Mioepitelioma/ultraestrutura , Proteínas S100/metabolismo , Calponinas
18.
Hum Exp Toxicol ; 40(3): 483-496, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32909866

RESUMO

Endemic goitre and associated iodine deficiency disorders (IDDs) are a major concern in public health even in the period of post salt iodization in many regions. Among others the consumption of cyanogenic plants found responsible for the persistence of such diseases. Bamboo shoots (BS) is one such cyanogenic plant food that caused disruption of certain thyroid hormone synthesizing regulatory element as has already been reported in our earlier study. In this investigation the possible mechanism of thyrocytes disruption along with interruption of thyroid hormone biosynthesis by BS has been worked out. Commonly consumed BS, Bambusa Balcooa Roxb (BBR) water extract was analysed by GC MS; three doses below IC50 were administered to thyrocytes in culture with and without iodine. Expressions of thyroglobulin (Tg), pendrin (PDS) and monocarboxylate transporter 8 (MCT8) were evaluated in thyrocytes with cell cycle analysis, reactive oxygen species (ROS) generation, DNA oxidation and apoptotic regulation through Bax, Bcl-2 and p53. Phytochemical analysis of BBR extract revealed the presence of precursors and metabolic end products of cyanogenic glycosides. Dose dependent decrease in expression of Tg and PDS with concomitant decrease in gene expression of these with MCT8 were observed. Increased ROS, DNA oxidation and associated imbalance were found through increased Bax and p53 with decreased Bcl-2 that perturbed thyrocytes cell cycle. Cyanogenic constituents of BBR generates ROS associated oxidative changes in thyrocytes with DNA damage and oxidation and cell cycle disruption followed by inhibition of thyroid hormone synthesizing regulatory elements; addition of extra iodine showed partial prevention.


Assuntos
Bambusa , Extratos Vegetais/toxicidade , Células Epiteliais da Tireoide/efeitos dos fármacos , Animais , Células Cultivadas , Antiportadores de Cloreto-Bicarbonato/genética , Antiportadores de Cloreto-Bicarbonato/metabolismo , Dano ao DNA , Feminino , Transportadores de Ácidos Monocarboxílicos/genética , Brotos de Planta , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Transportadores de Sulfato/genética , Transportadores de Sulfato/metabolismo , Tireoglobulina/genética , Tireoglobulina/metabolismo , Células Epiteliais da Tireoide/metabolismo , Proteína Supressora de Tumor p53/metabolismo
19.
CNS Neurol Disord Drug Targets ; 19(4): 264-275, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32496992

RESUMO

BACKGROUND: Mammalian central neurons regulate their intracellular pH (pHi) strongly and even slight pHi-fluctuations can influence inter-/intracellular signaling, synaptic plasticity and excitability. OBJECTIVE: For the first time, we investigated topiramate´s (TPM) influence on pHi-behavior of human central neurons representing a promising target for anticonvulsants and antimigraine drugs. METHODS: In slice-preparations of tissue resected from the middle temporal gyrus of five adults with intractable temporal lobe epilepsy, BCECF-AM-loaded neocortical pyramidal-cells were investigated by fluorometry. The pHi-regulation was estimated by using the recovery-slope from intracellular acidification after an Ammonium-Prepulse (APP). RESULTS: Among 17 pyramidal neurons exposed to 50 µM TPM, seven (41.24%) responded with an altered resting-pHi (7.02±0.12), i.e., acidification of 0.01-0.03 pH-units. The more alkaline the neurons, the greater the TPM-related acidifications (r=0.7, p=0.001, n=17). The recovery from APPacidification was significantly slowed under TPM (p<0.001, n=5). Further experiments using nominal bicarbonate-free (n=2) and chloride-free (n=2) conditions pointed to a modulation of the HCO3 -- driven pHi-regulation by TPM, favoring a stimulation of the passive Cl-/HCO3 --antiporter (CBT) - an acid-loader predominantly in more alkaline neurons. CONCLUSION: TPM modulated the bicarbonate-driven pHi-regulation, just as previously described in adult guinea-pig hippocampal neurons. We discussed the significance of the resulting subtle acidifications for beneficial antiepileptic, antimigraine and neuroprotective effects as well as for unwanted cognitive deficits.


Assuntos
Equilíbrio Ácido-Base/efeitos dos fármacos , Anticonvulsivantes/farmacologia , Bicarbonatos/metabolismo , Antiportadores de Cloreto-Bicarbonato/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Neocórtex/efeitos dos fármacos , Células Piramidais/efeitos dos fármacos , Topiramato/farmacologia , Adulto , Antiportadores de Cloreto-Bicarbonato/metabolismo , Epilepsia do Lobo Temporal/cirurgia , Feminino , Fluorometria , Hipocampo/patologia , Humanos , Masculino , Malformações do Desenvolvimento Cortical , Neocórtex/química , Neocórtex/citologia , Neocórtex/metabolismo , Neurônios/química , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Células Piramidais/química , Células Piramidais/metabolismo , Esclerose , Lobo Temporal/química , Lobo Temporal/citologia , Lobo Temporal/efeitos dos fármacos , Lobo Temporal/metabolismo , Adulto Jovem
20.
Am J Physiol Cell Physiol ; 319(2): C331-C344, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32432926

RESUMO

The pH of airway surface liquid (ASL) is a key factor that determines respiratory host defense; ASL acidification impairs and alkalinization enhances key defense mechanisms. Under healthy conditions, airway epithelia secrete base ([Formula: see text]) and acid (H+) to control ASL pH (pHASL). Neutrophil-predominant inflammation is a hallmark of several airway diseases, and TNFα and IL-17 are key drivers. However, how these cytokines perturb pHASL regulation is uncertain. In primary cultures of differentiated human airway epithelia, TNFα decreased and IL-17 did not change pHASL. However, the combination (TNFα+IL-17) markedly increased pHASL by increasing [Formula: see text] secretion. TNFα+IL-17 increased expression and function of two apical [Formula: see text] transporters, CFTR anion channels and pendrin Cl-/[Formula: see text] exchangers. Both were required for maximal alkalinization. TNFα+IL-17 induced pendrin expression primarily in secretory cells where it was coexpressed with CFTR. Interestingly, significant pendrin expression was not detected in CFTR-rich ionocytes. These results indicate that TNFα+IL-17 stimulate [Formula: see text] secretion via CFTR and pendrin to alkalinize ASL, which may represent an important defense mechanism in inflamed airways.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Interleucina-17/genética , Mucosa Respiratória/metabolismo , Transportadores de Sulfato/genética , Fator de Necrose Tumoral alfa/genética , Álcalis/metabolismo , Bicarbonatos/metabolismo , Antiportadores de Cloreto-Bicarbonato/metabolismo , Citocinas/genética , Citocinas/metabolismo , Células Epiteliais/metabolismo , Humanos , Interleucina-17/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA