Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(18)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37764521

RESUMO

Small molecules as well as peptide-based therapeutic approaches have attracted global interest due to their lower or no toxicity in nature, and their potential in addressing several health complications including immune diseases, cardiovascular diseases, metabolic disorders, osteoporosis and cancer. This study proposed a peptide, GE18 of subtilisin-like peptidase from the virulence factor of aquatic pathogenic fungus Aphanomyces invadans, which elicits anti-cancer and anti-microbial activities. To understand the potential GE18 peptide-induced biological effects, an in silico analysis, in vitro (L6 cells) and in vivo toxicity assays (using zebrafish embryo), in vitro anti-cancer assays and anti-microbial assays were performed. The outcomes of the in silico analyses demonstrated that the GE18 peptide has potent anti-cancer and anti-microbial activities. GE18 is non-toxic to in vitro non-cancerous cells and in vivo zebrafish larvae. However, the peptide showed significant anti-cancer properties against MCF-7 cells with an IC50 value of 35.34 µM, at 24 h. Besides the anti-proliferative effect on cancer cells, the peptide exposure does promote the ROS concentration, mitochondrial membrane potential and the subsequent upregulation of anti-cancer genes. On the other hand, GE18 elicits significant anti-microbial activity against P. aeruginosa, wherein GE18 significantly inhibits bacterial biofilm formation. Since the peptide has positively charged amino acid residues, it targets the cell membrane, as is evident in the FESEM analysis. Based on these outcomes, it is possible that the GE18 peptide is a significant anti-cancer and anti-microbial molecule.


Assuntos
Aphanomyces , Animais , Aphanomyces/genética , Peixe-Zebra , Fungos , Peptídeos , Fatores de Virulência
2.
Toxicon ; 210: 100-108, 2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35217022

RESUMO

Peptide-based drug development is an emerging and promising approach in cancer therapeutics. The present study focuses on understanding the mechanism of MP12 peptide (MDNHVCIPLCPP) derived from cysteine-rich trypsin inhibitor protein of virulence factor of pathogenic fungus Aphanomyces invadans. MP12 is involved in antiproliferative activity against the human laryngeal epithelial cell (Hep-2), demonstrated in this study. MP12 sequence showed a significant binding score and has multiple hydrogen bond interactions with the proteins that play a vital role in apoptotic pathways such as Bcl-2, caspase-3, caspase-7, and XIAP. Based on the bioinformatics characterization and molecular docking result, further study was focused on MP12 antiproliferative activity. The peptide showed a dose-dependent inhibition against Hep-2 cell line proliferation, analyzed over MTT and neutral red uptake assays. The IC50 value of the MP12 peptide was calculated based on the antiproliferative property (24.7 ± 0.34 µM). MP12 treated Hep-2 cells showed significant shrinkage in cell morphology compared to untreated cells, inhibiting the cell cycle. The gene expression analysis validated that the MP12 significantly upregulates the caspase-3, caspase-7, and caspase-9 genes. The developmental toxicity study using zebrafish embryos as in vivo model proved that the MP12 is nontoxic. Based on the obtained results, we proposed that the peptide MP12 derived from cysteine-rich trypsin inhibitor protein of virulence molecule of pathogenic fungus have a potential antiproliferative activity. However, further clinical trials need to be focused on the mechanism and therapeutic application against laryngeal cancer.


Assuntos
Aphanomyces , Peixe-Zebra , Animais , Aphanomyces/genética , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Cisteína , Células Epiteliais , Fungos , Humanos , Simulação de Acoplamento Molecular , Inibidores da Tripsina , Fatores de Virulência
3.
Talanta ; 117: 312-7, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24209346

RESUMO

Epizootic ulcerative syndrome (EUS) is a devastating fish disease caused by the fungus, Aphanomyces invadans. Rapid diagnosis of EUS is needed to control and treat this highly invasive disease. The current diagnostic methods for EUS are labor intensive. We have developed a highly sensitive and specific electrochemical genosensor towards the 18S rRNA and internal transcribed spacer regions of A. invadans. Multiple layers of latex were synthesized with the help of polyelectrolytes, and labeled with gold nanoparticles to enhance sensitivity. The gold-latex spheres were functionalized with specific DNA probes. We describe here the novel application of this improved platform for detection of PCR product from real sample of A. invadans using a premix sandwich hybridization assay. The premix assay was easier, more specific and gave higher sensitivity of one log unit when compared to the conventional method of step-by-step hybridization. The limit of detection was 0.5 fM (4.99 zmol) of linear target DNA and 1 fM (10 amol) of PCR product. The binding positions of the probes to the PCR amplicons were optimized for efficient hybridization. Probes that hybridized close to the 5' or 3' terminus of the PCR amplicons gave the highest signal due to minimal steric hindrance for hybridization. The genosensor is highly suitable as a surveillance and diagnostic tool for EUS in the aquaculture industry.


Assuntos
Aphanomyces/isolamento & purificação , DNA Intergênico/genética , Ouro/química , Nanopartículas Metálicas/química , RNA Ribossômico 18S/genética , Animais , Aphanomyces/genética , Primers do DNA/química , Técnicas Eletroquímicas , Doenças dos Peixes/microbiologia , Peixes/microbiologia , Limite de Detecção , Hibridização de Ácido Nucleico , Reação em Cadeia da Polimerase
4.
Vet Microbiol ; 162(2-4): 750-755, 2013 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-23102971

RESUMO

Aphanomyces astaci sporulation is crucial for the spreading potential of this disease agent. For the first time, we are reporting timing and quantity of A. astaci spores released from noble crayfish (Astacus astacus) suffering from crayfish plague under practical aquatic conditions. We infected nine noble crayfish with A. astaci PsI-genotype and maintained them in individual 8L tanks. Spores (zoospores and cysts) were quantified from water samples (3 × 1 mL) taken every 12h over 10 d using A. astaci specific qPCR. A clear sporulation trend was found, together with a high individual spore estimate variation. The median spore counts from two days before death to 12h post mortem were from ~500 to ~2000 spores L(-1). A significant sporulation increase occurred after 24h post mortem (~12,000 spores L(-1)) and reached a peak after two days (~65,000 spores L(-1)) before declining to or below pre mortem levels from the fourth day. The single most sporulating crayfish released from ~75,000 to ~400,000 spores L(-1) during the mass sporulating period, yielding a maximum estimate of ~3,200,000 spores released from a single crayfish if we assume homogeneous spore distribution. The results confirm a mass A. astaci spore release from moribund and recently dead infected noble crayfish, with a sporulation peak one to three days post mortem. The acute crayfish mortality only three days after zoospore exposure confirm the lethal potential of the PsI-genotype. The powerful sporulation potential observed here may be one of the key virulence factors of this genotype.


Assuntos
Aphanomyces/fisiologia , Astacoidea , Infecções/veterinária , Animais , Aphanomyces/genética , Aphanomyces/isolamento & purificação , Genótipo , Reação em Cadeia da Polimerase em Tempo Real , Estresse Psicológico
5.
BMC Microbiol ; 9: 184, 2009 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-19719847

RESUMO

BACKGROUND: The oomycete Aphanomyces astaci is regarded as the causative agent of crayfish plague and represents an evident hazard for European crayfish species. Native crayfish populations infected with this pathogen suffer up to 100% mortality. The existence of multiple transmission paths necessitates the development of a reliable, robust and efficient test to detect the pathogen. Currently, A. astaci is diagnosed by a PCR-based assay that suffers from cross-reactivity to other species. We developed an alternative closed-tube assay for A. astaci, which achieves robustness through simultaneous amplification of multiple functionally constrained genes. RESULTS: Two novel constitutively expressed members of the glycosyl hydrolase (GH18) gene family of chitinases were isolated from the A. astaci strain Gb04. The primary amino acid sequence of these chitinase genes, termed CHI2 and CHI3, is composed of an N-terminal signal peptide directing the post-translational transport of the protein into the extracellular space, the catalytic GH18 domain, a proline-, serine-, and threonine-rich domain and a C-terminal cysteine-rich putative chitin-binding site. The A. astaci mycelium grown in a pepton-glucose medium showed significant temporal changes in steady-state CHI2 and CHI3 mRNA amounts indicating functional constraint. Their different temporal occurrence with maxima at 48 and 24 hours of incubation for CHI2 and CHI3, respectively, is in accordance with the multifunctionality of GH18 family members. To identify A. astaci-specific primer target sites in these novel genes, we determined the partial sequence homologs in the related oomycetes A. frigidophilus, A. invadans, A. helicoides, A. laevis, A. repetans, Achlya racemosa, Leptolegnia caudata, and Saprolegnia parasitica, as well as in the relevant fungi Fusarium solani and Trichosporon cutaneum. An A. astaci-specific primer pair targeting the novel genes CHI2 and CHI3 as well as CHI1 - a third GH18 family member - was multiplexed with primers targeting the 5.8S rRNA used as an endogenous control. A species was typed unambiguously as A. astaci if two peaks were concomitantly detected by melting curve analysis (MCA). For sensitive detection of the pathogen, but also for quantification of agent levels in susceptible crayfish and carrier crayfish, a TaqMan-probe based real-time PCR (qPCR) assay was developed. It targets the same chitinase genes and allows quantification down to 25 target sequences. CONCLUSION: The simultaneous qualitative detection of multiple sequences by qPCR/MCA represents a promising approach to detect species with elevated levels of genetic variation and/or limited available sequence information. The homogenous closed-tube format, reduced detection time, higher specificity, and the considerably reduced chance of false negative detection achieved by targeting multiple genes (CHI1, CHI2, CHI3, and the endogenous control) at least two of which are subject to high functional constraint, are the major advantages of this multiplex assay compared to other diagnostic methods. Sensitive quantification achieved with TaqMan qPCR facilitates to monitor infection status and pathogen distribution in different tissues and can help prevent disease transmission.


Assuntos
Proteínas de Algas/genética , Aphanomyces/genética , Aphanomyces/isolamento & purificação , Astacoidea/microbiologia , Quitinases/genética , Proteínas de Algas/metabolismo , Sequência de Aminoácidos , Animais , Aphanomyces/classificação , Aphanomyces/enzimologia , Quitinases/metabolismo , DNA de Algas/genética , DNA Espaçador Ribossômico/genética , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase/métodos , Análise de Sequência de DNA , Fatores de Tempo
6.
Dis Aquat Organ ; 82(3): 195-207, 2008 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-19244971

RESUMO

European catfish Silurus glanis, European eel Anguilla anguilla and rainbow trout Oncorhynchus mykiss were challenged by intramuscular injection of zoospores of Aphanomyces invadans, the oomycete associated with epizootic ulcerative syndrome (EUS). The tropical three-spot gourami Trichogaster trichopterus is known to be highly susceptible and was used as a positive control. European catfish were highly susceptible and rainbow trout had moderate to low susceptibility, whereas eels appeared largely unaffected. Inflammatory host response in European catfish deviated from the effects seen in most other susceptible fish species and was characterised by a more loosely arranged accumulation of macrophages, small numbers of lymphocytes and multinucleated giant cells without occurrence of EUS-characteristic mycotic granulomas. Semi-nested and single round PCR assays were developed for this study to detect A. invadans DNA in clinical samples of experimentally infected fish. The detection limit of the assays equals 1 genomic unit. Specificity was examined by testing the DNA of various oomycetes, other relevant pathogens and commensals as well as host DNA. The single round assay used was fully specific, whereas cross-reaction with the closely related Aphanomyces frigidophilus was observed using the semi-nested assay. Analysis of samples by PCR allowed detection prior to detectable histopathological lesions. Two other published PCR protocols were compared to the PCR protocols presented here.


Assuntos
Aphanomyces/genética , Doenças dos Peixes/microbiologia , Infecções/veterinária , Animais , Sequência de Bases , Doenças dos Peixes/patologia , Peixes , Infecções/microbiologia , Dados de Sequência Molecular , Reação em Cadeia da Polimerase
7.
J Fish Dis ; 26(5): 263-75, 2003 05.
Artigo em Inglês | MEDLINE | ID: mdl-12962235

RESUMO

Aphanomyces invadans (Saprolegniaceae) is a peronosporomycete fungus associated with the serious fish disease, epizootic ulcerative syndrome (EUS), also known as mycotic granulomatosis. In this study, interspecific relationships were examined between A. invadans isolates and other aquatic animal pathogenic Saprolegniaceae, and saprophytic Saprolegniaceae from EUS-affected areas. Restriction fragment length polymorphisms and sequences of ribosomal DNA confirmed that A. invadans is distinct from all other species studied. A sequence from the internal transcribed spacer region ITS1, unique to A. invadans, was used to design primers for a PCR-based diagnostic test. Intraspecific relationships were also examined by random amplification of polymorphic DNA using 20 isolates of A. invadans from six countries. The isolates showed a high degree of genetic homogeneity using 14 random ten-mer primers. This provides evidence that the fungus has spread across Asia in one relatively rapid episode, which is consistent with reports of outbreaks of EUS. Physiological distinctions between A. invadans and other Aphanomyces species based on a data set of 16 growth parameters showed remarkable taxonomic congruence with the molecular phylogeny.


Assuntos
Aphanomyces/genética , DNA Ribossômico/química , Doenças dos Peixes/microbiologia , Micoses/veterinária , Polimorfismo de Fragmento de Restrição , Animais , Aphanomyces/classificação , Aphanomyces/crescimento & desenvolvimento , Sequência de Bases , Análise por Conglomerados , Sequência Consenso , Primers do DNA/química , Doenças dos Peixes/diagnóstico , Peixes , Granuloma/microbiologia , Granuloma/veterinária , Dados de Sequência Molecular , Micoses/diagnóstico , Micoses/microbiologia , Reação em Cadeia da Polimerase , Técnica de Amplificação ao Acaso de DNA Polimórfico/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA