Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
1.
Microbiol Spectr ; 12(2): e0243623, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38174936

RESUMO

Fungiidae have shown increased thermal adaptability in coral reef ecosystems under global warming. This study analyzes the evolutionary divergence and microbial communities of Fungiidae in the Sanjiao Reef of the southern South China Sea and explores the impact of coral evolution radiation and microbial dynamics on the heat tolerance of Fungiidae. The results found that Cycloseris was an ancient branch of Fungiidae, dating back approximately 147.8953 Mya, and Fungiidae differentiated into two ancestral clades (clades I and II) before 107.0312 Ma. Fungiidae exhibited specific symbioses with the Cladocopium C27 sub-clade. Notably, the Cladocopium C1 sub-clade has a high relative abundance in clade I, whereas the heat-tolerant Cladocopium C40 and C3u sub-clades subdominante in clade II. Regarding bacterial communities, Cycloseris costulata, the earliest divergent species, had higher bacterial ß-diversity, while the latest divergent species, Lithophyllon scabra, displayed lower bacterial α-diversity and higher community stability. Beneficial bacteria dominante Fungiidae's bacterial community (54%). The co-occurrence network revealed that microbial networks in clade II exhibited lower complexity and greater resilience than those in clade I. Our study highlights that host evolutionary radiation and microbial communities shaped Fungiidae's thermal tolerance. The variability in subdominant Symbiodiniaceae populations may contribute to interspecific differences in thermal tolerance along the evolutionary branches of Fungiidae. The presence of abundant beneficial bacteria may further enhance the thermal ability of the Fungiidae. Furthermore, the later divergent species of Fungiidae have stronger heat tolerance, possibly driven by the increased regulation ability of the host on the bacterial community, greater microbial community stability, and interaction network resistance.IMPORTANCECoral reefs are facing significant threats due to global warming. The heat tolerance of coral holobionts depends on both the coral host and its microbiome. However, the association between coral evolutionary radiation and interspecific differences in microbial communities remains unclear. In this study, we investigated the role of evolutionary radiation and microbial community dynamics in shaping the thermal acclimation potential of Fungiidae in the Sanjiao Reef of the southern South China Sea. The study's results suggest that evolutionary radiation enhances the thermal tolerance of Fungiidae. Fungiidae species that have diverged more recently have exhibited a higher presence of heat-tolerant Symbiodiniaceae taxa, more stable bacterial communities, and a robust and resilient microbial interaction network, improving the thermal adaptability of Fungiidae. In summary, this study provides new insights into the thermal adaptation patterns of corals under global warming conditions.


Assuntos
Antozoários , Dinoflagellida , Microbiota , Animais , Antozoários/microbiologia , Antozoários/fisiologia , Recifes de Corais , Aclimatação , Bactérias , China , Dinoflagellida/fisiologia
2.
Mar Drugs ; 21(6)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37367660

RESUMO

Coral reefs are the most biodiversity-rich ecosystems in the world's oceans. Coral establishes complex interactions with various microorganisms that constitute an important part of the coral holobiont. The best-known coral endosymbionts are Symbiodiniaceae dinoflagellates. Each member of the coral microbiome contributes to its total lipidome, which integrates many molecular species. The present study summarizes available information on the molecular species of the plasma membrane lipids of the coral host and its dinoflagellates (phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), phosphatidylinositol (PI), ceramideaminoethylphosphonate, and diacylglyceryl-3-O-carboxyhydroxymethylcholine), and the thylakoid membrane lipids of dinoflagellates (phosphatidylglycerol (PG) and glycolipids). Alkyl chains of PC and PE molecular species differ between tropical and cold-water coral species, and features of their acyl chains depend on the coral's taxonomic position. PS and PI structural features are associated with the presence of an exoskeleton in the corals. The dinoflagellate thermosensitivity affects the profiles of PG and glycolipid molecular species, which can be modified by the coral host. Coral microbiome members, such as bacteria and fungi, can also be the source of the alkyl and acyl chains of coral membrane lipids. The lipidomics approach, providing broader and more detailed information about coral lipid composition, opens up new opportunities in the study of biochemistry and ecology of corals.


Assuntos
Antozoários , Dinoflagellida , Animais , Antozoários/microbiologia , Fosfolipídeos , Ecossistema , Lipidômica , Betaína , Glicolipídeos , Recifes de Corais , Fosfatidilcolinas , Fosfatidilgliceróis , Simbiose
3.
Microbiol Spectr ; 11(4): e0025723, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37378544

RESUMO

Polyp bail-out constitutes both a stress response and an asexual reproductive strategy that potentially facilitates dispersal of some scleractinian corals, including several dominant reef-building taxa in the family Pocilloporidae. Recent studies have proposed that microorganisms may be involved in onset and progression of polyp bail-out. However, changes in the coral microbiome during polyp bail-out have not been investigated. In this study, we induced polyp bail-out in Pocillopora corals using hypersaline and hyperthermal methods. Bacterial community dynamics during bail-out induction were examined using the V5-V6 region of the 16S-rRNA gene. From 70 16S-rRNA gene libraries constructed from coral tissues, 1,980 OTUs were identified. Gammaproteobacteria and Alphaproteobacteria consistently constituted the dominant bacterial taxa in all coral tissue samples. Onset of polyp bail-out was characterized by increased relative abundance of Alphaproteobacteria and decreased abundance of Gammaproteobacteria in both induction experiments, with the shift being more prominent in response to elevated temperature than to elevated salinity. Four OTUs, affiliated with Thalassospira, Marisediminitalea, Rhodobacteraceae, and Myxococcales, showed concurrent abundance increases at the onset of polyp bail-out in both experiments, suggesting potential microbial causes of this coral stress response. IMPORTANCE Polyp bail-out represents both a stress response and an asexual reproductive strategy with significant implications for reshaping tropical coral reefs in response to global climate change. Although earlier studies have suggested that coral-associated microbiomes likely contribute to initiation of polyp bail-out in scleractinian corals, there have been no studies of coral microbiome shifts during polyp bail-out. In this study, we present the first investigation of changes in bacterial symbionts during two experiments in which polyp bail-out was induced by different environmental stressors. These results provide a background of coral microbiome dynamics during polyp bail-out development. Increases in abundance of Thalassospira, Marisediminitalea, Rhodobacteraceae, and Myxococcales that occurred in both experiments suggest that these bacteria are potential microbial causes of polyp bail-out, shedding light on the proximal triggering mechanism of this coral stress response.


Assuntos
Antozoários , Gammaproteobacteria , Microbiota , Myxococcales , Rhodobacteraceae , Animais , Antozoários/genética , Antozoários/microbiologia , Recifes de Corais , Microbiota/genética , Gammaproteobacteria/genética , Rhodobacteraceae/genética , Myxococcales/genética , RNA Ribossômico 16S/genética
4.
Vet Pathol ; 60(5): 640-651, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37218467

RESUMO

Aspergillosis of gorgonian sea fans is a Caribbean-wide disease characterized by focal, annular purple pigmentation with central tissue loss. We applied a holistic diagnostic approach including histopathology and a combination of culture and direct molecular identification of fungi to evaluate these lesions with the goal of determining the diversity of associated micro-organisms and pathology. Biopsies were collected from 14 sea fans without gross lesions and 44 sea fans with lesions grossly consistent with aspergillosis in shallow fringing reefs of St. Kitts. Histologically, the tissue loss margin had exposure of the axis and amoebocyte encapsulation with abundant mixed micro-organisms. Polyp loss, gastrodermal necrosis, and coenenchymal amoebocytosis were at the lesion interface (purpled area transitioning to grossly normal tissue) with algae (n = 21), fungus-like hyphae (n = 20), ciliate protists (n = 16), cyanobacteria (n = 15), labyrinthulomycetes (n = 5), or no micro-organisms (n = 8). Slender, septate hyaline hyphae predominated over other morphological categories, but were confined to the axis with little host response other than periaxial melanization. Hyphae were absent in 6 lesioned sea fans and present in 5 control biopsies, questioning their pathogenicity and necessary role in lesion causation. From cultivation, different fungi were isolated and identified by sequencing of the nuclear ribosomal internal transcribed spacer region. In addition, 2 primer pairs were used in a nested format to increase the sensitivity for direct amplification and identification of fungi from lesions, thereby circumventing cultivation. Results suggest mixed and opportunistic infections in sea fans with these lesions, requiring longitudinal or experimental studies to better determine the pathogenesis.


Assuntos
Antozoários , Aspergilose , Cianobactérias , Animais , Antozoários/microbiologia , Antozoários/fisiologia , Região do Caribe , Aspergilose/diagnóstico , Aspergilose/veterinária , Hifas
5.
J Zhejiang Univ Sci B ; 24(3): 275-280, 2023 Mar 15.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-36916003

RESUMO

Marine microorganisms, especially marine fungi, have historically proven their value as a prolific source for structurally novel and pharmacologically active secondary metabolites (Deshmukh et al., 2018; Carroll et al., 2022). The corals constitute a dominant part of reefs with the highest biodiversity, and harbor highly diverse and abundant microbial symbionts in their tissue, skeleton, and mucus layer, with species-specific core members that are spatially partitioned across coral microhabitats (Wang WQ et al., 2022). The coral-associated fungi were very recently found to be vital producers of structurally diverse compounds, terpenes, alkaloids, peptides, aromatics, lactones, and steroids. They demonstrate a wide range of bioactivity such as anticancer, antimicrobial, and antifouling activity (Chen et al., 2022). The genetically powerful genus Emericella (Ascomycota), which has marine and terrestrial sources, includes over 30 species and is distributed worldwide. It is considered a rich source of diverse secondary metabolites with antimicrobial activity or cytotoxicity (Alburae et al., 2020). Notably, Emericella nidulans, the sexual state of a classic biosynthetic strain Aspergillus nidulans, was recently reported as an important source of highly methylated polyketides (Li et al., 2019) and isoindolone-containing meroterpenoids (Zhou et al., 2016) with unusual skeletons.


Assuntos
Alcaloides , Antozoários , Anti-Infecciosos , Aspergillus nidulans , Policetídeos , Animais , Policetídeos/farmacologia , Policetídeos/química , Antozoários/microbiologia , Anti-Infecciosos/farmacologia
6.
Molecules ; 27(21)2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-36364202

RESUMO

Marine fungi Aspergillus sp. is an important source of natural active lead compounds with biological and chemical diversity, of which sesquiterpenoids are an extremely important class of bioactive secondary metabolites. In this paper, we review the sources, chemical structures, bioactivity, biosynthesis, and druggability evaluation of sesquiterpenoids discovered from marine fungi Aspergillus sp. since 2008. The Aspergillus species involved include mainly Aspergillus fumigatus, Aspergillus versicolor, Aspergillus flavus, Aspergillus ustus, Aspergillus sydowii, and so on, which originate from sponges, marine sediments, algae, mangroves, and corals. In recent years, 268 sesquiterpenoids were isolated from secondary metabolites of marine Aspergillus sp., 131 of which displayed bioactivities such as antitumor, antimicrobial, anti-inflammatory, and enzyme inhibitory activity. Furthermore, the main types of active sesquiterpenoids are bisabolanes, followed by drimanes, nitrobenzoyl, etc. Therefore, these novel sesquiterpenoids will provide a large number of potential lead compounds for the development of marine drugs.


Assuntos
Antozoários , Anti-Infecciosos , Sesquiterpenos , Animais , Aspergillus/química , Sesquiterpenos/química , Fungos , Anti-Infecciosos/farmacologia , Antozoários/microbiologia
7.
Antonie Van Leeuwenhoek ; 115(7): 933-941, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35639297

RESUMO

Thermal stress is considered one of the main causes of mass scleractinian coral degradation; however, it is still unknown how corals can adapt to future global warming. In this study, 11 strains of coral-associated Flavobacteria were shown to produce zeaxanthin, a carotenoid antioxidant, which may help coral holobionts to alleviate thermal stress. In addition, a novel zeaxanthin-producing Flavobacterium, designated R38T, was identified using polyphasic taxonomy. Although strain R38T shared a maximum 16S rRNA gene sequence similarity of 93% with Mesoflavibacter aestuarii KYW614T, phylogenetic analyses based on whole genome and 16S rRNA gene sequences revealed that strain R38T forms a distinct branch in a robust cluster composed of strain R38T and Leptobacterium flavescens KCTC 22160T under the family Flavobacteriaceae. Strain R38T exhibited average nucleotide identities of 70.2% and 72.5% for M. aestuarii KYW614T and L. flavescens KCTC 22160T, respectively. The only detected respiratory quinone was menaquinone 6 (MK-6). The genomic DNA G + C content was 33.2 mol%. The major polar lipids were phosphatidylmethylethanolamine, phosphatidylethanolamine, one unidentified ninhydrin phospholipid, three unidentified ninhydrin-positive lipids, and three unidentified lipids. The major cellular fatty acids were iso - C15: 0, iso - C15: 0 ω6c, C16:2 DMA, and C13:1 ω3c. The distinct biochemical, chemotaxonomic, phylogenetic, and phylogenomic differences from validly published taxa suggest that strain R38T represents a new species of a new genus, for which Prasinibacter corallicola gen. nov., sp. nov. is proposed. The type strain R38T (= MCCC 1K03889T = KCTC 72444T).


Assuntos
Antozoários , Animais , Antozoários/microbiologia , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Ácidos Graxos/química , Ninidrina , Fosfolipídeos/química , Filogenia , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Análise de Sequência de DNA , Vitamina K 2/química , Zeaxantinas
8.
Artigo em Inglês | MEDLINE | ID: mdl-35639595

RESUMO

A Gram-stain-negative, non-spore-forming, motile, aerobic bacterium (strain C21T) was isolated from coral and identified using polyphasic identification approach. Global alignment of 16S rRNA gene sequences indicated that strain C21T shares 95.7 % sequence identity to its closest neighbour, Marinibactrum halimedae NBRC 110095T, followed by other type strains with identities of lower than 95 %. The average nucleotide identity and average amino acid identity values between strain C21T and M. halimedae NBRC 110095T were 69.6 and 64.8 %, respectively, indicating that strain C21T may represent a new species in a new genus. Phylogenetic analysis based on 16S rRNA gene and phylogenomic results indicated that strain C21T forms a distinct branch in the family Cellvibrionaceae. Cellular fatty acids and polar lipids could also readily distinguish strain C21T from closely related type strains. Therefore, strain C21T is suggested to represent a new species in a new genus, for which the name Sessilibacter corallicola gen. nov., sp. nov. is proposed. The type strain is C21T (=MCCC 1K03260T=KCTC 62317T).


Assuntos
Antozoários , Animais , Antozoários/microbiologia , Bactérias/genética , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Imidazóis , Fosfolipídeos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Sulfonamidas , Tiofenos
9.
Mar Drugs ; 20(3)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35323477

RESUMO

One new depsidone derivative, aspergillusidone H (3), along with seven known biosynthetically related chlorinated polyketides, were obtained from the Beibu Gulf coral-derived fungus Aspergillus unguis GXIMD 02505. Their structures were determined by comprehensive physicochemical and spectroscopic data interpretation. Notably, the X-ray crystal structure of 2 and the previously unknown absolute configuration of 8, assigned by ECD calculations, are described here for the first time. Compounds 1-5, 7 and 8 exhibited inhibition of lipopolysaccharide (LPS)-induced NF-κB in RAW 264.7 macrophages at 20 µM. In addition, the two potent inhibitors (2 and 7) dose-dependently suppressed RANKL-induced osteoclast differentiation without any evidence of cytotoxicity in bone marrow macrophages cells (BMMs). This is the first report of osteoclastogenesis inhibitory activity for the metabolites of these kinds. Besides, compounds 1, 2, 4, and 6-8 showed inhibitory activity against marine biofilm-forming bacteria, methicillin-resistant Staphylococcus aureus, Microbulbifer variabilis, Marinobacterium jannaschii, and Vibrio pelagius, with their MIC values ranging from 2 to 64 µg/mL. These findings provide a basis for further development of chlorinated polyketides as potential inhibitors of osteoclast differentiation and/or for use as anti-fouling agents.


Assuntos
Antozoários/microbiologia , Antibacterianos , Aspergillus/química , Produtos Biológicos , Osteogênese/efeitos dos fármacos , Policetídeos , Animais , Antibacterianos/química , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/farmacologia , Células Cultivadas , Lipopolissacarídeos/farmacologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Camundongos , Estrutura Molecular , NF-kappa B/metabolismo , Oceanos e Mares , Policetídeos/química , Policetídeos/isolamento & purificação , Policetídeos/farmacologia , Ligante RANK
10.
Mar Drugs ; 20(2)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35200679

RESUMO

Three new metabolites, including a cyclic tetrapeptide asperhiratide (1), an ecdysteroid derivative asperhiratine (2), and a sesquiterpene lactone asperhiratone (3), were isolated and identified from the soft coral-derived fungus Aspergillus hiratsukae SCSIO 5Bn1003, together with 10 known compounds. Their structures were elucidated via spectroscopic analysis, X-ray diffraction analysis, and electronic circular dichroism calculations. In addition, the absolute configuration of 1 was determined by Marfey's technique and an analysis of the acid hydrolysates using a chiral phase HPLC column. Among all the compounds, 6 and 8 showed medium cytotoxic activities against four tumor cell lines (SF-268, HepG-2, MCF-7, and A549), with IC50 values ranging from 31.03 ± 3.04 to 50.25 ± 0.54 µM. Meanwhile, they strongly inhibited α-glucosidase activities, with IC50 values of 35.73 ± 3.94 and 22.00 ± 2.45 µM, which were close to and even stronger than the positive control acarbose (IC50 = 32.92 ± 1.03 µM). Compounds 6-8 showed significant antibacterial activities against Bacillus subtilis, with MIC values of 10.26 ± 0.76 µM, 17.00 ± 1.25 µM, and 5.30 ± 0.29 µM, respectively. Compounds 9 and 12 exhibited potent radical scavenging activities against DPPH, with IC50 values of 12.23 ± 0.78 µM and 7.38 ± 1.16 µM. In addition, asperhiratide (1) was evaluated for anti-angiogenic activities in the in vivo zebrafish model, which showed a weak inhibitory effect on intersegmental vessel (ISV) formation.


Assuntos
Antozoários/microbiologia , Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Aspergillus/metabolismo , Células A549 , Animais , Antibacterianos/administração & dosagem , Antibacterianos/isolamento & purificação , Antineoplásicos/administração & dosagem , Antineoplásicos/isolamento & purificação , Linhagem Celular Tumoral , Células Hep G2 , Humanos , Concentração Inibidora 50 , Células MCF-7 , Testes de Sensibilidade Microbiana , Metabolismo Secundário , Peixe-Zebra
11.
Artigo em Inglês | MEDLINE | ID: mdl-35188884

RESUMO

Two new marine actinobacteria, designated as J2-1T and J2-2T, were isolated from a coral, Favites pentagona, collected from Rayong Province, Thailand. The taxonomic positions of the two strains were identified based on polyphasic taxonomy. Based on morphological characteristics and chemotaxonomy, strains J2-1T and J2-2T were identified as members of the genus Streptomyces and Kineosporia, respectively. Strains J2-1T and J2-2T showed the highest 16S rRNA gene sequence similarity to Streptomyces broussonetiae T44T (98.62 %) and Kineosporia babensis VN05A0415T (98.08 %), respectively. Strain J2-1T had chemotaxonomic properties resembling members of the genus Streptomyces. ll-Diaminopimelic acid, glucose and ribose were detected in the whole-cell hydrolysate. Diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, phosphatidylinositolmannoside, unidentified aminolipid and five unidentified phospholipids were detected as the polar lipids. The major cellular fatty acids were C16 : 0 iso, C15 : 0 anteiso, C15 : 0 iso, C16 : 0, C17 : 0 anteiso, C14 : 0 iso and C17 : 0 iso. Strain J2-2T a showed similar cell composition to members of the genus Kineosporia. Both isomers of ll- and meso-diaminopimelic acid were detected in the peptidoglycan. Arabinose, galactose, madurose and xylose were observed in the whole-cell hydrolysate. The polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, phosphatidylinositol mannoside, phosphatidylcholine, an unidentified phospholipid and an unidentified glycolipid. The major cellular fatty acids were C16 : 0, C18 : 1 ω9c, C18 : 0 10-methyl, tuberculostearic acid, C18 : 0 and C17 : 0. Both strains could be distinguished from their closely related type strains according to their phenotypic characteristics. Comparative genome analysis indicated the delineation of two novel species based on digital DNA-DNA hybridization and average nucleotide identity values, which were below 70 and 95 %, respectively. The names proposed are Streptomyces corallincola sp. nov. (J2-1T=TBRC 13503T=NBRC 115066T) and Kineosporia corallincola sp. nov. (J2-2T=TBRC 13504T=NBRC 114885T).


Assuntos
Actinobacteria , Antozoários , Filogenia , Streptomyces , Actinobacteria/classificação , Actinobacteria/isolamento & purificação , Animais , Antozoários/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Streptomyces/classificação , Streptomyces/isolamento & purificação , Tailândia
12.
Artigo em Inglês | MEDLINE | ID: mdl-35077344

RESUMO

A Gram-stain-negative, non-motile, strictly aerobic, rod-shaped bacterium, with one polar flagellum and named D11R37T, was isolated from coral culture seawater of Acropora digitifera. Strain D11R37T grew with 0-6 % (w/v) NaCl (optimum, 0.5%), at 10-41 °C (optimum, 28 °C) and at pH 6.0-7.0 (optimum, 7.0). Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain D11R37T formed a lineage within the genus Flavobacterium, and it was distinct from the most closely related species Flavobacterium suzhouense XIN-1T and Flavobacterium suaedae G16-7T with 16S rRNA gene sequences similarities of 95.97% and 95.48 %. The major respiratory quinone was menaquinone-6. The polar lipids comprised one phosphatidylethanolamine, two aminolipids and one unknown polar lipid. The predominant fatty acids (more than 10 % of total fatty acids) were iso-C15 : 0 (18.0%), iso-C17 : 0 3-OH (11.9 %) and summed feature 3 (10.9 %). The DNA G+C content was 41.3 mol%. Based on polyphasic taxonomic data, strain D11R37T is considered to represent a novel species within the genus Flavobacterium, for which the name Flavobacterium coralii sp. nov. is proposed. The type strain is D11R37T (=KCTC 82968T=MCCC 1K06440T).


Assuntos
Antozoários , Flavobacterium , Filogenia , Água do Mar/microbiologia , Animais , Antozoários/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Flavobacterium/classificação , Flavobacterium/isolamento & purificação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/química
13.
J Microbiol Methods ; 187: 106277, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34237402

RESUMO

Recently, studies have begun to identify oil-degrading bacteria and host-taxon specific bacterial assemblages associated with the coral holobiont, including deep-sea cold-water corals, which are thought to provide metabolic functions and additional carbon sources to their coral hosts. Here, we describe the identification of Marinobacter on the soft tissue of Lophelia pertusa coral polyps by Catalyzed Reporter Deposition Fluorescence in situ Hybridization (CARD-FISH). L. pertusa samples from three reef sites in the northeast Atlantic (Logachev, Mingulay and Pisces) were collected at depth by vacuum seal to eliminate contamination issues. After decalcification, histological processing and sagittal sectioning of the soft coral polyp tissues, the 16S rRNA-targeted oligonucleotide HRP-labelled probe Mrb-0625-a, and Cyanine 3 (Cy3)-labelled tyramides, were used to identify members of the hydrocarbon-degrading genus Marinobacter. Mrb-0625-a-hybridized bacterial cell signals were detected in different anatomical sites of all polyps collected from each of the three reef sites, suggesting a close, possibly intimate, association between them, but the purpose of which remains unknown. We posit that Marinobacter, and possibly other hydrocarbon-degrading bacteria associated with Lophelia, may confer the coral with the ability to cope with toxic levels of hydrocarbons in regions of natural oil seepage and where there is an active oil and gas industry presence.


Assuntos
Antozoários/microbiologia , Recifes de Corais , Hidrocarbonetos/metabolismo , Marinobacter/isolamento & purificação , Marinobacter/metabolismo , Animais , Oceano Atlântico , Biodegradação Ambiental , Catálise , Hibridização in Situ Fluorescente , Simbiose
14.
Artigo em Inglês | MEDLINE | ID: mdl-34128783

RESUMO

Strain HNM0947T, representing a novel actinobacterium, was isolated from the coral Galaxea astreata collected from the coast of Wenchang, Hainan, China. The strain was found to have morphological and chemotaxonomic characteristics consistent with the genus Nocardiopsis. The organism formed abundant fragmented substrate mycelia and aerial mycelia which differentiated into non-motile, rod-shaped spores. Whole-cell hydrolysates contained meso-diaminopimelic acid and no diagnostic sugars. The major menaquinones were MK-10(H8), MK-10(H6) and MK-10(H4). The major phospholipids were phosphatidylcholine, phosphatidylglycerol, phosphatidylinositol and phosphatidylinositol mannosides. The major fatty acids were iso-C16:0, anteiso-C17:0, C18:0, C18:0 10-methyl (TBSA) and anteiso-C15:0. The G+C content was 71.3 mol%. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain HNM0947T belonged to the genus Nocardiopsis and shared highest sequence similarity to Nocardiopsis salina YIM 90010T (98.8%), Nocardiopsis xinjiangensis YIM 90004T(98.5%) and Nocardiopsis kunsanensis DSM 44524T (98.3%). The strain HNM0947T was distinguished from its closest type strain by low average nucleotide identity (90.8%) and dDDH values (60.4%) respectively. Based on genotypic, chemotaxonomic and phenotypic characteristics, it was concluded that strain HNM0947T represents a novel species of the genus Nocardiopsis whose name was proposed as Nocardiopsis coralli sp. nov. The type strain was HNM0947T (=CCTCC AA 2020015 T=KCTC 49525 T).


Assuntos
Antozoários/microbiologia , Nocardiopsis/classificação , Filogenia , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Graxos/química , Nocardiopsis/isolamento & purificação , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/química
15.
Rev. biol. trop ; 69(2)jun. 2021.
Artigo em Inglês | LILACS, SaludCR | ID: biblio-1387651

RESUMO

Abstract Introduction: The coral-associated bacteria with antimicrobial activity may be important to promote the health of their host through various interactions, and may be explored as a source of new bioactive compounds. Objective: To analyze the antimicrobial activity of bacteria associated with the zoanthid Palythoa caribaeorum from the coral reefs of Carapibus, Paraiba state, Brazil. Methods: The phylogenetic analysis of the bacteria was conducted based on partial sequences of the 16S rRNA gene using molecular and bioinformatics tools. The antimicrobial activity of the 49 isolates was tested against four bacterial strains and one yeast strain: Bacillus cereus (CCT0198), Escherichia coli (ATCC 25922), Staphylococcus aureus (ATCC 25923), Pseudomonas aeruginosa and Candida albicans (ATCC 10231). The antibiosis and antibiogram assays were conducted and the Minimal Inhibitory Concentration (MIC) was determined by the microdilution method. Results: The bacterial isolates belonged to Firmicutes phylum (84 % of the isolates) and the Proteobacteria phylum (16 % of the isolates). Among the 49 isolates five genera were found, with the Bacillus genus being the most abundant (82 % of the isolates), followed by Vibrio (10 %), Pseudomonas (4 %), Staphylococcus (2 %) and Alteromonas (2 %). Antibiosis test revealed that 16 isolates (33 %) showed antimicrobial activity against one or more of five tested reference strains. The highest number of antagonistic bacteria were found in the Bacillus genus (12 isolates), followed by Vibrio (three isolates) and Pseudomonas (one isolate) genera. The B. subtilis NC8 was the only isolate that inhibited all tested strains in the antibiosis assay. However, antibiogram test with post-culture cell-free supernatant of NC8 isolate showed the inhibition of only B. cereus, S. aureus and C. albicans, and the lyophilized and dialyzed material of this isolate inhibited only B. cereus. The lyophilized material showed bacteriostatic activity against B. cereus, with a MIC value of 125 μg/μl, and in the cytotoxicity assay, the hemolysis value was of 4.8 %, indicating its low cytotoxicity. Conclusions: The results show the antimicrobial potential of some bacterial isolates associated with the P. caribaeourum tissue, especially those belonged to Bacillus genus.


Resumen Introducción: La actividad antimicrobiana realizada por las bacterias asociadas con los corales, además de promover la salud de su huésped, representa una fuente para obtener nuevos compuestos bioactivos. Objetivo: Analizar la actividad antimicrobiana de las bacterias asociadas con el zoantario Palythoa caribaeorum de los arrecifes de Carapibus, Paraíba, Brasil. Metodología: El análisis filogenético de la bacterias se realizó con base en secuencias parciales del gen RNAr 16S utilizando herramientas moleculares y de bioinformática. La actividad antimicrobiana de las cepas se probó contra cuatro cepas bacterianas y una cepa de levadura: Bacillus cereus (CCT0198), Escherichia coli (ATCC 25922), Staphylococcus aureus (ATCC 25923), Pseudomonas aeruginosa y Candida albicans (ATCC 10231), utilizando ensayos antibiosis y antibiograma, y la concentración inhibitoria mínima (CIM) que se determinó por el método de microdilución. Resultados: Las cepas bacterianas pertenecían a Firmicutes (84 %) y Gammaproteobacteria (16 %). Entre 49 cepas se encontraron cinco géneros de bacterias: Bacillus, Vibrio, Pseudomonas, Staphylococcus y Alteromonas. Un total de 19 cepas exhibieron actividad antimicrobiana, siendo el género Bacillus el responsable del mayor número de bacterias antagonistas, con 12 cepas positivas en el ensayo de antibiosis y cuatro en la prueba de antibiograma. El mayor número de bacterias antagonistas se encontró en Bacillus (12 aislamientos), seguido por Vibrio (tres aislamientos) y Pseudomonas (un aisladmiento). El NC8, clasificado como Bacillus subtilis, inhibió todas las cepas estándar en el ensayo de antibiosis y las cepas de B. cereus, S. aureus y C. albicans en la prueba de antibiograma. El material liofilizado del B. subtilis NC8 mostró acción bacteriostática contra B. cereus, con un valor de CIM de 125 μg/μl. En la prueba de citotoxicidad, el grado de hemólisis fue del 4.8 % para el material liofilizado a las concentraciones probadas, lo que indica su baja citotoxicidad. Conclusión: Los resultados muestran el potencial antimicrobiano de algunos aislamientos bacterianos asociados al P. caribaeourum, especialmente los pertenecientes al género Bacillus.


Assuntos
Bactérias , Antozoários/microbiologia , Bacillus , Biota
16.
J Nat Prod ; 84(4): 1345-1352, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33847126

RESUMO

Penitol A (1), a new citrinin derivative with a rare tricyclic spiro skeleton, was isolated from a coral-derived strain of the fungus Penicillium citrinum. In addition, penicitols E-I (2-6), five new citrinin analogues, were coisolated. Their structures were determined by an analysis of 1D/2D NMR and HRESIMS data, statistical DP4+ analyses based on DFT-GIAO NMR calculations, quantum chemistry ECD calculations, and a single-crystal X-ray diffraction study. The structures of penicitol A (7) and two related synthetic intermediates were revised. Biological evaluation results revealed that penitol A (1) exhibited cytotoxic activity against K562 tumor cells, with an IC50 value of 8.8 µM. A proposed route of formation of compounds 1-7 was reported.


Assuntos
Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Citrinina/farmacologia , Penicillium/química , Animais , Antozoários/microbiologia , Antibacterianos/química , Antineoplásicos/química , China , Citrinina/química , Humanos , Células K562 , Testes de Sensibilidade Microbiana , Estrutura Molecular
17.
J Nat Prod ; 84(2): 466-473, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33491454

RESUMO

Five new tyrosine derivatives (1-5), one new phenylacetic acid derivative (6), two new quinazolinone analogues (7 and 8), one new naphthalenedicarboxylic acid (9), and one new 3,4-dihydroisocoumarin derivative (10), together with seven known compounds, were isolated from the fungus Xylaria sp. FM1005, which was isolated from Sinularia densa (leather coral) collected in the offshore region of the Big Island, Hawaii. The structures of compounds 1-10 were elucidated by extensive analysis of NMR spectroscopy, HRESIMS, and ECD data. Due to their structure similarity to the antiplatelet drug tirofiban, compounds 1-5 together with 6 were investigated for their antithrombotic activities. Compounds 1 and 2 strongly inhibited the binding of fibrinogen to purified integrin IIIb/IIa in a dose-dependent manner with the IC50 values of 0.89 and 0.61 µM, respectively, and compounds 1 and 2 did not show any cytotoxicity against A2780 and HEK 293 at 40 µM.


Assuntos
Antozoários/microbiologia , Fibrinolíticos/farmacologia , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/antagonistas & inibidores , Xylariales/química , Animais , Linhagem Celular Tumoral , Fibrinolíticos/isolamento & purificação , Células HEK293 , Havaí , Humanos , Masculino , Estrutura Molecular , Fenilacetatos/isolamento & purificação , Fenilacetatos/farmacologia , Quinazolinonas/isolamento & purificação , Quinazolinonas/farmacologia , Ratos Sprague-Dawley , Metabolismo Secundário , Tirosina/isolamento & purificação , Tirosina/farmacologia
18.
Nat Prod Res ; 35(2): 188-194, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31137966

RESUMO

A new uridine derivative 11457 A (1), and a new indole derivative 11457B (2), together with a known compound 1H-indole-2-carbaldehyde (3), were characterized from the fermentation broth of the actinomycete Pseudonocardia sp. SCSIO 11457, an isolate associated with the scleractinian coral Galaxea fascicularis. Upon detailed spectroscopic analysis, 11457 A (1) was identified as a uridine analog, and 11457B (2) was elucidated as an indole derivative 2-hydroxy-1-(1H-indol-2-yl)pentane-1,4-dione. Biological evaluation indicated that none of compounds 1-3 showed antibacterial activities against pathogenic bacteria and cytotoxic activities against human cancer cell lines.


Assuntos
Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Indóis/química , Pseudonocardia/química , Uridina/química , Animais , Antozoários/microbiologia , Antibacterianos/química , Antineoplásicos/química , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Fermentação , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Pseudonocardia/metabolismo
19.
Environ Microbiol ; 23(2): 826-843, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32686311

RESUMO

A few studies have holistically examined successive changes in coral holobionts in response to increased temperatures. Here, responses of the coral host Pocillopora damicornis, its Symbiodiniaceae symbionts, and associated bacteria to increased water temperatures were investigated. High temperatures induced bleaching, but no coral mortality was observed. Transcriptome analyses showed that P. damicornis responded more quickly to elevated temperatures than its algal symbionts. Numerous genes putatively associated with apoptosis, exocytosis, and autophagy were upregulated in P. damicornis, suggesting that Symbiodiniaceae can be eliminated or expelled through these mechanisms when P. damicornis experiences heat stress. Furthermore, apoptosis in P. damicornis is presumably induced through tumour necrosis factor and p53 signalling and caspase pathways. The relative abundances of several coral disease-associated bacteria increased at 32°C, which may affect immune responses in heat-stressed corals and potentially accelerates the loss of algal symbionts. Additionally, consistency of Symbiodiniaceae community structures under heat stress suggests non-selective loss of Symbiodiniaceae. We propose that heat stress elicits interrelated response mechanisms in all parts of the coral holobiont.


Assuntos
Antozoários/genética , Antozoários/microbiologia , Bactérias/genética , Microbiota , Água do Mar/química , Animais , Antozoários/crescimento & desenvolvimento , Bactérias/classificação , Bactérias/isolamento & purificação , Recifes de Corais , Dinoflagellida/genética , Dinoflagellida/fisiologia , Temperatura Alta , Água do Mar/microbiologia , Água do Mar/parasitologia , Simbiose , Temperatura , Transcrição Gênica
20.
Sci Immunol ; 5(54)2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33277371

RESUMO

Gasdermins are executioners of the inflammatory cell death pathway pyroptosis that has so far been studied exclusively in vertebrates. In this study, we identified gasdermin E (GSDME) homologs in several invertebrate species including corals. We report that coral GSDME was cleaved by caspase 3 at two sites, yielding two active isoforms of GSDME N-terminal domain that were capable of inducing pyroptosis. Ectopic coexpression of coral GSDME and caspase 3 in human cells promoted pyroptosis. Corals infected with Vibrio coralliilyticus, a bacterial pathogen causing rapid tissue necrosis of corals worldwide, exhibited necrotic death with elevated caspase 3 activity and GSDME cleavage, whereas inhibition of caspase 3 blocked GSDME cleavage and protected corals from necrotic death. These results indicate that functional gasdermin exists in invertebrates and that coral gasdermin is involved in pathogen-induced coral death. Furthermore, our studies also suggest that mediation of pyroptosis is an evolutionarily conserved function of gasdermins.


Assuntos
Antozoários/metabolismo , Piroptose , Receptores de Estrogênio/metabolismo , Animais , Antozoários/microbiologia , Caspase 3/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Necrose/metabolismo , Piroptose/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA