RESUMO
Our group has previously performed a proteomic study verifying that individual variations can occur among Crotalus durissus collilineatus venoms. These variations may lead to differences in venom toxicity and may result in lack of neutralization of some components by antivenom. In this way, this study aimed to evaluate the Brazilian anticrotalic serum capacity in recognizing twenty-two Crotalus durissus collilineatus venoms, as well as their fractions. Methods: The indirect enzyme-linked immunosorbent assay (ELISA) was chosen to evaluate the efficacy of heterologous anticrotalic serum produced by Instituto Butantan (Brazil) in recognizing the twenty-two Crotalus durissus collilineatus venoms and the pool of them. Moreover, the venom pool was fractionated using reversed-phase fast protein liquid chromatography (RP-FPLC) and the obtained fractions were analyzed concerning antivenom recognition. Results: Evaluation of venom variability by ELISA showed that all venom samples were recognized by the Brazilian anticrotalic antivenom. However, some particular venom fractions were poorly recognized. Conclusion: This study demonstrated that the Brazilian anticrotalic serum recognizes all the different twenty-two venoms of C. d. collilineatus and their fractions, although in a quantitatively different way, which may impact the effectiveness of the antivenom therapy. These results confirm the need to use a pool of venoms with the greatest possible variability in the preparation of antivenoms, in order to improve their effectiveness.(AU)
Assuntos
Antivenenos/toxicidade , Crotalus , Venenos de Crotalídeos , Ensaio de Imunoadsorção EnzimáticaRESUMO
Cnidarians produce toxins, which are composed of different polypeptides that induce pharmacological effects of biotechnological interest, such as antitumor, antiophidic and anti-clotting activities. This study aimed to evaluate toxicological activities and potential as antitumor and antiophidic agents contained in total extracts from five cnidarians: Millepora alcicornis, Stichodactyla helianthus, Plexaura homomalla, Bartholomea annulata and Condylactis gigantea (total and body wall). Methods: The cnidarian extracts were evaluated by electrophoresis and for their phospholipase, proteolytic, hemorrhagic, coagulant, fibrinogenolytic, neuromuscular blocking, muscle-damaging, edema-inducing and cytotoxic activities. Results: All cnidarian extracts showed indirect hemolytic activity, but only S. helianthus induced direct hemolysis and neurotoxic effect. However, the hydrolysis of NBD-PC, a PLA2 substrate, was presented only by the C gigantea (body wall) and S. helianthus. The extracts from P. homomalla and S. helianthus induced edema, while only C gigantea and S. helianthus showed intensified myotoxic activity. The proteolytic activity upon casein and fibrinogen was presented mainly by B. annulata extract and all were unable to induce hemorrhage or fibrinogen coagulation. Cnidarian extracts were able to neutralize clotting induced by Bothrops jararacussu snake venom, except M. alcicornis. All cnidarian extracts were able to inhibit hemorrhagic activity induced by Bothrops moojeni venom. Only the C. gigantea (body wall) inhibited thrombin-induced coagulation. All cnidarian extracts showed antitumor effect against Jurkat cells, of which C. gigantea (body wall) and S. helianthus were the most active; however, only C. gigantea (body wall) and M. alcicornis were active against B16F10 cells. Conclusion: The cnidarian extracts analyzed showed relevant in vitro inhibitory potential over the activities induced by Bothrops venoms; these results may contribute to elucidate the possible mechanisms of interaction between cnidarian extracts and snake venoms.(AU)
Assuntos
Animais , Masculino , Ratos , Antivenenos/toxicidade , Venenos de Cnidários/farmacologia , Venenos de Crotalídeos/imunologia , Bothrops , Neoplasias/imunologiaRESUMO
The venom proteomes of the snakes Bothrops caribbaeus and Bothrops lanceolatus, endemic to the Lesser Antillean islands of Saint Lucia and Martinique, respectively, were characterized by reverse-phase HPLC fractionation, followed by analysis of each chromatographic fraction by SDS-PAGE, N-terminal sequencing, MALDI-TOF mass fingerprinting, and collision-induced dissociation tandem mass spectrometry of tryptic peptides. The venoms contain proteins belonging to seven ( B. caribbaeus) and five ( B. lanceolatus) types of toxins. B. caribbaeus and B. lanceolatus venoms contain phospholipases A 2, serine proteinases, l-amino acid oxidases and zinc-dependent metalloproteinases, whereas a long disintegrin, DC-fragments and a CRISP molecule were present only in the venom of B. caribbaeus, and a C-type lectin-like molecule was characterized in the venom of B. lanceolatus. Compositional differences between venoms among closely related species from different geographic regions may be due to evolutionary environmental pressure acting on isolated populations. The venoms of these two species differed in the composition and the relative abundance of their component toxins, but they exhibited similar toxicological and enzymatic profiles in mice, characterized by lethal, hemorrhagic, edema-forming, phospholipase A 2 and proteolytic activities. The venoms of B. caribbaeus and B. lanceolatus are devoid of coagulant and defibrinogenating effects and induce only mild local myotoxicity in mice. The characteristic thrombotic effect described in human envenomings by these species was not reproduced in the mouse model. The toxicological profile observed is consistent with the abundance of metalloproteinases, PLA 2s and serine proteinases in the venoms. A polyvalent (Crotalinae) antivenom produced in Costa Rica was able to immunodeplete approximately 80% of the proteins from both B. caribbaeus and B. lanceolatus venoms, and was effective in neutralizing the lethal, hemorrhagic, phospholipase A 2 and proteolytic activities of these venoms.
Assuntos
Antivenenos , Bothrops/metabolismo , Venenos de Crotalídeos/química , Proteoma/análise , Sequência de Aminoácidos , Animais , Antivenenos/imunologia , Antivenenos/toxicidade , Cromatografia Líquida de Alta Pressão , Venenos de Crotalídeos/metabolismo , Evolução Molecular , Humanos , Martinica , Espectrometria de Massas , Camundongos , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Santa LúciaRESUMO
Radiaçöes ionizantes afetam a estrutura das moléculas devido à destruiçäo das suas ligaçöes químicas. Estas alteraçöes químicas poderäo levar a uma mudança nas propriedades biológicas das mesmas, como tem sido demosntrado na literatura. A Crotamina foi obtida a partir de um "pool" do veneno de Crotalus durissus terrificus através de cromatografia de exclusäo molecular, sendo posteriormente irradiada em soluçäo numa concentraçäo de 2 mg/ml de NaCl 0,85% com radiaçäo gama produzida por uma fonte de 60Co. Foram adotadas as doses de 100 Gy, 250 Gy, 500 Gy, 1000 Gy e 2000 Gy (taxa de dose = 1,19. 10**3 Gy/h). Realizou-se os seguintes ensaios: presença de grupos SH livres, determinaçäo do número de bandas na SDS-PAGE (sugerindo a formaçäo de agregados protéicos) que foi proporcional ao aumento das doses. Pela imunodifusäo näo houve perda da atividade imunoquímica quando testadas contra o antisoro produzido pelo Instituto Butantan