Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 547
Filtrar
1.
Free Radic Biol Med ; 216: 106-117, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38461872

RESUMO

Oxidized low density lipoprotein (oxLDL)-induced endothelial oxidative damage promotes the development of atherosclerosis. Caveolae play an essential role in maintaining the survival and function of vascular endothelial cell (VEC). It is reported that the long coiled-coil protein NECC2 is localized in caveolae and is associated with neural cell differentiation and adipocyte formation, but its role in VECs needs to be clarified. Our results showed NECC2 expression increased in the endothelium of plaque-loaded aortas and oxLDL-treated HUVECs. Down-regulation of NECC2 by NECC2 siRNA or compound YF-307 significantly inhibited oxLDL-induced VEC apoptosis and the adhesion factors expression. Remarkably, inhibition of NECC2 expression in the endothelium of apoE-/- mice by adeno-associated virus (AAV)-carrying NECC2 shRNA or compound YF-307 alleviated endothelium injury and restricted atherosclerosis development. The immunoprecipitation results confirmed that NECC2 interacted with Tyk2 and caveolin-1(Cav-1) in VECs, and NECC2 further promoted the phosphorylation of Cav-1 at Tyr14 b y activating Tyk2 phosphorylation. On the other hand, inhibiting NECC2 levels suppressed oxLDL-induced phosphorylation of Cav-1, uptake of oxLDL by VECs, accumulation of intracellular reactive oxygen species and activation of NF-κB. Our findings suggest that NECC2 may contribute to oxLDL-induced VEC injury and atherosclerosis via modulating Cav-1 phosphorylation through Tyk2. This work provides a new concept and drug target for treating atherosclerosis.


Assuntos
Aterosclerose , Animais , Camundongos , Apolipoproteínas/efeitos adversos , Apolipoproteínas/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Aterosclerose/metabolismo , Endotélio/metabolismo , Lipoproteínas LDL/metabolismo , Estresse Oxidativo
2.
Cell Mol Life Sci ; 81(1): 134, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38478101

RESUMO

The functions of human Apolipoproteins L (APOLs) are poorly understood, but involve diverse activities like lysis of bloodstream trypanosomes and intracellular bacteria, modulation of viral infection and induction of apoptosis, autophagy, and chronic kidney disease. Based on recent work, I propose that the basic function of APOLs is the control of membrane dynamics, at least in the Golgi and mitochondrion. Together with neuronal calcium sensor-1 (NCS1) and calneuron-1 (CALN1), APOL3 controls the activity of phosphatidylinositol-4-kinase-IIIB (PI4KB), involved in both Golgi and mitochondrion membrane fission. Whereas secreted APOL1 induces African trypanosome lysis through membrane permeabilization of the parasite mitochondrion, intracellular APOL1 conditions non-muscular myosin-2A (NM2A)-mediated transfer of PI4KB and APOL3 from the Golgi to the mitochondrion under conditions interfering with PI4KB-APOL3 interaction, such as APOL1 C-terminal variant expression or virus-induced inflammatory signalling. APOL3 controls mitophagy through complementary interactions with the membrane fission factor PI4KB and the membrane fusion factor vesicle-associated membrane protein-8 (VAMP8). In mice, the basic APOL1 and APOL3 activities could be exerted by mAPOL9 and mAPOL8, respectively. Perspectives regarding the mechanism and treatment of APOL1-related kidney disease are discussed, as well as speculations on additional APOLs functions, such as APOL6 involvement in adipocyte membrane dynamics through interaction with myosin-10 (MYH10).


Assuntos
Apolipoproteína L1 , Insuficiência Renal Crônica , Humanos , Camundongos , Animais , Apolipoproteínas L , Apolipoproteína L1/genética , Apolipoproteínas/genética , Apolipoproteínas/metabolismo , Miosinas
3.
Nutrients ; 16(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38337615

RESUMO

Atherosclerosis and resulting cardiovascular disease are the leading causes of death in the US. Hyperhomocysteinemia (HHcy), or the accumulation of the intermediate amino acid homocysteine, is an independent risk factor for atherosclerosis, but the intricate biological processes mediating this effect remain elusive. Several factors regulate homocysteine levels, including the activity of several enzymes and adequate levels of their coenzymes, including pyridoxal phosphate (vitamin B6), folate (vitamin B9), and methylcobalamin (vitamin B12). To better understand the biological influence of HHcy on the development and progression of atherosclerosis, apolipoprotein-E-deficient (apoE-/- mice), a model for human atherosclerosis, were fed a hyperhomocysteinemic diet (low in methyl donors and B vitamins) (HHD) or a control diet (CD). After eight weeks, the plasma, aorta, and liver were collected to quantify methylation metabolites, while plasma was also used for a broad targeted metabolomic analysis. Aortic plaque burden in the brachiocephalic artery (BCA) was quantified via 14T magnetic resonance imaging (MRI). A severe accumulation of plasma and hepatic homocysteine and an increased BCA plaque burden were observed, thus confirming the atherogenic effect of the HHD. Moreover, a decreased methylation capacity in the plasma and aorta, indirectly assessed by the ratio of S-adenosylmethionine to S-adenosylhomocysteine (SAM:SAH) was detected in HHD mice together with a 172-fold increase in aortic cystathionine levels, indicating increased flux through the transsulfuration pathway. Betaine and its metabolic precursor, choline, were significantly decreased in the livers of HHD mice versus CD mice. Widespread changes in the plasma metabolome of HHD mice versus CD animals were detected, including alterations in acylcarnitines, amino acids, bile acids, ceramides, sphingomyelins, triacylglycerol levels, and several indicators of dysfunctional lipid metabolism. This study confirms the relevance of severe HHcy in the progression of vascular plaque and suggests novel metabolic pathways implicated in the pathophysiology of atherosclerosis.


Assuntos
Aterosclerose , Hiper-Homocisteinemia , Camundongos , Animais , Humanos , Aterosclerose/metabolismo , Dieta , S-Adenosilmetionina/metabolismo , Ácido Fólico/efeitos adversos , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Metaboloma , Homocisteína/metabolismo , Apolipoproteínas/metabolismo
4.
J Virol ; 98(1): e0084923, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38174935

RESUMO

Hepatitis C virus (HCV) is a member of the Flaviviridae family; however, unlike other family members, the HCV virion has an unusually high lipid content. HCV has two envelope glycoproteins, E1 and E2. E2 contributes to receptor binding, cell membrane attachment, and immune evasion. In contrast, the functions of E1 are poorly characterized due, in part, to challenges in producing the protein. This manuscript describes the expression and purification of a soluble E1 ectodomain (eE1) that is recognized by conformational, human monoclonal antibodies. eE1 forms a complex with apolipoproteins AI and AII, cholesterol, and phospholipids by recruiting high-density lipoprotein (HDL) from the extracellular media. We show that HDL binding is a function specific to eE1 and HDL hinders recognition of E1 by a neutralizing monoclonal antibody. Either low-density lipoprotein or HDL increases the production and infectivity of cell culture-produced HCV, but E1 preferentially selects HDL, influencing both viral life cycle and antibody evasion.IMPORTANCEHepatitis C virus (HCV) infection is a significant burden on human health, but vaccine candidates have yet to provide broad protection against this infection. We have developed a method to produce high quantities of soluble E1 or E2, the viral proteins located on the surface of HCV. HCV has an unusually high lipid content due to the recruitment of apolipoproteins. We found that E1 (and not E2) preferentially recruits host high-density lipoprotein (HDL) extracellularly. This recruitment of HDL by E1 prevents binding of E1 by a neutralizing antibody and furthermore prevents antibody-mediated neutralization of the virus. By comparison, low-density lipoprotein does not protect the virus from antibody-mediated neutralization. Our findings provide mechanistic insight into apolipoprotein recruitment, which may be critical for vaccine development.


Assuntos
Hepacivirus , Hepatite C , Evasão da Resposta Imune , Lipoproteínas HDL , Proteínas do Envelope Viral , Humanos , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Apolipoproteínas/metabolismo , Hepacivirus/patogenicidade , Hepatite C/imunologia , Hepatite C/virologia , Anticorpos Anti-Hepatite C/imunologia , Lipoproteínas HDL/metabolismo , Lipoproteínas LDL/metabolismo , Proteínas do Envelope Viral/metabolismo , Células HEK293
5.
PLoS One ; 18(6): e0286756, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37279200

RESUMO

Impairments of mitochondrial functions are linked to human ageing and pathologies such as cancer, cardiomyopathy, neurodegeneration and diabetes. Specifically, aberrations in ultrastructure of mitochondrial inner membrane (IM) and factors regulating them are linked to diabetes. The development of diabetes is connected to the 'Mitochondrial Contact Site and Cristae Organising System' (MICOS) complex which is a large membrane protein complex defining the IM architecture. MIC26 and MIC27 are homologous apolipoproteins of the MICOS complex. MIC26 has been reported as a 22 kDa mitochondrial and a 55 kDa glycosylated and secreted protein. The molecular and functional relationship between these MIC26 isoforms has not been investigated. In order to understand their molecular roles, we depleted MIC26 using siRNA and further generated MIC26 and MIC27 knockouts (KOs) in four different human cell lines. In these KOs, we used four anti-MIC26 antibodies and consistently detected the loss of mitochondrial MIC26 (22 kDa) and MIC27 (30 kDa) but not the loss of intracellular or secreted 55 kDa protein. Thus, the protein assigned earlier as 55 kDa MIC26 is nonspecific. We further excluded the presence of a glycosylated, high-molecular weight MIC27 protein. Next, we probed GFP- and myc-tagged variants of MIC26 with antibodies against GFP and myc respectively. Again, only the mitochondrial versions of these tagged proteins were detected but not the corresponding high-molecular weight MIC26, suggesting that MIC26 is indeed not post-translationally modified. Mutagenesis of predicted glycosylation sites in MIC26 also did not affect the detection of the 55 kDa protein band. Mass spectrometry of a band excised from an SDS gel around 55 kDa could not confirm the presence of any peptides derived from MIC26. Taken together, we conclude that both MIC26 and MIC27 are exclusively localized in mitochondria and that the observed phenotypes reported previously are exclusively due to their mitochondrial function.


Assuntos
Diabetes Mellitus , Proteínas de Membrana , Humanos , Glicosilação , Proteínas de Membrana/genética , Proteínas Mitocondriais/metabolismo , Mitocôndrias/metabolismo , Apolipoproteínas/metabolismo , Diabetes Mellitus/patologia
6.
Redox Biol ; 64: 102779, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37339558

RESUMO

BACKGROUND: Apolipoprotein E deficiency (ApoE-/-) increases progressively iron in the liver, spleen and aortic tissues with age in mice. However, it is unknown whether ApoE affects brain iron. METHODS: We investigated iron contents, expression of transferrin receptor 1 (TfR1), ferroportin 1 (Fpn1), iron regulatory proteins (IRPs), aconitase, hepcidin, Aß42, MAP2, reactive oxygen species (ROS), cytokines and glutathione peroxidase 4 (Gpx4) in the brain of ApoE-/- mice. RESULTS: We demonstrated that ApoE-/- induced a significant increase in iron, TfR1 and IRPs and a reduction in Fpn1, aconitase and hepcidin in the hippocampus and basal ganglia. We also showed that replenishment of ApoE absent partly reversed the iron-related phenotype in ApoE-/- mice at 24-months old. In addition, ApoE-/- induced a significant increase in Aß42, MDA, 8-isoprostane, IL-1ß, IL-6, and TNFα and a reduction in MAP2 and Gpx4 in hippocampus, basal ganglia and/or cortex of mice at 24-months old. CONCLUSIONS: Our findings implied that ApoE is required for brain iron homeostasis and ApoE-/--induced increase in brain iron is due to the increased IRP/TfR1-mediated cell-iron uptake as well as the reduced IRP/Fpn1 associated cell-iron export and suggested that ApoE-/- induced neuronal injury resulted mainly from the increased iron and subsequently ROS, inflammation and ferroptosis.


Assuntos
Hepcidinas , Ferro , Camundongos , Animais , Hepcidinas/genética , Espécies Reativas de Oxigênio/metabolismo , Ferro/metabolismo , Receptores da Transferrina/genética , Homeostase , Encéfalo/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas/metabolismo
7.
J Mol Histol ; 54(3): 183-193, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37166546

RESUMO

As the most common cardiovascular disease, atherosclerosis (AS), is a leading cause of high mortality in patients with chronic renal failure. Rab27a has been reported to regulate the progression of cardiovascular and renal diseases. Nevertheless, little studies investigated the role and mechanism of Rab27a in uremic-accelerated AS (UAAS). An animal model of UAAS was established in apolipoprotein E knockout (apoE-/-) mice using 5/6 nephrectomy (NX). We conducted in vitro and in vivo functional experiments to explore the role of Rab27a in UAAS, including the presence of oxidized low-density lipoprotein (ox-LDL). Rab27a expression was upregulated in the plaque tissues of NX apoE-/- mice. The knockout of Rab27a (Rab27a-/-) reduced AS-induced artery injury, as manifested by the reductions of plaque area, collagen deposition, inflammation and lipid droplet. Besides, cholesterol efflux was increased, while the expression of lipid metabolism-related proteins and the secretions of pro-inflammatory factors were decreased in ox-LDL-induced NX Rab27a-/- apoE-/- mice group. Further, Rab27a deletion inhibited the activation of nuclear factor κB (NF-κB) pathway. In conclusion, our study indicated that Rab27a deficiency attenuated foam cell formation and macrophage inflammation, depending on the NF-κB pathway activation, to inhibit AS progression in uremic apoE-/- mice. This finding may provide a new targeting strategy for UAAS therapy.


Assuntos
Aterosclerose , Células Espumosas , Animais , Camundongos , Camundongos Knockout , Células Espumosas/metabolismo , NF-kappa B/metabolismo , Aterosclerose/genética , Aterosclerose/metabolismo , Macrófagos/metabolismo , Inflamação/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Apolipoproteínas/metabolismo , Proteínas rab27 de Ligação ao GTP/metabolismo
8.
Biomolecules ; 13(3)2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36979348

RESUMO

In the past few years, immune checkpoint blockade (ICB) therapy has emerged as a breakthrough treatment for cancers and has demonstrated inspiring effects in tumor patients with Epstein-Barr virus (EBV) infection. To allow more patients to benefit from immunotherapy, exploring novel biomarkers based on EBV-related tumors and immunotherapy cohorts was pursued in the present study. The essential biomarkers that may enhance antitumor immunity across EBV-related tumors were identified using the large-scale transcriptomic profiles of EBV-associated tumors and tumor immunotherapy cohorts. The clinical significance of vital genes was evaluated in multiple tumor immunotherapy cohorts. Moreover, the potential function of essential genes in immunotherapy was explored via bioinformatic analyses and verified by qRT-PCR, Western blot analysis, CCK8 assay and flow cytometry. Apolipoprotein L6 (APOL6) was considered the essential biomarker for enhancing antitumor immunity across EBV-positive tumors. The upregulation of APOL6 was correlated with increased response rates and prolonged survival in multiple tumor immunotherapy cohorts. Bioinformatic analyses suggested that APOL6 may enhance tumor immunotherapy by inducing immunogenic cell death. Pancreatic cancer cells transfected with APOL6 overexpression plasmid underwent apoptosis, necroptosis, and pyroptosis with immunogenic features. The biomarker upregulated in EBV-related tumors could further elucidate the drivers of immunotherapy response. The upregulation of APOL6 could improve immunotherapy by triggering immunogenic cell death, thus offering a new target to optimize cancer immunotherapy.


Assuntos
Infecções por Vírus Epstein-Barr , Humanos , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Regulação para Cima , Morte Celular Imunogênica , Imunoterapia , Apolipoproteínas/metabolismo
9.
Hepatology ; 77(4): 1287-1302, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35735979

RESUMO

BACKGROUND: NAFLD affects nearly 25% of the global population. Cardiovascular disease (CVD) is the most common cause of death among patients with NAFLD, in line with highly prevalent dyslipidemia in this population. Increased plasma triglyceride (TG)-rich lipoprotein (TRL) concentrations, an important risk factor for CVD, are closely linked with hepatic TG content. Therefore, it is of great interest to identify regulatory mechanisms of hepatic TRL production and remnant uptake in the setting of hepatic steatosis. APPROACH AND RESULTS: To identify liver-regulated pathways linking intrahepatic and plasma TG metabolism, we performed transcriptomic analysis of liver biopsies from two independent cohorts of obese patients. Hepatic encoding apolipoprotein F ( APOF ) expression showed the fourth-strongest negatively correlation with hepatic steatosis and the strongest negative correlation with plasma TG levels. The effects of adenoviral-mediated human ApoF (hApoF) overexpression on plasma and hepatic TG were assessed in C57BL6/J mice. Surprisingly, hApoF overexpression increased both hepatic very low density lipoprotein (VLDL)-TG secretion and hepatic lipoprotein remnant clearance, associated a ~25% reduction in plasma TG levels. Conversely, reducing endogenous ApoF expression reduced VLDL secretion in vivo , and reduced hepatocyte VLDL uptake by ~15% in vitro . Transcriptomic analysis of APOF -overexpressing mouse livers revealed a gene signature related to enhanced ApoB-lipoprotein clearance, including increased expression of Ldlr and Lrp1 , among others. CONCLUSION: These data reveal a previously undescribed role for ApoF in the control of plasma and hepatic lipoprotein metabolism by favoring VLDL-TG secretion and hepatic lipoprotein remnant particle clearance.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Humanos , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Lipoproteínas/metabolismo , Apolipoproteínas/metabolismo , Apolipoproteínas/farmacologia , Triglicerídeos/metabolismo , Fígado/metabolismo , Lipoproteínas VLDL/metabolismo
10.
Int J Mol Sci ; 23(22)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36430543

RESUMO

High-density lipoprotein (HDL)-bound apolipoprotein M/sphingosine 1-phosphate (ApoM/S1P) complex in cardiovascular diseases serves as a bridge between HDL and endothelial cells, maintaining a healthy endothelial barrier. To date, S1P and ApoM in patients with untreated heterozygous familial hypercholesterolemia (HeFH) have not been extensively studied. Eighty-one untreated patients with HeFH and 32 healthy control subjects were included in this study. Serum S1P, ApoM, sCD40L, sICAM-1, sVCAM-1, oxLDL, and TNFα concentrations were determined by ELISA. PON1 activities were measured spectrophotometrically. Lipoprotein subfractions were detected by Lipoprint. We diagnosed FH using the Dutch Lipid Clinic Network criteria. Significantly higher serum S1P and ApoM levels were found in HeFH patients compared to controls. S1P negatively correlated with large HDL and positively with small HDL subfractions in HeFH patients and the whole study population. S1P showed significant positive correlations with sCD40L and MMP-9 levels and PON1 arylesterase activity, while we found significant negative correlation between sVCAM-1 and S1P in HeFH patients. A backward stepwise multiple regression analysis showed that the best predictors of serum S1P were large HDL subfraction and arylesterase activity. Higher S1P and ApoM levels and their correlations with HDL subfractions and inflammatory markers in HeFH patients implied their possible role in endothelial protection.


Assuntos
Células Endoteliais , Hiperlipoproteinemia Tipo II , Humanos , Apolipoproteínas M , Células Endoteliais/metabolismo , Apolipoproteínas/metabolismo , Biomarcadores , Arildialquilfosfatase
11.
Arterioscler Thromb Vasc Biol ; 42(11): 1378-1397, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36172865

RESUMO

BACKGROUND: Migration of human aortic smooth muscle cells (HASMCs) contributes to the pathogenesis of atherosclerosis. This study aims to functionally characterize long noncoding RNA TPRG1-AS1 (tumor protein p63 regulated 1, antisense 1) in HASMCs and reveal the underlying mechanism of TPRG1-AS1 in HASMCs migration, neointima formation, and subsequent atherosclerosis. METHODS: The expression of TPRG1-AS1 in atherosclerotic plaques was verified a series of in silico analysis and quantitative real-time polymerase chain reaction analysis. Northern blot, rapid amplification of cDNA ends and Sanger sequencing were used to determine its full length. In vitro transcription-translation assay was used to investigate the protein-coding capacity of TPRG1-AS1. RNA fluorescent in situ hybridization was used to confirm its subcellular localization. Loss- and gain-of-function studies were used to investigate the function of TPRG1-AS1. Furthermore, the effect of TPRG1-AS1 on the pathological response was evaluated in carotid balloon injury model, wire injury model, and atherosclerosis model, respectively. RESULTS: TPRG1-AS1 was significantly increased in atherosclerotic plaques. TPRG1-AS1 did not encode any proteins and its full length was 1279nt, which was bona fide a long noncoding RNA. TPRG1-AS1 was mainly localized in cytoplasmic and perinuclear regions in HASMCs. TPRG1-AS1 directly interacted with MYH9 (myosin heavy chain 9) protein in HASMCs, promoted MYH9 protein degradation through the proteasome pathway, hindered F-actin stress fiber formation, and finally inhibited HASMCs migration. Vascular smooth muscle cell-specific transgenic overexpression of TPRG1-AS1 significantly reduced neointima formation, and attenuated atherosclerosis in apolipoprotein E knockout (Apoe-/-) mice. CONCLUSIONS: This study demonstrated that TPRG1-AS1 inhibited HASMCs migration through interacting with MYH9 protein and consequently suppressed neointima formation and atherosclerosis.


Assuntos
Aterosclerose , MicroRNAs , Placa Aterosclerótica , RNA Longo não Codificante , Humanos , Camundongos , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Músculo Liso Vascular/metabolismo , Neointima/metabolismo , Placa Aterosclerótica/metabolismo , Actinas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , DNA Complementar/metabolismo , DNA Complementar/farmacologia , Hibridização in Situ Fluorescente , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Proliferação de Células , Miócitos de Músculo Liso/metabolismo , Movimento Celular , Aterosclerose/genética , Aterosclerose/prevenção & controle , Aterosclerose/metabolismo , MicroRNAs/genética , Proteínas do Citoesqueleto/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas/metabolismo
12.
Am J Reprod Immunol ; 88(3): e13592, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35785505

RESUMO

We previously reported that interferon-tau (IFNT), derived from day-7 blastocyst, generates anti-inflammatory responses in bovine endometrial epithelial cells (BEECs) in vitro. However, the real in vivo impact of early embryo-derived IFNT on the uterine proteomic profile is mostly unknown. This study aimed to investigate proteomic changes of uterine flush (UF) when infused with a low physiological level of IFNT without embryo on day-8 post-estrus and its possible impact on the uterine immunological microenvironment. First, a fresh medium was infused into the uterine lumen on day-6, from which UF was obtained 24 h later, and this procedure was repeated on day-7 (control UF). On day-8, this procedure was done with a medium containing recombinant bovine IFNT (100 pg/ml) (IFNT-supplemented UF). Control and IFNT-supplemented UF were tested for immune responses in peripheral blood mononuclear cells (PBMCs). Real-time PCR results revealed that IFNT-supplemented UF downregulated pro-inflammatory cytokines (TNFA, IL1B) and upregulated anti-inflammatory cytokine (TGFB1) and PTGES in PBMCs. Through 2-D PAGE, followed by TOF/TOF mass spectrometer, apolipoprotein-A1 (Apo-A1) protein was identified in the IFNT-supplemented UF, which was confirmed by ELISA analysis. Proteomic analysis revealed again that the in vitro stimulation of BEECs by IFNT upregulated Apo-A1 expression. Further, stimulation of PBMCs with recombinant bovine Apo-A1 downregulated TNFA and NFKB and upregulated TGFB1 and PTGES in PBMCs. Altogether, our results suggest that minute amounts of IFNT alone, normally secreted from bovine blastocyst, stimulate Apo-A1 secretion from the endometrial epithelium in the absence of embryo that initiates an anti-inflammatory environment, which could pave the way for the acceptance of early embryo in the uterus.


Assuntos
Interferon Tipo I , Leucócitos Mononucleares , Animais , Apolipoproteínas/metabolismo , Bovinos , Citocinas/metabolismo , Endométrio/metabolismo , Estro , Feminino , Leucócitos Mononucleares/metabolismo , Proteômica
13.
Alzheimers Res Ther ; 14(1): 87, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35751102

RESUMO

BACKGROUND: Inducing brain ATP-binding cassette 1 (ABCA1) activity in Alzheimer's disease (AD) mouse models is associated with improvement in AD pathology. The purpose of this study was to investigate the effects of the ABCA1 agonist peptide CS-6253 on amyloid-ß peptides (Aß) and lipoproteins in plasma and cerebrospinal fluid (CSF) of cynomolgus monkeys, a species with amyloid and lipoprotein metabolism similar to humans. METHODS: CS-6253 peptide was injected intravenously into cynomolgus monkeys at various doses in three different studies. Plasma and CSF samples were collected at several time points before and after treatment. Levels of cholesterol, triglyceride (TG), lipoprotein particles, apolipoproteins, and Aß were measured using ELISA, ion-mobility analysis, and asymmetric-flow field-flow fractionation (AF4). The relationship between the change in levels of these biomarkers was analyzed using multiple linear regression models and linear mixed-effects models. RESULTS: Following CS-6253 intravenous injection, within minutes, small plasma high-density lipoprotein (HDL) particles were increased. In two independent experiments, plasma TG, apolipoprotein E (apoE), and Aß42/40 ratio were transiently increased following CS-6253 intravenous injection. This change was associated with a non-significant decrease in CSF Aß42. Both plasma total cholesterol and HDL-cholesterol levels were reduced following treatment. AF4 fractionation revealed that CS-6253 treatment displaced apoE from HDL to intermediate-density- and low density-lipoprotein (IDL/LDL)-sized particles in plasma. In contrast to plasma, CS-6253 had no effect on the assessed CSF apolipoproteins or lipids. CONCLUSIONS: Treatment with the ABCA1 agonist CS-6253 appears to favor Aß clearance from the brain.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Transportador 1 de Cassete de Ligação de ATP , Doença de Alzheimer/líquido cefalorraquidiano , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Animais , Apolipoproteínas/metabolismo , Apolipoproteínas E/metabolismo , Colesterol , Humanos , Macaca fascicularis/metabolismo , Camundongos , Peptídeos
14.
Exp Neurol ; 353: 114051, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35314147

RESUMO

The prevalence and burden of CNS disorders are increasing significantly due to the increase in life span and population. The contemporary need in CNS drug discovery is to develop the therapy that can halt the disease progression (disease-modifying therapy). While developing such CNS therapies, the major bottleneck is the blood-brain barrier (BBB) impermeability of drugs that influences the development of effective therapies to treat various CNS disorders. Since the influential innovation of insulin to treat diabetic patients in the 1920s, a lot of attention has been given for producing therapeutic proteins and peptides as remedies for several diseases, including neurological disorders. Recently, researchers have explored therapeutic potential of apolipoprotein E (ApoE)-mimetic peptides in the same context. ApoE is the major apolipoprotein produced in the brain by the astrocytes and plays a significant role in the formation of synapses, myelination, and neuronal proliferation. ApoE can be a potential candidate for treating CNS disorders. However, the large size of the ApoE leads to the BBB impermeability that restricts its use in native form. This problem can be overcome by developing small ApoE-mimetic peptides with good BBB permeability and similar biological function as native ApoE. Various ApoE-mimetic peptides have been developed and investigated in different CNS disorders. This review provide insights into the latest development of ApoE and its mimetic peptides in CNS disorders, along with their beneficial outcomes.


Assuntos
Apolipoproteínas E , Doenças do Sistema Nervoso Central , Apolipoproteínas/metabolismo , Apolipoproteínas/farmacologia , Barreira Hematoencefálica/metabolismo , Doenças do Sistema Nervoso Central/metabolismo , Humanos , Peptídeos/farmacologia
15.
Autophagy ; 18(10): 2397-2408, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35220898

RESUMO

Mutations in the mitochondrial genome (mtDNA) are ubiquitous in humans and can lead to a broad spectrum of disorders. However, due to the presence of multiple mtDNA molecules in the cell, co-existence of mutant and wild-type mtDNAs (termed heteroplasmy) can mask disease phenotype unless a threshold of mutant molecules is reached. Importantly, the mutant mtDNA level can change across lifespan as mtDNA segregates in an allele- and cell-specific fashion, potentially leading to disease. Segregation of mtDNA is mainly evident in hepatic cells, resulting in an age-dependent increase of mtDNA variants, including non-synonymous potentially deleterious mutations. Here we modeled mtDNA segregation using a well-established heteroplasmic mouse line with mtDNA of NZB/BINJ and C57BL/6N origin on a C57BL/6N nuclear background. This mouse line showed a pronounced age-dependent NZB mtDNA accumulation in the liver, thus leading to enhanced respiration capacity per mtDNA molecule. Remarkably, liver-specific atg7 (autophagy related 7) knockout abolished NZB mtDNA accumulat ion, resulting in close-to-neutral mtDNA segregation through development into adulthood. prkn (parkin RBR E3 ubiquitin protein ligase) knockout also partially prevented NZB mtDNA accumulation in the liver, but to a lesser extent. Hence, we propose that age-related liver mtDNA segregation is a consequence of macroautophagic clearance of the less-fit mtDNA. Considering that NZB/BINJ and C57BL/6N mtDNAs have a level of divergence comparable to that between human Eurasian and African mtDNAs, these findings have potential implications for humans, including the safe use of mitochondrial replacement therapy.Abbreviations: Apob: apolipoprotein B; Atg1: autophagy-related 1; Atg7: autophagy related 7; Atp5a1: ATP synthase, H+ transporting, mitochondrial F1 complex, alpha subunit 1; BL6: C57BL/6N mouse strain; BNIP3: BCL2/adenovirus E1B interacting protein 3; FCCP: carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; MAP1LC3A: microtubule-associated protein 1 light chain 3 alpha; MAP1LC3B: microtubule-associated protein 1 light chain 3 beta; mt-Atp8: mitochondrially encoded ATP synthase 8; MT-CO1: mitochondrially encoded cytochrome c oxidase I; MT-CO2: mitochondrially encoded cytochrome c oxidase II; mt-Co3: mitochondrially encoded cytochrome c oxidase III; mt-Cytb: mitochondrially encoded cytochrome b; mtDNA: mitochondrial DNA; MUL1: mitochondrial ubiquitin ligase activator of NFKB 1; nDNA: nuclear DNA; Ndufa9: NADH:ubiquinone oxireductase subunit A9; NDUFB8: NADH:ubiquinone oxireductase subunit B8; Nnt: nicotinamide nucleotide transhydrogenase; NZB: NZB/BINJ mouse strain; OXPHOS: oxidative phosphorylation; PINK1: PTEN induced putative kinase 1; Polg2: polymerase (DNA directed), gamma 2, accessory subunit; Ppara: peroxisome proliferator activated receptor alpha; Ppia: peptidylprolyl isomerase A; Prkn: parkin RBR E3 ubiquitin protein ligase; P10: post-natal day 10; P21: post-natal day 21; P100: post-natal day 100; qPCR: quantitative polymerase chain reaction; Rpl19: ribosomal protein L19; Rps18: ribosomal protein S18; SD: standard deviation; SEM: standard error of the mean; SDHB: succinate dehydrogenase complex, subunit B, iron sulfur (Ip); SQSTM1: sequestosome 1; Ssbp1: single-stranded DNA binding protein 1; TFAM: transcription factor A, mitochondrial; Tfb1m: transcription factor B1, mitochondrial; Tfb2m: transcription factor B2, mitochondrial; TOMM20: translocase of outer mitochondrial membrane 20; UQCRC2: ubiquinol cytochrome c reductase core protein 2; WT: wild-type.


Assuntos
Mitofagia , NADP Trans-Hidrogenases , Trifosfato de Adenosina , Adulto , Animais , Apolipoproteínas/metabolismo , Apolipoproteínas B/metabolismo , Autofagia/genética , Dióxido de Carbono/metabolismo , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona , Citocromos b/metabolismo , DNA Mitocondrial/genética , Proteínas de Ligação a DNA/metabolismo , Complexo III da Cadeia de Transporte de Elétrons , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Humanos , Ferro/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Mitocondriais , NAD/metabolismo , NADP Trans-Hidrogenases/metabolismo , PPAR alfa/metabolismo , Peptidilprolil Isomerase/metabolismo , Proteínas Quinases/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Ribossômicas/metabolismo , Proteína Sequestossoma-1/metabolismo , Succinato Desidrogenase/metabolismo , Enxofre/metabolismo , Fatores de Transcrição/metabolismo , Ubiquinona , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinas/metabolismo
16.
Mol Biol Rep ; 49(2): 1171-1179, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34775573

RESUMO

BACKGROUND: To investigate the effects and mechanism of action of apolipoprotein M (ApoM) on the growth of breast cancer (BC) cells. METHODS AND RESULTS: Bioinformatics, cell experiments and animal experiments were used to verify the effect of ApoM on breast cancer cell lines and breast tumor growth in vivo. ApoM expression was significantly reduced in BC tissues, and patients with lower ApoM mRNA expression had a poorer prognosis (P < 0.0001). Besides, ApoM can partially inhibit the proliferative, migratory and invasive processes of BC cells. In vivo, the difference between ApoM-OE and NC groups was no significant. The level of vitamin D receptor (VDR) protein in MDA-MB-231 cells was increased by overexpression of ApoM (P < 0.05), while in MCF-7 cells, VDR levels decreased (P < 0.05). CONCLUSIONS: ApoM can partially inhibit the growth of BC cells. VDR may play a role, but is not the main pathway.


Assuntos
Apolipoproteínas M/metabolismo , Neoplasias da Mama/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Apolipoproteínas/genética , Apolipoproteínas/metabolismo , Apolipoproteínas M/genética , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Biologia Computacional/métodos , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , RNA Mensageiro/genética , Receptores de Calcitriol/genética , Ensaios Antitumorais Modelo de Xenoenxerto
17.
J Cell Mol Med ; 26(1): 123-132, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34894055

RESUMO

In normal pregnancy, hepatic metabolism adaptation occurs with an increase in lipid biosynthesis. Placental shedding of syncytiotrophoblast-derived extracellular vesicles (STBEVs) into the maternal circulation constitutes a major signalling mechanism between foetus and mother. We investigated whether STBEVs from normal pregnant women might target liver cells in vitro and induce changes in lipid synthesis. This study was performed at the Nuffield Department of Women's & Reproductive Health, Oxford, UK. STBEVs were obtained by dual-lobe placental perfusion from 11 normal pregnancies at term. Medium/large and small STBEVs were collected by ultracentrifugation at 10,000g and 150,000g, respectively. STBEVs were analysed by Western blot analysis and flow cytometry for co-expression of apolipoprotein-E (apoE) and placental alkaline phosphatase (PLAP). The uptake of STBEVs by liver cells and the effect on lipid metabolism was evaluated using a hepatocarcinoma cell line (HepG2 cells). Data were analysed by one-way ANOVA and Student's t test. We demonstrated that: (a) STBEVs carry apoE; (b) HepG2 cells take up STBEVs through an apoE-LDL receptor interaction; (c) STBEV incorporation into HepG2 cells resulted in (i) increased cholesterol release (ELISA); (ii) increased expression of the genes SQLE and FDPS (microarray) involved in cholesterol biosynthesis; (iii) downregulation of the CLOCK gene (microarray and PCR), involved in the circadian negative control of lipid synthesis in liver cells. In conclusion, the placenta may orchestrate the metabolic adaptation of the maternal liver through release of apoE-positive STBEVs, by increasing lipid synthesis in a circadian-independent fashion, meeting the nutritional needs of the growing foetus.


Assuntos
Vesículas Extracelulares , Trofoblastos , Apolipoproteínas/metabolismo , Apolipoproteínas E/metabolismo , Vesículas Extracelulares/metabolismo , Feminino , Humanos , Lipídeos , Fígado , Placenta/metabolismo , Gravidez , Trofoblastos/metabolismo
18.
J Nanobiotechnology ; 19(1): 445, 2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-34949196

RESUMO

Phosphomolybdate-based nanoparticles (PMo12-based NPs) have been commonly applied in nanomedicine. However, upon contact with biofluids, proteins are quickly adsorbed onto the NPs surface to form a protein corona, which induces the opsonization and facilitates the rapid clearance of the NPs by macrophage uptake. Herein, we introduce a family of structurally homologous PMo12-based NPs (CDS-PMo12@PVPx(x = 0 ~ 1) NPs) capping diverse content of zwitterionic polymer poly (N-vinylpyrrolidone) (PVP) to regulate the protein corona formation on PMo12-based NPs. The fluorescence quenching data indicate that the introduction of PVP effectively reduces the number of binding sites of proteins on PMo12-based NPs. Molecular docking simulations results show that the contact surface area and binding energy of proteins to CDS-PMo12@PVP1 NPs are smaller than the CDS-PMo12@PVP0 NPs. The liquid chromatography-tandem mass spectrometry (LC-MS/MS) is further applied to analyze and quantify the compositions of the human plasma corona formation on CDS-PMo12@PVPx(x = 0 ~ 1) NPs. The number of plasma protein groups adsorption on CDS-PMo12@PVP1 NPs, compared to CDS-PMo12@PVP0 NPs, decreases from 372 to 271. In addition, 76 differentially adsorption proteins are identified between CDS-PMo12@PVP0 and CDS-PMo12@PVP1 NPs, in which apolipoprotein is up-regulated in CDS-PMo12@PVP1 NPs. The apolipoprotein adsorption onto the NPs is proposed to have dysoponic activity and enhance the circulation time of NPs. Our findings demonstrate that PVP grafting on PMo12-based NPs is a promising strategy to improve the anti-biofouling property for PMo12-based nanodrug design.


Assuntos
Molibdênio/química , Nanopartículas/química , Ácidos Fosfóricos/química , Povidona/química , Coroa de Proteína/química , Adsorção , Apolipoproteínas/análise , Apolipoproteínas/química , Apolipoproteínas/metabolismo , Proteínas Sanguíneas/análise , Proteínas Sanguíneas/química , Proteínas Sanguíneas/metabolismo , Cromatografia Líquida de Alta Pressão , Humanos , Simulação de Acoplamento Molecular , Propriedades de Superfície , Tensoativos/química , Espectrometria de Massas em Tandem
19.
J Phys Chem B ; 125(18): 4746-4756, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33939404

RESUMO

Protein-lipid interactions govern the structure and function of lipoprotein particles, which transport neutral lipids and other hydrophobic cargo through the blood stream. Apolipoproteins cover the surface of lipoprotein particles, including low-density (LDL) and high-density (HDL) lipoproteins, and determine their function. Previous work has focused on small peptides derived from these apolipoproteins or used such artificial lipid systems as Langmuir monolayers or the lipid disc assay to determine how apolipoproteins interact with the neutral lipid interface. Here, we focus on a recurring protein domain found in many neutral lipid-binding proteins, the amphipathic α-helix bundle. We use liquid droplet tensiometry to investigate protein-lipid interactions on an oil droplet, which mimics the real lipoprotein interface. The N-terminus of apoE 3 and full-length apoLp-III serve as model proteins. We find that each protein interacts with lipid monolayers at the oil-aqueous interface in unique ways. For the first time, we show that helix bundle unfolding is critical for proper protein insertion into the lipid monolayer at the oil-aqueous interface and that specific membrane lipids promote the rebinding of protein upon fluctuation in droplet size. These results shed new light on how amphipathic apolipoprotein α-helix bundles interact with neutral lipid particles.


Assuntos
Apolipoproteínas , Lipoproteínas , Apolipoproteína E3 , Apolipoproteínas/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice
20.
Cells ; 10(3)2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33800446

RESUMO

Since the seminal breakthrough of treating diabetic patients with insulin in the 1920s, there has been great interest in developing other proteins and their peptide mimetics as therapies for a wide variety of other medical disorders. Currently, there are at least 60 different peptides that have been approved for human use and over 150 peptides that are in various stages of clinical development. Peptides mimetic of the major proteins on lipoproteins, namely apolipoproteins, have also been developed first as tools for understanding apolipoprotein structure and more recently as potential therapeutics. In this review, we discuss the biochemistry, peptide mimetics design and clinical trials for peptides based on apoA-I, apoE and apoC-II. We primarily focus on applications of peptide mimetics related to cardiovascular diseases. We conclude with a discussion on the limitations of peptides as therapeutic agents and the challenges that need to be overcome before apolipoprotein mimetic peptides can be developed into new drugs.


Assuntos
Apolipoproteína A-I/uso terapêutico , Apolipoproteínas/metabolismo , Doenças Cardiovasculares/terapia , Peptídeos/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA