Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.633
Filtrar
1.
Nature ; 632(8026): 930-937, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39085602

RESUMO

The noradrenaline transporter (also known as norepinephrine transporter) (NET) has a critical role in terminating noradrenergic transmission by utilizing sodium and chloride gradients to drive the reuptake of noradrenaline (also known as norepinephrine) into presynaptic neurons1-3. It is a pharmacological target for various antidepressants and analgesic drugs4,5. Despite decades of research, its structure and the molecular mechanisms underpinning noradrenaline transport, coupling to ion gradients and non-competitive inhibition remain unknown. Here we present high-resolution complex structures of NET in two fundamental conformations: in the apo state, and bound to the substrate noradrenaline, an analogue of the χ-conotoxin MrlA (χ-MrlAEM), bupropion or ziprasidone. The noradrenaline-bound structure clearly demonstrates the binding modes of noradrenaline. The coordination of Na+ and Cl- undergoes notable alterations during conformational changes. Analysis of the structure of NET bound to χ-MrlAEM provides insight into how conotoxin binds allosterically and inhibits NET. Additionally, bupropion and ziprasidone stabilize NET in its inward-facing state, but they have distinct binding pockets. These structures define the mechanisms governing neurotransmitter transport and non-competitive inhibition in NET, providing a blueprint for future drug design.


Assuntos
Apoproteínas , Bupropiona , Proteínas da Membrana Plasmática de Transporte de Norepinefrina , Norepinefrina , Piperazinas , Tiazóis , Humanos , Regulação Alostérica/efeitos dos fármacos , Apoproteínas/antagonistas & inibidores , Apoproteínas/química , Apoproteínas/metabolismo , Sítios de Ligação , Transporte Biológico , Bupropiona/química , Bupropiona/metabolismo , Bupropiona/farmacologia , Cloretos/química , Cloretos/metabolismo , Conotoxinas/química , Conotoxinas/metabolismo , Conotoxinas/farmacologia , Modelos Moleculares , Norepinefrina/química , Norepinefrina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/química , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/antagonistas & inibidores , Piperazinas/química , Piperazinas/metabolismo , Piperazinas/farmacologia , Ligação Proteica , Conformação Proteica/efeitos dos fármacos , Sódio/química , Sódio/metabolismo , Tiazóis/química , Tiazóis/metabolismo , Tiazóis/farmacologia
2.
Nature ; 632(8026): 921-929, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39048818

RESUMO

Noradrenaline, also known as norepinephrine, has a wide range of activities and effects on most brain cell types1. Its reuptake from the synaptic cleft heavily relies on the noradrenaline transporter (NET) located in the presynaptic membrane2. Here we report the cryo-electron microscopy (cryo-EM) structures of the human NET in both its apo state and when bound to substrates or antidepressant drugs, with resolutions ranging from 2.5 Å to 3.5 Å. The two substrates, noradrenaline and dopamine, display a similar binding mode within the central substrate binding site (S1) and within a newly identified extracellular allosteric site (S2). Four distinct antidepressants, namely, atomoxetine, desipramine, bupropion and escitalopram, occupy the S1 site to obstruct substrate transport in distinct conformations. Moreover, a potassium ion was observed within sodium-binding site 1 in the structure of the NET bound to desipramine under the KCl condition. Complemented by structural-guided biochemical analyses, our studies reveal the mechanism of substrate recognition, the alternating access of NET, and elucidate the mode of action of the four antidepressants.


Assuntos
Antidepressivos , Microscopia Crioeletrônica , Dopamina , Proteínas da Membrana Plasmática de Transporte de Norepinefrina , Norepinefrina , Humanos , Sítio Alostérico , Antidepressivos/química , Antidepressivos/metabolismo , Apoproteínas/química , Apoproteínas/metabolismo , Cloridrato de Atomoxetina/química , Cloridrato de Atomoxetina/farmacologia , Cloridrato de Atomoxetina/metabolismo , Sítios de Ligação , Bupropiona/química , Bupropiona/metabolismo , Bupropiona/farmacologia , Citalopram/química , Citalopram/farmacologia , Citalopram/metabolismo , Desipramina/farmacologia , Desipramina/química , Dopamina/metabolismo , Dopamina/química , Escitalopram/química , Escitalopram/metabolismo , Modelos Moleculares , Norepinefrina/metabolismo , Norepinefrina/química , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/antagonistas & inibidores , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/química , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/ultraestrutura , Potássio/metabolismo , Cloreto de Potássio/farmacologia , Conformação Proteica , Sódio/metabolismo , Especificidade por Substrato
3.
Biochim Biophys Acta Proteins Proteom ; 1872(4): 141010, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38490456

RESUMO

The structures of apo-metallothioneins (apo-MTs) have been relatively elusive due to their fluxional, disordered state which has been difficult to characterize. However, intrinsically disordered protein (IDP) structures are rather diverse, which raises questions about where the structure of apo-MTs fit into the protein structural spectrum. In this paper, the unfolding transitions of apo-MT1a are discussed with respect to the effect of the chemical denaturant GdmCl, temperature conditions, and pH environment. Cysteine modification in combination with electrospray ionization mass spectrometry was used to probe the unfolding transition of apo-MT1a in terms of cysteine exposure. Circular dichroism spectroscopy was also used to monitor the change in secondary structure as a function of GdmCl concentration. For both of these techniques, cooperative unfolding was observed, suggesting that apo-MT1a is not a random coil. More GdmCl was required to unfold the protein backbone than to expose the cysteines, indicating that cysteine exposure is likely an early step in the unfolding of apo-MT1a. MD simulations complement the experimental results, suggesting that apo-MT1a adopts a more compact structure than expected for a random coil. Overall, these results provide further insight into the intrinsically disordered structure of apo-MT.


Assuntos
Guanidina , Metalotioneína , Desdobramento de Proteína , Concentração de Íons de Hidrogênio , Humanos , Metalotioneína/química , Metalotioneína/metabolismo , Guanidina/química , Cisteína/química , Dicroísmo Circular , Temperatura Alta , Apoproteínas/química , Apoproteínas/metabolismo , Estrutura Secundária de Proteína , Desnaturação Proteica , Proteínas Intrinsicamente Desordenadas/química
4.
Blood ; 144(1): 117-121, 2024 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-38527216

RESUMO

ABSTRACT: Intravenous injection of excess apotransferrin enhances dietary iron absorption in mice and triggers accumulation of plasma non-transferrin-bound iron. Injected fluorescent-labeled transferrin colocalizes with lamina propria macrophages, consistent with the recently proposed iron absorption checkpoint involving macrophage-mediated transferrin degradation.


Assuntos
Apoproteínas , Ferro da Dieta , Transferrina , Animais , Transferrina/metabolismo , Camundongos , Ferro da Dieta/metabolismo , Ferro da Dieta/farmacocinética , Ferro da Dieta/administração & dosagem , Apoproteínas/metabolismo , Macrófagos/metabolismo , Absorção Intestinal , Ferro/metabolismo , Camundongos Endogâmicos C57BL
5.
Nature ; 629(8011): 467-473, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38471529

RESUMO

Prokaryotes have evolved intricate innate immune systems against phage infection1-7. Gabija is a highly widespread prokaryotic defence system that consists of two components, GajA and GajB8. GajA functions as a DNA endonuclease that is inactive in the presence of ATP9. Here, to explore how the Gabija system is activated for anti-phage defence, we report its cryo-electron microscopy structures in five states, including apo GajA, GajA in complex with DNA, GajA bound by ATP, apo GajA-GajB, and GajA-GajB in complex with ATP and Mg2+. GajA is a rhombus-shaped tetramer with its ATPase domain clustered at the centre and the topoisomerase-primase (Toprim) domain located peripherally. ATP binding at the ATPase domain stabilizes the insertion region within the ATPase domain, keeping the Toprim domain in a closed state. Upon ATP depletion by phages, the Toprim domain opens to bind and cleave the DNA substrate. GajB, which docks on GajA, is activated by the cleaved DNA, ultimately leading to prokaryotic cell death. Our study presents a mechanistic landscape of Gabija activation.


Assuntos
Bacillus cereus , Proteínas de Bactérias , Bacteriófagos , Microscopia Crioeletrônica , Imunidade Inata , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/ultraestrutura , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Apoproteínas/química , Apoproteínas/imunologia , Apoproteínas/metabolismo , Apoproteínas/ultraestrutura , Proteínas de Bactérias/química , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/ultraestrutura , Bacteriófagos/imunologia , DNA/metabolismo , DNA/química , Clivagem do DNA , Magnésio/química , Magnésio/metabolismo , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , Viabilidade Microbiana , Bacillus cereus/química , Bacillus cereus/imunologia , Bacillus cereus/metabolismo , Bacillus cereus/ultraestrutura , Estrutura Quaternária de Proteína , DNA Primase/química , DNA Primase/metabolismo , DNA Primase/ultraestrutura , DNA Topoisomerases/química , DNA Topoisomerases/metabolismo , DNA Topoisomerases/ultraestrutura
6.
Nat Struct Mol Biol ; 31(5): 767-776, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38321146

RESUMO

The bacterial cyclic oligonucleotide-based antiphage signaling system (CBASS) is similar to the cGAS-STING system in humans, containing an enzyme that synthesizes a cyclic nucleotide on viral infection and an effector that senses the second messenger for the antiviral response. Cap5, containing a SAVED domain coupled to an HNH DNA endonuclease domain, is the most abundant CBASS effector, yet the mechanism by which it becomes activated for cell killing remains unknown. We present here high-resolution structures of full-length Cap5 from Pseudomonas syringae (Ps) with second messengers. The key to PsCap5 activation is a dimer-to-tetramer transition, whereby the binding of second messenger to dimer triggers an open-to-closed transformation of the SAVED domains, furnishing a surface for assembly of the tetramer. This movement propagates to the HNH domains, juxtaposing and converting two HNH domains into states for DNA destruction. These results show how Cap5 effects bacterial cell suicide and we provide proof-in-principle data that the CBASS can be extrinsically activated to limit bacterial infections.


Assuntos
Proteínas de Bactérias , Endonucleases , Pseudomonas syringae , Pseudomonas syringae/química , Pseudomonas syringae/enzimologia , Pseudomonas syringae/virologia , Proteínas de Bactérias/química , Endonucleases/química , Ligantes , Modelos Químicos , Ativação Enzimática , DNA/química , DNA/metabolismo , Nucleotídeos Cíclicos/química , Fosfatos de Dinucleosídeos/química , Apoproteínas/química , Bacteriófagos/fisiologia
7.
Acta Oncol ; 62(6): 550-559, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37352133

RESUMO

BACKGROUND: We aimed to evaluate the correlation of apoprotein E (APOE) transcription and its methylation with immune microenvironment in HCC patients. MATERIAL AND METHODS: The expression profiles of APOE transcription, APOE methylation, and APOE protein were investigated via comprehensive bioinformatic analyses. After that, the association between the immune activation of HCC and APOE transcription and methylation were analyzed. Finally, the prognostic role and immune correlation of the APOE protein in 92 HCC individuals was determined. RESULTS: Based on data from TCGA, GEO, and ICGC datasets, the APOE mRNA was differentially expressed in HCC tissues compared with normal liver tissues. Further, APOE methylation was down-regulated in HCC tissues compared to normal liver tissues. APOE methylation was negatively correlated with APOE transcription in HCC (r=-0.52, p < 0.0001). Based on APOE methylation, the HCC patients were stratified into hypermethylation and hypomethylation subgroups as they exhibited different immune activation statuses. Further, HCC individuals with APOE hypermethylation had a closer immune correlation than those with hypomethylation. Notably, APOE transcription was associated with weak immune infiltrates and activation. Finally, over-expression of the APOE protein was correlated with better survival outcomes, but not correlated with PD-1 or CTLA4 protein in HCC revealed by immunohistochemistry. CONCLUSION: APOE methylation had a closer correlation with immune cells than APOE mRNA, indicating that APOE methylation might play an important role in immune regulation in HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Apolipoproteínas E/genética , Apoproteínas/genética , Apoproteínas/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Metilação de DNA , Neoplasias Hepáticas/patologia , Prognóstico , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Microambiente Tumoral
8.
Cell Mol Biol (Noisy-le-grand) ; 69(2): 101-109, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-37224038

RESUMO

Earlier diagnosis of heart disease can occur via awareness of biochemical changes. Keeping this in view, we wanted to determine if there was any difference between biochemical heart parameters between non-smokers (the control group), smokers who live at a high altitude, or smokers who live at sea level. There were 180 participants categorised into three groups, A, B, and C, depending upon their smoking/non-smoking classification, or distance from sea level. Blood samples were taken as per requirements to check levels of creatine kinase-MB, troponin-I, troponin-T, Triiodothyronine (T3), Thyroxine (T4), Apolipoprotein B (apo-B), and homocysteine, and subjected to enzyme-linked immunoassay (ELISA) investigations. Creatine kinase-MB, troponin-I, troponin-T, T3, thyroxine, apoprotein-B, and homocysteine all exhibited a noteworthy difference (p≤0.01) when compared between non-smokers and smokers (either at a high altitude or sea level), but only troponin I and T3 showed a noteworthy difference when compared between smokers at a high altitude versus at sea level (p≤0.01) as follows: Creatine kinase-MB, p=0.434; troponin-I, troponin-T, p=0.208; T3, p≤0.01; thyroxine, p=0.190; apoprotein-B, p=0.008; and homocysteine, p=0.039. It has been found that significant differences exist between smokers and non-smokers regarding cardiovascular (CV) pathology, whether the person resides at a high altitude or sea level. However, additional studies should be performed to find the correlation between smokers at a high altitude versus and smokers at sea level, which can change the treatment methods at high altitudes and pave the way for finding new medicines.


Assuntos
Tiroxina , Tri-Iodotironina , Humanos , não Fumantes , Troponina I , Troponina T , Altitude , Homocisteína , Creatina Quinase Forma MB , Apoproteínas
9.
Molecules ; 28(9)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37175379

RESUMO

Protein folding is essential for a polypeptide chain to acquire its proper structure and function. Globins are a superfamily of ubiquitous heme-binding α-helical proteins whose function is principally to regulate oxygen homoeostasis. In this review, we explore the hierarchical helical formation in the globin proteins apomyoglobin and leghemoglobin, and we discuss the existence of non-native and misfolded structures occurring during the course of folding to its native state. This review summarizes the research aimed at characterizing and comparing the equilibrium and kinetic intermediates, as well as delineating the complete folding pathway at a molecular level, in order to answer the following questions: "What is the mechanism of misfolding via a folding intermediate? Does the non-native structure stabilize the contemporary intermediate structure? Does the non-native structure induce slower folding?" The role of the non-native structures in the folding intermediate related to misfolding is also discussed.


Assuntos
Apoproteínas , Mioglobina , Mioglobina/química , Apoproteínas/química , Dobramento de Proteína , Leghemoglobina/metabolismo , Cinética
10.
J Exp Bot ; 74(11): 3328-3344, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-36846908

RESUMO

Since the discovery of an autonomous iron-sulfur cluster (Fe-S) assembly machinery in mitochondria, significant efforts to examine the nature of this process have been made. The assembly of Fe-S clusters occurs in two distinct steps with the initial synthesis of [2Fe-2S] clusters by a first machinery followed by a subsequent assembly into [4Fe-4S] clusters by a second machinery. Despite this knowledge, we still have only a rudimentary understanding of how Fe-S clusters are transferred and distributed among their respective apoproteins. In particular, demand created by continuous protein turnover and the sacrificial destruction of clusters for synthesis of biotin and lipoic acid reveal possible bottlenecks in the supply chain of Fe-S clusters. Taking available information from other species into consideration, this review explores the mitochondrial assembly machinery of Arabidopsis and provides current knowledge about the respective transfer steps to apoproteins. Furthermore, this review highlights biotin synthase and lipoyl synthase, which both utilize Fe-S clusters as a sulfur source. After extraction of sulfur atoms from these clusters, the remains of the clusters probably fall apart, releasing sulfide as a highly toxic by-product. Immediate refixation through local cysteine biosynthesis is therefore an essential salvage pathway and emphasizes the physiological need for cysteine biosynthesis in plant mitochondria.


Assuntos
Proteínas Ferro-Enxofre , Ferro , Ferro/metabolismo , Cisteína/metabolismo , Enxofre/metabolismo , Mitocôndrias/metabolismo , Apoproteínas/metabolismo , Proteínas Ferro-Enxofre/metabolismo
11.
Int J Mol Sci ; 23(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36430613

RESUMO

Plants are sessile organisms forced to adapt to environmental variations recurring in a day-night cycle. Extensive research has uncovered the transcriptional control of plants' inner clock and has revealed at least some part of the intricate and elaborate regulatory mechanisms that govern plant diel responses and provide adaptation to the ever-changing environment. Here, we analyzed the proteome of the Arabidopsis thaliana mutant genotypes collected in the middle of the day and the middle of the night, including four mutants in the phytochrome (phyA, phyB, phyC, and phyD) and the circadian clock protein LHY. Our approach provided a novel insight into the diel regulations, identifying 640 significant changes in the night-day protein abundance. The comparison with previous studies confirmed that a large portion of identified proteins was a known target of diurnal regulation. However, more than 300 were novel oscillations hidden under standard growth chamber conditions or not manifested in the wild type. Our results indicated a prominent role for ROS metabolism and phytohormone cytokinin in the observed regulations, and the consecutive analyses confirmed that. The cytokinin signaling significantly increased at night, and in the mutants, the hydrogen peroxide content was lower, and the night-day variation seemed to be lost in the phyD genotype. Furthermore, regulations in the lhy and phyB mutants were partially similar to those found in the catalase mutant cat2, indicating shared ROS-mediated signaling pathways. Our data also shed light on the role of the relatively poorly characterized Phytochrome D, pointing to its connection to glutathione metabolism and the regulation of glutathione S-transferases.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Fitocromo/genética , Fitocromo/metabolismo , Fitocromo B/metabolismo , Proteoma/genética , Proteoma/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Arabidopsis/metabolismo , Citocininas/metabolismo , Glutationa/metabolismo , Apoproteínas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
12.
J Phys Chem B ; 126(46): 9539-9548, 2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36354189

RESUMO

The earliest events in the folding of a protein are in general poorly understood. We used NMR R2 relaxation dispersion experiments to study transient local collapse events in the unfolded-state (U) conformational ensemble of apomyoglobin (apoMb). Local residual secondary structure (seen in regions corresponding to the A, D, E, and H helices of the folded protein) is largely unchanged over the pH range of 2.3-2.75, yet a significant pH-dependent increase in the conformational exchange contribution to the R2 relaxation rate (Rex) indicates that transient intramolecular contacts occur on a microsecond to millisecond time scale at pH 2.75. A comparison of 15N and 13CO relaxation dispersion data at pH 2.75 for residues in the A, B, G, and H regions, which participate in the earliest folding intermediates, indicates that chain collapse and secondary structure formation are rapid and concomitant. Increasingly stabilizing conditions (lower temperature, higher pH) result in the observation of a relaxation dispersion in the C, CD, and E regions of the protein, which are known to fold at later stages. Mutation of Trp14 in the A-helix region to Ala eliminates conformational exchange throughout the protein, and the mutation of hydrophobic residues in other regions results in the selective inhibition of conformational exchange in the B, G, or H regions. The R2 dispersion data for WT apoMb at pH 2.75 and 10 °C are best fit to a four-state model ABGH ⇆ AGH ⇆ U ⇆ ABCD that includes on-pathway (AGH and ABGH) and off-pathway (ABCD) transiently folded states, both of which are required to explain the behavior of the mutant proteins. The off-pathway intermediate is destabilized at higher temperatures. Our analysis provides insights into the earliest stages of apoMb folding where the collapsing polypeptide chain samples both productive and nonproductive states with stabilized secondary structure.


Assuntos
Apoproteínas , Dobramento de Proteína , Apoproteínas/química , Mioglobina/química , Estrutura Secundária de Proteína , Espectroscopia de Ressonância Magnética , Proteínas Mutantes , Cinética
13.
Int J Biol Sci ; 18(14): 5230-5240, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36147474

RESUMO

Checkpoint immunotherapy is capable of unleashing T cells for controlling tumor, whereas it is destroyed by immunosuppressive myeloid cell. Apoprotein E (APOE) refers to a ligand in terms of the members of low-density lipoprotein (LDL) receptor family for mediating Apoprotein B-involving atherogenic lipoprotein clearance. Besides, tumor-infiltration macrophage can express APOE. The present study reported Apoe-/- mice to exhibit higher resistance toward the development of three types of carcinomas as compared with mice with wild type and to have greater responses to αPD-1 (anti-PD-1) immunotherapy. Moreover, treatment by exploiting APOE inhibitor (COG 133TFA, αAPOE) was capable of curbing tumor development and fostering regression if in combination of αPD-1. According to single-cell RNA sequencing (scRNA-seq), Apoe deletion was correlated with the decline of C1QC+ and CCR2+ macrophage within tumor infiltration, and mass spectrometry results noticeably showed down-regulated the number of M2 macrophages as well. Furthermore, APOE expression in cancer patients resistant to αPD-1 treatment significantly exceeded that in the sensitive group. For this reason, APOE is likely to be targeted for modifying tumor macrophage infiltrate and augmenting checkpoint immunotherapy.


Assuntos
Apolipoproteínas E , Apoproteínas , Inibidores de Checkpoint Imunológico , Neoplasias , Animais , Apolipoproteínas E/antagonistas & inibidores , Inibidores de Checkpoint Imunológico/uso terapêutico , Ligantes , Lipoproteínas LDL , Camundongos , Camundongos Knockout para ApoE , Neoplasias/tratamento farmacológico , Microambiente Tumoral
14.
Nature ; 606(7916): 1021-1026, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35580629

RESUMO

Chronic infection with hepatitis B virus (HBV) affects more than 290 million people worldwide, is a major cause of cirrhosis and hepatocellular carcinoma, and results in an estimated 820,000 deaths annually1,2. For HBV infection to be established, a molecular interaction is required between the large glycoproteins of the virus envelope (known as LHBs) and the host entry receptor sodium taurocholate co-transporting polypeptide (NTCP), a sodium-dependent bile acid transporter from the blood to hepatocytes3. However, the molecular basis for the virus-transporter interaction is poorly understood. Here we report the cryo-electron microscopy structures of human, bovine and rat NTCPs in the apo state, which reveal the presence of a tunnel across the membrane and a possible transport route for the substrate. Moreover, the cryo-electron microscopy structure of human NTCP in the presence of the myristoylated preS1 domain of LHBs, together with mutation and transport assays, suggest a binding mode in which preS1 and the substrate compete for the extracellular opening of the tunnel in NTCP. Our preS1 domain interaction analysis enables a mechanistic interpretation of naturally occurring HBV-insusceptible mutations in human NTCP. Together, our findings provide a structural framework for HBV recognition and a mechanistic understanding of sodium-dependent bile acid translocation by mammalian NTCPs.


Assuntos
Microscopia Crioeletrônica , Vírus da Hepatite B , Transportadores de Ânions Orgânicos Dependentes de Sódio , Receptores Virais , Simportadores , Animais , Apoproteínas/química , Apoproteínas/genética , Apoproteínas/metabolismo , Apoproteínas/ultraestrutura , Bovinos , Vírus da Hepatite B/metabolismo , Hepatócitos/metabolismo , Humanos , Mutação , Transportadores de Ânions Orgânicos Dependentes de Sódio/química , Transportadores de Ânions Orgânicos Dependentes de Sódio/genética , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Transportadores de Ânions Orgânicos Dependentes de Sódio/ultraestrutura , Ratos , Receptores Virais/química , Receptores Virais/genética , Receptores Virais/metabolismo , Receptores Virais/ultraestrutura , Sódio/metabolismo , Simportadores/química , Simportadores/genética , Simportadores/metabolismo , Simportadores/ultraestrutura
15.
IUBMB Life ; 74(7): 723-732, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35611886

RESUMO

This contribution focuses on the earliest steps of the assembly of FeS clusters and their insertion into acceptor apoproteins, that call for transient formation of a 2Fe2S cluster on a scaffold protein from sulfide and iron salts. For the sake of simplicity, this report is essentially limited to the Escherichia coli isc-encoded proteins and does not take into account agents that modulate the enzymatic synthesis of sulfide by protein in the same operon or the redox events associated with both sulfide generation and conversion of 2Fe2S structures in clusters of higher nuclearity. Therefore, the results discussed here are based on chemical reconstitution systems using inorganic sulfide, ferric salts, and excess thiols. This simplification offers the possibility to address some mechanistic issues related to the role of protein/protein interaction as for modulating: (a) the rate of cluster assembly on scaffold proteins; (b) the stability of the cluster on the scaffold protein; and (c) the rate of transfer to acceptor apoproteins as also influenced by the acceptor concentration. The emerging picture highlights the mechanistic versatility of the systems, that is discussed in terms of the capability of such an apparently simple combination of proteins to cope with various physiological situation. The hypothetical mechanism presented here may represent an additional way of modulating the rate and outcome of the overall process while avoiding potential toxicity issues.


Assuntos
Proteínas de Escherichia coli , Proteínas Ferro-Enxofre , Apoproteínas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Ferro/metabolismo , Proteínas Ferro-Enxofre/química , Sais/metabolismo , Sulfetos/metabolismo , Enxofre/metabolismo
16.
J Biomol Struct Dyn ; 40(17): 8112-8126, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34661514

RESUMO

In this study, a new series of indole-5-carbaldehyde hydrazone derivative compounds were designed, synthesized, and their antimicrobial activities were determined by the microdilution method, and the in vitro cytotoxic effects on Beas-2b cell lines were investigated by MTT assay. When the activity results were examined, 5i12 showed promising activity against E. faecalis with MIC: 2 µg/mL compared to ampicillin, gentamicin, and vancomycin, although the antimicrobial activities of the indole derivatives were generally weaker than those of the standard drugs. Compounds showed no cytotoxic activity on the A549, MCF-7, and Beas-2b cell lines. Molecular docking studies were performed on 15 different proteins to understand the mechanism of 5i12's good antimicrobial action against E. faecalis, and it was concluded that the compounds interacted with FabH, not enough other protein structures. Molecular dynamics simulations were performed to investigate the protein-ligand stability of the most active compound against E. faecalis. The RMSD value of 5i12 varied between 0.02 and 0.16 nm during the MD simulation. The apoprotein peaked at 0.55 nm at the beginning of the simulation and stabilized below 0.5 nm. The theoretical ADME profiles of all compounds were calculated and found to comply with Lipinski and other limiting rules. In addition, some theoretical quantum parameters (HOMO-LUMO) of compounds, and both MEP analysis and geometric optimization analysis for 5i12 were calculated using the 6-311 G (d,p) base set and DFT/B3LYP theory, and the results were visualized. Communicated by Ramaswamy H. Sarma.


Assuntos
Anti-Infecciosos , Antineoplásicos , Ampicilina , Anti-Infecciosos/farmacologia , Antineoplásicos/química , Apoproteínas , Gentamicinas , Hidrazonas/farmacologia , Indóis/farmacologia , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Vancomicina
17.
Nat Commun ; 12(1): 6902, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34824239

RESUMO

Synthesis of iron-sulfur (Fe/S) clusters in living cells requires scaffold proteins for both facile synthesis and subsequent transfer of clusters to target apoproteins. The human mitochondrial ISCU2 scaffold protein is part of the core ISC (iron-sulfur cluster assembly) complex that synthesizes a bridging [2Fe-2S] cluster on dimeric ISCU2. Initial iron and sulfur loading onto monomeric ISCU2 have been elucidated biochemically, yet subsequent [2Fe-2S] cluster formation and dimerization of ISCU2 is mechanistically ill-defined. Our structural, biochemical and cell biological experiments now identify a crucial function of the universally conserved N-terminal Tyr35 of ISCU2 for these late reactions. Mixing two, per se non-functional ISCU2 mutant proteins with oppositely charged Asp35 and Lys35 residues, both bound to different cysteine desulfurase complexes NFS1-ISD11-ACP, restores wild-type ISCU2 maturation demonstrating that ionic forces can replace native Tyr-Tyr interactions during dimerization-induced [2Fe-2S] cluster formation. Our studies define the essential mechanistic role of Tyr35 in the reaction cycle of de novo mitochondrial [2Fe-2S] cluster synthesis.


Assuntos
Dimerização , Proteínas Ferro-Enxofre/química , Tirosina/química , Apoproteínas , Liases de Carbono-Enxofre , Cristalografia por Raios X , Ferredoxinas , Células HeLa , Humanos , Ferro , Mitocôndrias , Proteínas Mutantes , Proteínas Recombinantes , Enxofre
18.
Nat Commun ; 12(1): 5969, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34645811

RESUMO

The Yersinia outer protein J (YopJ) family effectors are widely deployed through the type III secretion system by both plant and animal pathogens. As non-canonical acetyltransferases, the enzymatic activities of YopJ family effectors are allosterically activated by the eukaryote-specific ligand inositol hexaphosphate (InsP6). However, the underpinning molecular mechanism remains undefined. Here we present the crystal structure of apo-PopP2, a YopJ family member secreted by the plant pathogen Ralstonia solanacearum. Structural comparison of apo-PopP2 with the InsP6-bound PopP2 reveals a substantial conformational readjustment centered in the substrate-binding site. Combining biochemical and computational analyses, we further identify a mechanism by which the association of InsP6 with PopP2 induces an α-helix-to-ß-strand transition in the catalytic core, resulting in stabilization of the substrate recognition helix in the target protein binding site. Together, our study uncovers the molecular basis governing InsP6-mediated allosteric regulation of YopJ family acetyltransferases and further expands the paradigm of fold-switching proteins.


Assuntos
Acetiltransferases/química , Apoproteínas/química , Arabidopsis/microbiologia , Proteínas de Bactérias/química , Ácido Fítico/química , Ralstonia solanacearum/química , Acetiltransferases/genética , Acetiltransferases/metabolismo , Regulação Alostérica , Apoproteínas/genética , Apoproteínas/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Modelos Moleculares , Ácido Fítico/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Ralstonia solanacearum/enzimologia , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Especificidade por Substrato , Nicotiana/microbiologia
19.
Biomolecules ; 11(10)2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34680068

RESUMO

Stearoyl-CoA desaturase-1 (SCD1 or delta-9 desaturase, D9D) is a key metabolic protein that modulates cellular inflammation and stress, but overactivity of SCD1 is associated with diseases, including cancer and metabolic syndrome. This transmembrane endoplasmic reticulum protein converts saturated fatty acids into monounsaturated fatty acids, primarily stearoyl-CoA into oleoyl-CoA, which are critical products for energy metabolism and membrane composition. The present computational molecular dynamics study characterizes the molecular dynamics of SCD1 with substrate, product, and as an apoprotein. The modeling of SCD1:fatty acid interactions suggests that: (1) SCD1:CoA moiety interactions open the substrate-binding tunnel, (2) SCD1 stabilizes a substrate conformation favorable for desaturation, and (3) SCD1:product interactions result in an opening of the tunnel, possibly allowing product exit into the surrounding membrane. Together, these results describe a highly dynamic series of SCD1 conformations resulting from the enzyme:cofactor:substrate interplay that inform drug-discovery efforts.


Assuntos
Simulação por Computador , Estearoil-CoA Dessaturase/metabolismo , Apoproteínas/metabolismo , Coenzima A/metabolismo , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Ligação Proteica , Estearoil-CoA Dessaturase/química , Especificidade por Substrato , Termodinâmica
20.
Nature ; 595(7865): 130-134, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34040256

RESUMO

Folates (also known as vitamin B9) have a critical role in cellular metabolism as the starting point in the synthesis of nucleic acids, amino acids and the universal methylating agent S-adenylsmethionine1,2. Folate deficiency is associated with a number of developmental, immune and neurological disorders3-5. Mammals cannot synthesize folates de novo; several systems have therefore evolved to take up folates from the diet and distribute them within the body3,6. The proton-coupled folate transporter (PCFT) (also known as SLC46A1) mediates folate uptake across the intestinal brush border membrane and the choroid plexus4,7, and is an important route for the delivery of antifolate drugs in cancer chemotherapy8-10. How PCFT recognizes folates or antifolate agents is currently unclear. Here we present cryo-electron microscopy structures of PCFT in a substrate-free state and in complex with a new-generation antifolate drug (pemetrexed). Our results provide a structural basis for understanding antifolate recognition and provide insights into the pH-regulated mechanism of folate transport mediated by PCFT.


Assuntos
Microscopia Crioeletrônica , Antagonistas do Ácido Fólico/química , Antagonistas do Ácido Fólico/metabolismo , Pemetrexede/química , Pemetrexede/metabolismo , Transportador de Folato Acoplado a Próton/química , Transportador de Folato Acoplado a Próton/metabolismo , Apoproteínas/química , Apoproteínas/metabolismo , Apoproteínas/ultraestrutura , Transporte Biológico , Humanos , Modelos Moleculares , Transportador de Folato Acoplado a Próton/ultraestrutura , Prótons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA