Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.738
Filtrar
1.
J Neuroinflammation ; 21(1): 113, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38685031

RESUMO

Obesity increases the morbidity and mortality of traumatic brain injury (TBI). Detailed analyses of transcriptomic changes in the brain and adipose tissue were performed to elucidate the interactive effects between high-fat diet-induced obesity (DIO) and TBI. Adult male mice were fed a high-fat diet (HFD) for 12 weeks prior to experimental TBI and continuing after injury. High-throughput transcriptomic analysis using Nanostring panels of the total visceral adipose tissue (VAT) and cellular components in the brain, followed by unsupervised clustering, principal component analysis, and IPA pathway analysis were used to determine shifts in gene expression patterns and molecular pathway activity. Cellular populations in the cortex and hippocampus, as well as in VAT, during the chronic phase after combined TBI-HFD showed amplification of central and peripheral microglia/macrophage responses, including superadditive changes in selected gene expression signatures and pathways. Furthermore, combined TBI and HFD caused additive dysfunction in Y-Maze, Novel Object Recognition (NOR), and Morris water maze (MWM) cognitive function tests. These novel data suggest that HFD-induced obesity and TBI can independently prime and support the development of altered states in brain microglia and VAT, including the disease-associated microglia/macrophage (DAM) phenotype observed in neurodegenerative disorders. The interaction between HFD and TBI promotes a shift toward chronic reactive microglia/macrophage transcriptomic signatures and associated pro-inflammatory disease-altered states that may, in part, underlie the exacerbation of cognitive deficits. Thus, targeting of HFD-induced reactive cellular phenotypes, including in peripheral adipose tissue immune cell populations, may serve to reduce microglial maladaptive states after TBI, attenuating post-traumatic neurodegeneration and neurological dysfunction.


Assuntos
Lesões Encefálicas Traumáticas , Encéfalo , Disfunção Cognitiva , Dieta Hiperlipídica , Macrófagos , Camundongos Endogâmicos C57BL , Microglia , Animais , Dieta Hiperlipídica/efeitos adversos , Microglia/metabolismo , Microglia/patologia , Masculino , Camundongos , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/patologia , Disfunção Cognitiva/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas Traumáticas/metabolismo , Encéfalo/patologia , Encéfalo/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Reconhecimento Psicológico/fisiologia , Obesidade/patologia , Obesidade/complicações , Aprendizagem em Labirinto/fisiologia
2.
Life Sci ; 346: 122618, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38614306

RESUMO

AIMS: This study was designed to investigate the role of growth arrest and DNA damage-inducible ß (GADD45B) in modulating fear memory acquisition and elucidate its underlying mechanisms. MAIN METHODS: Adeno-associated virus (AAV) that knockdown or overexpression GADD45B were injected into ventral hippocampal CA1 (vCA1) by stereotactic, and verified by fluorescence and Western blot. The contextual fear conditioning paradigm was employed to examine the involvement of GADD45B in modulating aversive memory acquisition. The Y-maze and novel location recognition (NLR) tests were used to examine non-aversive cognition. The synaptic plasticity and electrophysiological properties of neurons were measured by slice patch clamp. KEY FINDINGS: Knockdown of GADD45B in the vCA1 significantly enhanced fear memory acquisition, accompanied by an upregulation of long-term potentiation (LTP) expression and intrinsic excitability of vCA1 pyramidal neurons (PNs). Conversely, overexpression of GADD45B produced the opposite effects. Notably, silencing the activity of vCA1 neurons abolished the impact of GADD45B knockdown on fear memory development. Moreover, mice with vCA1 GADD45B overexpression exhibited impaired spatial cognition, whereas mice with GADD45B knockdown did not display such impairment. SIGNIFICANCE: These results provided compelling evidence for the crucial involvement of GADD45B in the formation of aversive memory and spatial cognition.


Assuntos
Região CA1 Hipocampal , Medo , Proteínas GADD45 , Camundongos Endogâmicos C57BL , Animais , Masculino , Medo/fisiologia , Camundongos , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/fisiologia , Cognição/fisiologia , Memória/fisiologia , Potenciação de Longa Duração/fisiologia , Aprendizagem em Labirinto/fisiologia , Plasticidade Neuronal/fisiologia , Antígenos de Diferenciação/metabolismo , Antígenos de Diferenciação/genética , Técnicas de Silenciamento de Genes
3.
J Photochem Photobiol B ; 253: 112885, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460431

RESUMO

The daily light/dark cycle affects animals' learning, memory, and cognition. Exposure to insufficient daylight illumination negatively impacts emotion and cognition, leading to seasonal affective disorder characterized by depression, anxiety, low motivation, and cognitive impairment in diurnal animals. However, how this affects memory, learning, and cognition in nocturnal rodents is largely unknown. Here, we studied the effect of daytime light illuminance on memory, learning, cognition, and expression of mRNA levels in the hippocampus, thalamus, and cortex, the higher-order learning centers. Two experiments were performed. In experiment one, rats were exposed to 12 L:12D (12 h light and 12 h dark) with a 10, 100, or 1000 lx daytime light illuminance. After 30 days, various behavioral tests (novel object recognition test, hole board test, elevated plus maze test, radial arm maze, and passive avoidance test) were performed. In experiment 2, rats since birth were raised either under constant bright light (250 lx; LL) or a daily light-dark cycle (12 L:12D). After four months, behavioral tests (novel object recognition test, hole board test, elevated plus maze test, radial arm maze, passive avoidance test, Morris water maze, and Y-maze tests) were performed. At the end of experiments, rats were sampled, and mRNA expression of Brain-Derived Neurotrophic Factor (Bdnf), Tyrosine kinase (Trk), microRNA132 (miR132), Neurogranin (Ng), Growth Associated Protein 43 (Gap-43), cAMP Response Element-Binding Protein (Crebp), Glycogen synthase kinase-3ß (Gsk3ß), and Tumour necrosis factor-α (Tnf-α) were measured in the hippocampus, cortex, and thalamus of individual rats. Our results show that exposure to bright daylight (100 and 1000 lx; experiment 1) or constant light (experiment 2) compromises memory, learning, and cognition. Suppressed expression levels of these mRNA were also observed in the hypothalamus, cortex, and thalamus. These results suggest that light affects differently to different groups of animals.


Assuntos
Cognição , MicroRNAs , Ratos , Animais , Ansiedade/metabolismo , Aprendizagem em Labirinto/fisiologia , Fotoperíodo , RNA Mensageiro/genética
4.
Ageing Res Rev ; 96: 102252, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38442748

RESUMO

Chronic cerebral hypoperfusion (CCH) is a common mechanism of acute brain injury due to impairment of blood flow to the brain. Moreover, a prolonged lack of oxygen supply may result in cerebral infarction or global ischemia, which subsequently causes long-term memory impairment. Research on using Clitoria ternatea root extract for treating long-term memory has been studied extensively. However, the bioactive compound contributing to its neuroprotective effects remains uncertain. In the present study, we investigate the effects of clitorienolactone A (CLA) and B (CLB) from the roots of Clitoria ternatea extract on hippocampal neuroplasticity in rats induced by CCH. CLA and CLB were obtained using column chromatography. The rat model of CCH was induced using two-vessel occlusion surgery (2VO). The 2VO rats were given 10 mg/kg of CLA and CLB orally, followed by hippocampal neuroplasticity recording using in vivo electrophysiological. Rats received CLA and CLB (10 mg/kg) significantly reversed the impairment of long-term potentiation following 2VO surgery. Furthermore, we investigate the effect of CLA and CLB on the calcium channel using the calcium imaging technique. During hypoxia, CLA and CLB sustain the increase in intracellular calcium levels. We next predict the binding interactions of CLA and CLB against NMDA receptors containing GluN2A and GluN2B subunits using in silico molecular docking. Our result found that both CLA and CLB exhibited lower binding affinity against GluN2A and GluN2B subunits. Our findings demonstrated that bioactive compounds from Clitoria ternatea improved long-term memory deficits in the chronic cerebral hypoperfusion rat model via calcium uptake. Hence, CLA and CLB could be potential therapeutic tools for treating cognitive dysfunction.


Assuntos
Isquemia Encefálica , Clitoria , Ratos , Humanos , Animais , Clitoria/química , Canais de Cálcio/farmacologia , Canais de Cálcio/uso terapêutico , Potenciação de Longa Duração , Cálcio , Simulação de Acoplamento Molecular , Isquemia Encefálica/tratamento farmacológico , Hipocampo , Aprendizagem em Labirinto/fisiologia
5.
J Toxicol Environ Health A ; 87(10): 421-427, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38551405

RESUMO

Vascular dementia (VD) a heterogenous group of brain disorders in which cognitive impairment is attributable to vascular risk factors and cerebrovascular disease. A common phenomenon in VD is a dysfunctional cerebral regulatory mechanism associated with insufficient cerebral blood flow, ischemia and hypoxia. Under hypoxic conditions oxygen supply to the brain results in neuronal death leading to neurodegenerative diseases including Alzheimer's (AD) and VD. In conditions of hypoxia and low oxygen perfusion, expression of hypoxia-inducible factor 1 alpha (HIF-1α) increases under conditions of low oxygen and low perfusion associated with upregulation of expression of hypoxia-upregulated mitochondrial movement regulator (HUMMR), which promotes anterograde mitochondrial transport by binding with trafficking protein kinesin 2 (TRAK2). Schisandrin B (Sch B) an active component derived from Chinese herb Wuweizi prevented ß-amyloid protein induced morphological alterations and cell death using a SH-SY5Y neuronal cells considered an AD model. It was thus of interest to determine whether Sch B might also alleviate VD using a rat bilateral common carotid artery occlusion (BCAO) dementia model. The aim of this study was to examine the effects of Sch B in BCAO on cognitive functions such as Morris water maze test and underlying mechanisms involving expression of HIF-1α, TRAK2, and HUMMR levels. The results showed that Sch B improved learning and memory function of rats with VD and exerted a protective effect on the hippocampus by inhibition of protein expression of HIF-1α, TRAK2, and HUMMR factors. Evidence indicates that Sch B may be considered as an alternative in VD treatment.


Assuntos
Demência Vascular , Lignanas , Neuroblastoma , Compostos Policíclicos , Ratos , Humanos , Animais , Demência Vascular/tratamento farmacológico , Demência Vascular/etiologia , Demência Vascular/metabolismo , Aprendizagem em Labirinto/fisiologia , Hipóxia , Cognição , Hipocampo , Oxigênio/farmacologia , Ciclo-Octanos
6.
Neuroscience ; 545: 111-124, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38492796

RESUMO

Armcx1 is a member of the ARMadillo repeat-Containing protein on the X chromosome (ARMCX) family, which is recognized to have evolutionary conserved roles in regulating mitochondrial transport and dynamics. Previous research has shown that Armcx1 is expressed at higher levels in mice after axotomy and in adult retinal ganglion cells after crush injury, and this protein increases neuronal survival and axonal regeneration. However, its role in traumatic brain injury (TBI) is unclear. Therefore, the aim of this study was to assess the expression of Armcx1 after TBI and to explore possible related mechanisms by which Armcx1 is involved in TBI. We used C57BL/6 male mice to model TBI and evaluated the role of Armcx1 in TBI by transfecting mice with Armcx1 small interfering RNA (siRNA) to inhibit Armcx1 expression 24 h before TBI modeling. Western blotting, immunofluorescence, terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining, Nissl staining, transmission electron microscopy, adenosine triphosphate (ATP) level measurement, neuronal apoptosis analysis, neurological function scoring and the Morris water maze were performed. The results demonstrated that Armcx1 protein expression was elevated after TBI and that the Armcx1 protein was localized in neurons and astroglial cells in cortical tissue surrounding the injury site. In addition, inhibition of Armcx1 expression further led to impaired mitochondrial transport, abnormal morphology, reduced ATP levels, aggravation of neuronal apoptosis and neurological dysfunction, and decrease Miro1 expression. In conclusion, our findings indicate that Armcx1 may exert neuroprotective effects by ameliorating neurological injury after TBI through a mitochondrial transport pathway involving Miro1.


Assuntos
Proteínas do Domínio Armadillo , Lesões Encefálicas Traumáticas , Camundongos Endogâmicos C57BL , Mitocôndrias , Proteínas rho de Ligação ao GTP , Animais , Masculino , Camundongos , Trifosfato de Adenosina/metabolismo , Apoptose/fisiologia , Proteínas do Domínio Armadillo/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Modelos Animais de Doenças , Aprendizagem em Labirinto/fisiologia , Mitocôndrias/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Proteínas rho de Ligação ao GTP/metabolismo
7.
Exp Neurol ; 374: 114690, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38218585

RESUMO

RNA binding motif 5 (RBM5) is a tumor suppressor in cancer but its role in the brain is unclear. We used conditional gene knockout (KO) mice to test if RBM5 inhibition in the brain affects chronic cortical brain tissue survival or function after a controlled cortical impact (CCI) traumatic brain injury (TBI). RBM5 KO decreased baseline contralateral hemispheric volume (p < 0.0001) and exacerbated ipsilateral tissue loss at 21 d after CCI in male mice vs. wild type (WT) (p = 0.0019). CCI injury, but not RBM5 KO, impaired beam balance performance (0-5d post-injury) and swim speed on the Morris Water Maze (MWM) (19-20d) (p < 0.0001). RBM5 KO was associated with mild learning impairment in female mice (p = 0.0426), reflected as a modest increase in escape latency early in training (14-18d post-injury). However, KO did not affect spatial memory at 19d post-injury in male or in female mice but it was impaired by CCI in females (p = 0.0061). RBM5 KO was associated with impaired visual function in male mice on the visible platform test at 20d post-injury (p = 0.0256). To explore signaling disturbances in KOs related to behavior, we first cross-referenced known brain-specific RBM5-regulated gene targets with genes in the curated RetNet database that impact vision. We then performed a secondary literature search on RBM5-regulated genes with a putative role in hippocampal function. Regulating synaptic membrane exocytosis 2 (RIMS) 2 was identified as a gene of interest because it regulates both vision and hippocampal function. Immunoprecipitation and western blot confirmed protein expression of a novel ~170 kDa RIMS2 variant in the cerebellum, and in the hippocampus, it was significantly increased in KO vs WT (p < 0.0001), and in a sex-dependent manner (p = 0.0390). Furthermore, male KOs had decreased total canonical RIMS2 levels in the cerebellum (p = 0.0027) and hippocampus (p < 0.0001), whereas female KOs had increased total RIMS1 levels in the cerebellum (p = 0.0389). In summary, RBM5 modulates brain function in mammals. Future work is needed to test if RBM5 dependent regulation of RIMS2 splicing effects vision and cognition, and to verify potential sex differences on behavior in a larger cohort of mice.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Doenças do Sistema Nervoso , Proteínas Supressoras de Tumor , Animais , Feminino , Masculino , Camundongos , Encéfalo/metabolismo , Lesões Encefálicas/patologia , Lesões Encefálicas Traumáticas/patologia , Proteínas de Ciclo Celular/metabolismo , Cerebelo/patologia , Proteínas de Ligação a DNA/metabolismo , Técnicas de Inativação de Genes , Hipocampo/metabolismo , Aprendizagem em Labirinto/fisiologia , Camundongos Knockout , Doenças do Sistema Nervoso/patologia , Proteostase , Proteínas de Ligação a RNA/metabolismo
8.
J Alzheimers Dis ; 97(3): 1381-1392, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38250768

RESUMO

BACKGROUND: Mitochondrial dysfunction plays a vital role in the progression of vascular dementia (VaD). We hypothesized that transfer of exogenous mitochondria might be a beneficial strategy for VaD treatment. OBJECTIVE: The study was aimed to investigate the role of mitochondrial therapy in cognitive function of VaD. METHODS: The activity and integrity of isolated mitochondria were detected using MitoTracker and Janus Green B staining assays. After VaD mice were intravenously injected with exogenous mitochondria, Morris water maze and passive avoidance tests were used to detect cognitive function of VaD mice. Haematoxylin and eosin, Nissl, TUNEL, and Golgi staining assays were utilized to measure neuronal and synaptic injury in the hippocampus of VaD mice. Detection kits were performed to detect mitochondrial membrane potential (ΔΨ), SOD activity and the levels of ATP, ROS, and MDA in the brains of VaD mice. RESULTS: The results showed that isolated mitochondria were intact and active. Mitochondrial therapy could ameliorate cognitive performance of VaD mice. Additionally, mitochondrial administration could attenuate hippocampal neuronal and synaptic injury, improve mitochondrial ΔΨ, ATP level and SOD activity, and reduce ROS and MDA levels in the brains of VaD mice. CONCLUSIONS: The study reports profitable effect of mitochondrial therapy against cognitive impairment of VaD, making mitochondrial treatment become a promising therapeutic strategy for VaD.


Assuntos
Disfunção Cognitiva , Demência Vascular , Camundongos , Animais , Demência Vascular/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Cognição , Disfunção Cognitiva/metabolismo , Superóxido Dismutase/metabolismo , Mitocôndrias , Trifosfato de Adenosina/metabolismo , Aprendizagem em Labirinto/fisiologia , Hipocampo/metabolismo
9.
Exp Neurol ; 373: 114648, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38081352

RESUMO

Environmental enrichment (EE) facilitates motor and cognitive recovery after traumatic brain injury (TBI). Historically, EE has been provided immediately and continuously after TBI, but this paradigm does not model the clinic where rehabilitation is typically not initiated until after critical care. Yet, treating TBI early may facilitate recovery. Hence, we sought to provide amantadine (AMT) as a bridge therapy before commencing EE. It was hypothesized that bridging EE with AMT would augment motor and cognitive benefits. Anesthetized adult male rats received a cortical impact (2.8 mm deformation at 4 m/s) or sham surgery and then were housed in standard (STD) conditions where they received intraperitoneal AMT (10 mg/kg or 20 mg/kg) or saline vehicle (VEH; 1 mL/kg) beginning 24 h after surgery and once daily during the 6-day bridge phase or once daily for 19 days for the non-bridge groups (i.e., continuously STD-housed) to compare the effects of acute AMT plus EE vs. chronic AMT alone. Abbreviated EE, which was presented to closer emulate clinical rehabilitation (e.g., 6 h/day), began on day 7 for the AMT bridge and chronic EE groups. Motor (beam-walking) and cognition (acquisition of spatial learning and memory) were assessed on days 7-11 and 14-19, respectively. Cortical lesion volume and hippocampal cell survival were quantified on day 21. EE, whether provided in combination with VEH or AMT, and AMT (20 mg/kg) + STD, benefitted motor and cognition vs. the STD-housed VEH and AMT (10 mg/kg) groups (p < 0.05). The AMT (20 mg/kg) + EE group performed better than the VEH + EE, AMT (10 mg/kg) + EE, and AMT (20 mg/kg) + STD groups in the acquisition of spatial learning (p < 0.05) but did not differ in motor function (p > 0.05). All groups receiving EE exhibited decreased cortical lesion volumes and increased CA3 neuron survival relative to the STD-housed groups (p < 0.05) but did not differ from one another (p > 0.05). The added cognitive benefit achieved by bridging EE with AMT (20 mg/kg) supports the hypothesis that the temporal separation of combinational therapies is more effective after TBI.


Assuntos
Lesões Encefálicas Traumáticas , Desempenho Psicomotor , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Meio Ambiente , Lesões Encefálicas Traumáticas/tratamento farmacológico , Cognição , Amantadina/farmacologia , Amantadina/uso terapêutico , Aprendizagem em Labirinto/fisiologia , Modelos Animais de Doenças
10.
CNS Neurosci Ther ; 30(3): e14466, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37752881

RESUMO

AIM: The three-phase enriched environment (EE) intervention paradigm has been shown to improve learning and memory function after cerebral ischemia, but the neuronal mechanisms are still unclear. This study aimed to investigate the hippocampal-cortical connectivity and the metabolic interactions between neurons and astrocytes to elucidate the underlying mechanisms of EE-induced memory improvement after stroke. METHODS: Rats were subjected to permanent middle cerebral artery occlusion (pMCAO) or sham surgery and housed in standard environment or EE for 30 days. Memory function was examined by Morris water maze (MWM) test. Magnetic resonance imaging (MRI) was conducted to detect the structural and functional changes. [18 F]-fluorodeoxyglucose (FDG) positron emission tomography (PET) was conducted to detect brain energy metabolism. PET-based brain connectivity and network analysis was performed to study the changes of hippocampal-cortical connectivity. Astrocyte-neuron metabolic coupling, including gap junction protein connexin 43 (Cx43), glucose transporters (GLUTs), and monocarboxylate transporters (MCTs), was detected by histological studies. RESULTS: Our results showed EE promoted memory function improvement, protected structure integrity, and benefited energy metabolism after stroke. More importantly, EE intervention significantly increased functional connectivity between the hippocampus and peri-hippocampal cortical regions, and specifically regulated the level of Cx43, GLUTs and MCTs in the hippocampus and cortex. CONCLUSIONS: Our results revealed the three-phase enriched environment paradigm enhanced hippocampal-cortical connectivity plasticity and ameliorated post-stroke memory deficits. These findings might provide some new clues for the development of EE and thus facilitate the clinical transformation of EE.


Assuntos
Conexina 43 , Acidente Vascular Cerebral , Ratos , Animais , Conexina 43/metabolismo , Imageamento por Ressonância Magnética , Meio Ambiente , Encéfalo/metabolismo , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/terapia , Hipocampo/metabolismo , Transtornos da Memória/diagnóstico por imagem , Transtornos da Memória/etiologia , Transtornos da Memória/terapia , Aprendizagem em Labirinto/fisiologia
11.
CNS Neurosci Ther ; 30(1): e14554, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38105652

RESUMO

AIMS: Sevoflurane is widely used for general anesthesia in children. Previous studies reported that multiple neonatal exposures to sevoflurane can induce long-term cognitive impairment in adolescent rats, but the underlying mechanisms were not defined. METHODS: Postnatal day 6 (P6) to P8 rat pups were exposed to 30% oxygen with or without 3% sevoflurane balanced with air. The Y maze test (YMT) and Morris water maze (MWM) tests were performed in some cohorts from age P35 to assess cognitive functions, and their brain samples were harvested at age P14, 21, 28, 35, and 42 for measurements of various molecular entities and in vivo electrophysiology experiments at age P35. RESULTS: Sevoflurane exposure resulted in cognitive impairment that was associated with decreased synCAM1 expression in parvalbumin (PV) interneurons, a reduction of PV phenotype, disturbed gamma oscillations, and dendritic spine loss in the hippocampal CA3 region. Enriched environment (EE) increased synCAM1 expression in the PV interneurons and attenuated sevoflurane-induced cognitive impairment. The synCAM1 overexpression by the adeno-associated virus vector in the hippocampal CA3 region restored sevoflurane-induced cognitive impairment, PV phenotype loss, gamma oscillations decrease, and dendritic spine loss. CONCLUSION: Our data suggested that neonatal sevoflurane exposure results in cognitive impairment through decreased synCAM1 expression in PV interneurons in the hippocampus.


Assuntos
Disfunção Cognitiva , Parvalbuminas , Humanos , Criança , Animais , Ratos , Sevoflurano/toxicidade , Animais Recém-Nascidos , Parvalbuminas/metabolismo , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/metabolismo , Interneurônios/metabolismo , Aprendizagem em Labirinto/fisiologia , Hipocampo/metabolismo
12.
Cells ; 12(23)2023 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-38067139

RESUMO

Major features of aging might be progressive decreases in cognitive function and physical activity, in addition to withered appearance. Previously, we reported that the intracerebroventricular injection of human neural stem cells (NSCs named F3) encoded the choline acetyltransferase gene (F3.ChAT). The cells secreted acetylcholine and growth factors (GFs) and neurotrophic factors (NFs), thereby improving learning and memory function as well as the physical activity of aged animals. In this study, F344 rats (10 months old) were intravenously transplanted with F3 or F3.ChAT NSCs (1 × 106 cells) once a month to the 21st month of age. Their physical activity and cognitive function were investigated, and brain acetylcholine (ACh) and cholinergic and dopaminergic system markers were analyzed. Neuroprotective and neuroregenerative activities of stem cells were also confirmed by analyzing oxidative damages, neuronal skeletal protein, angiogenesis, brain and muscle weights, and proliferating host stem cells. Stem cells markedly improved both cognitive and physical functions, in parallel with the elevation in ACh levels in cerebrospinal fluid and muscles, in which F3.ChAT cells were more effective than F3 parental cells. Stem cell transplantation downregulated CCL11 and recovered GFs and NFs in the brain, leading to restoration of microtubule-associated protein 2 as well as functional markers of cholinergic and dopaminergic systems, along with neovascularization. Stem cells also restored muscular GFs and NFs, resulting in increased angiogenesis and muscle mass. In addition, stem cells enhanced antioxidative capacity, attenuating oxidative damage to the brain and muscles. The results indicate that NSCs encoding ChAT improve cognitive function and physical activity of aging animals by protecting and recovering functions of multiple organs, including cholinergic and dopaminergic systems, as well as muscles from oxidative injuries through secretion of ACh and GFs/NFs, increased antioxidant elements, and enhanced blood flow.


Assuntos
Acetilcolina , Células-Tronco Neurais , Ratos , Animais , Humanos , Masculino , Idoso , Lactente , Ratos Endogâmicos F344 , Acetilcolina/metabolismo , Colina O-Acetiltransferase/genética , Colina O-Acetiltransferase/metabolismo , Colina O-Acetiltransferase/farmacologia , Aprendizagem em Labirinto/fisiologia , Envelhecimento/fisiologia , Células-Tronco Neurais/metabolismo , Administração Intravenosa , Colinérgicos
13.
Brain Res Bull ; 204: 110798, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37890595

RESUMO

BACKGROUND: Chronic cerebral hypoperfusion (CCH) is a frequently observed underlying pathology of both Alzheimer's disease (AD) and vascular dementia (VD), which is a common consequence of cerebral blood flow (CBF) dysregulation. Synaptic damage has been proven as a crucial causative factor for CCH-related cognitive impairment. This study aimed to investigate the neuroprotective impact of environmental enrichment (EE) intervention on CCH-induced synaptic destruction and the consequent cognitive impairment. Furthermore, the underlying mechanism of this neuroprotective effect was explored to provide new insights into therapeutic interventions for individuals suffering from AD or VD. METHODS: In this experiment, all rats were initially acclimatized to a standard environment (SE) for a period of one week. On the seventh day, rats underwent either bilateral common carotid artery occlusion (2VO) surgery or sham surgery (Sham) before being subjected to a four-week procedure of exposure to an EE, except for the control group. During the EE or SE procedure, intraperitoneal injection of chloroquine (CQ) into rats was performed once daily for four weeks. Following this, cognitive function was assessed using the Morris water maze (MWM) test. The synapse ultrastructure was subsequently observed using transmission electron microscopy. Expression levels of autophagy-related proteins (LC3, LAMP1, and P62) and synapse-related proteins (Synapsin I and PSD-95) were detected through Western blotting. Finally, immunofluorescence was used to examine the expression levels of Synapsin I and PSD-95 and the colocalization of LAMP-1 and LC3 in the hippocampus. RESULTS: After undergoing 2VO, rats exposed to SE exhibited cognitive impairment, autophagic dysfunction, and synapse damage. The synapse damage was evidenced by ultrastructural damage and degradation of synapse-related proteins. However, these effects were significantly mitigated by exposure to an EE intervention. Moreover, the intervention led to an improvement in autophagic dysfunction. CONCLUSION: The study found that EE had a positive impact on CCH-induced synaptic damage. Specifically, EE was found to increase synaptic plasticity-associated proteins and postsynaptic density thickness, while decreasing synaptic space. This multifaceted effect resulted in an amelioration of CCH-induced cognitive impairment. It was shown that this beneficial outcome was mediated via the activation of the autophagy-lysosomal pathway. Overall, the findings suggest that EE may have a therapeutic potential for cognitive impairments associated with CCH through autophagy-mediated synaptic improvement.


Assuntos
Doença de Alzheimer , Isquemia Encefálica , Disfunção Cognitiva , Demência Vascular , Ratos , Animais , Sinapsinas/metabolismo , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/terapia , Disfunção Cognitiva/metabolismo , Isquemia Encefálica/patologia , Transdução de Sinais/fisiologia , Autofagia/fisiologia , Demência Vascular/metabolismo , Doença de Alzheimer/metabolismo , Hipocampo/metabolismo , Aprendizagem em Labirinto/fisiologia
14.
J Neurosci ; 43(34): 6061-6083, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37532464

RESUMO

Exposure to elevated doses of ionizing radiation, such as those in therapeutic procedures, catastrophic accidents, or space exploration, increases the risk of cognitive dysfunction. The full range of radiation-induced cognitive deficits is unknown, partly because commonly used tests may be insufficiently sensitive or may not be adequately tuned for assessing the fine behavioral features affected by radiation. Here, we asked whether γ-radiation might affect learning, memory, and the overall ability to adapt behavior to cope with a challenging environment (cognitive/behavioral flexibility). We developed a new behavioral assay, the context discrimination Morris water maze (cdMWM) task, which is hippocampus-dependent and requires the integration of various contextual cues and the adjustment of search strategies. We exposed male mice to 1 or 5 Gy of γ rays and, at different time points after irradiation, trained them consecutively in spatial MWM, reversal MWM, and cdMWM tasks, and assessed their learning, navigational search strategies, and memory. Mice exposed to 5 Gy performed successfully in the spatial and reversal MWM tasks; however, in the cdMWM task 6 or 8 weeks (but not 3 weeks) after irradiation, they demonstrated transient learning deficit, decreased use of efficient spatially precise search strategies during learning, and, 6 weeks after irradiation, memory deficit. We also observed impaired neurogenesis after irradiation and selective activation of 12-week-old newborn neurons by specific components of cdMWM training paradigm. Thus, our new behavioral paradigm reveals the effects of γ-radiation on cognitive flexibility and indicates an extended timeframe for the functional maturation of new hippocampal neurons.SIGNIFICANCE STATEMENT Exposure to radiation can affect cognitive performance and cognitive flexibility - the ability to adapt to changed circumstances and demands. The full range of consequences of irradiation on cognitive flexibility is unknown, partly because of a lack of suitable models. Here, we developed a new behavioral task requiring mice to combine various types of cues and strategies to find a correct solution. We show that animals exposed to γ-radiation, despite being able to successfully solve standard problems, show delayed learning, deficient memory, and diminished use of efficient navigation patterns in circumstances requiring adjustments of previously used search strategies. This new task could be applied in other settings for assessing the cognitive changes induced by aging, trauma, or disease.


Assuntos
Hipocampo , Aprendizagem , Camundongos , Masculino , Animais , Hipocampo/fisiologia , Neurogênese/fisiologia , Cognição/fisiologia , Neurônios/fisiologia , Aprendizagem em Labirinto/fisiologia
15.
Brain Res ; 1814: 148441, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37271490

RESUMO

40 Hz light flicker can activate multiple brain regions of wild-type mice. However, there are no systematic studies on the behavioral effects of 40 Hz light flicker on wild-type mice. Adult wild-type C57BL/6J mice were treated with 40 Hz light flicker (200 lx, 40 Hz, 1 h/day for 3 weeks) to evaluate its effects on several behaviors, including mood, locomotor activity, memory, social interaction, mechanical pain, and sense of smell. In the open field test, the elevated zero-maze test, forced swimming test, and tail suspension test, 40 Hz mice showed no anxiety and depression-like behaviors. In the rotarod test, no differences were found between the anti-fatigue ability and motor coordination ability. In memory-related tests, 40 Hz mice showed the short-term cognitive enhancement in the novel object recognition test. Interestingly, 40 Hz mice showed no enhanced the long-term memory performance in the contextual fear conditioning test, and tone-cued fear conditioning test. Besides, 40 Hz mice increased their exploration of social cues that were unfamiliar to them and differed significantly from their own experiences. In terms of sensory abilities, 40 Hz mice had unchanged pain sensitivity in the von Frey fiber test and significant enhancement in the olfactory ability in the food-seeking test. In conclusion, this 40 Hz light stimulation paradigm has high safety and can improve the specific behavioral ability, which provides a theoretical basis for the future use of 40 Hz light flicker as a disease prevention or treatment method.


Assuntos
Comportamento Animal , Atividade Motora , Camundongos , Animais , Camundongos Endogâmicos C57BL , Atividade Motora/fisiologia , Medo/psicologia , Aprendizagem em Labirinto/fisiologia , Dor
16.
Ann Anat ; 249: 152103, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37182815

RESUMO

BACKGROUND: Moderate-intensity intermittent exercise (MIIE) has been proposed as an effective method for preventing Alzheimer's dementia (AD). AIM: This study aimed to investigate the effects of MIIE on the spatial memory and protein level of AD markers in the hippocampus of trimethyltin (TMT)-induced rat model of hippocampal degeneration. METHODS: Male Sprague Dawley (SD) rats were randomly assigned into four groups: normal control (N), exercise control (E), TMT control (T), and exercise and TMT (ET). Rats of the exercise groups (E and ET) were forced to run on a treadmill for 30 min each day at maximum for 12 weeks. Intraperitoneal injection of 8 mg/kgBW TMT was administered as a single dose, 10 days before the last exercise treatment for the T and ET groups. The spatial memory of rats was examined using Morris water maze (MWM) test after the exercise period. After euthanasia, the hippocampal tissue was dissected out and the level of hippocampal presenilin-1 (PSEN-1) and phosphorylated tau (p-tau) protein were measured using ELISA. The total number of hippocampal pyramidal neurons was estimated using unbiased stereological analysis. Qualitative immunohistochemistry was performed to examine the expression of brain-derived neurotrophic factor (BDNF), tumor necrosis factor-alpha (TNF-α), and interleukin-10 (IL-10) in paraffin sections of the hippocampus. RESULTS: TMT exposure induced memory impairment indicated by the T group having the lowest percentage of time and percentage of path length in the target quadrant compared to other groups. MIIE prevented the memory impairment effect of TMT exposure indicated by the ET group having no significantly different MWM performance compared to the E and N groups. The ET group had significantly lower levels of hippocampal AD markers, p-tau and PSEN-1, as well as significantly higher estimated total number of pyramidal neurons of hippocampal CA1 and CA2-3 regions compared to the T group. Expressions of TNF-α was weak, while the expression of IL-10 was stronger in the ET group compared to the control group. The TMT-induced group exhibited stronger expression of BDNF. CONCLUSION: MIIE prevents neuronal loss and impaired spatial memory upon TMT exposure most probably via preventing elevated levels of hippocampal AD markers and neuroinflammation. WC:350.


Assuntos
Doença de Alzheimer , Ratos , Masculino , Animais , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Ratos Sprague-Dawley , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Interleucina-10/efeitos adversos , Interleucina-10/metabolismo , Fator de Necrose Tumoral alfa/efeitos adversos , Fator de Necrose Tumoral alfa/metabolismo , Aprendizagem em Labirinto/fisiologia , Hipocampo , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/prevenção & controle , Transtornos da Memória/metabolismo , Neurônios/metabolismo
17.
Artigo em Inglês | MEDLINE | ID: mdl-37047984

RESUMO

Chemotherapy-induced cognitive impairment (chemobrain) and muscle wasting (cachexia) are persisting side effects which adversely affect the quality of life of cancer survivors. We therefore investigated the efficacy of physical exercise as a non-pharmacological intervention to reverse the adverse effects of chemotherapy. We examined whether physical exercise in terms of voluntary wheel running could prevent chemotherapy-induced cognitive and motor impairments in mice treated with the multi-kinase inhibitor sorafenib. Adult male BALB/c mice were subdivided into runner and non-runner groups and orally administered with sorafenib (60 mg/kg) or vehicle continuously for four weeks. Mice could freely access the running wheel anytime during sorafenib or vehicle treatment. We found that sorafenib treatment reduced body weight gain (% of change, vehicle: 3.28 ± 3.29, sorafenib: -9.24 ± 1.52, p = 0.0004), impaired hippocampal-dependent spatial memory in the Y maze (exploration index, vehicle: 35.57 ± 11.38%, sorafenib: -29.62 ± 7.90%, p < 0.0001), increased anhedonia-like behaviour in the sucrose preference test (sucrose preference, vehicle: 66.57 ± 3.52%, sorafenib: 44.54 ± 4.25%, p = 0.0005) and impaired motor skill acquisition in rotarod test (latency to fall on day 1: 37.87 ± 8.05 and day 2: 37.22 ± 12.26 s, p > 0.05) but did not induce muscle wasting or reduce grip strength. Concomitant voluntary running reduced anhedonia-like behaviour (sucrose preference, sedentary: 44.54 ± 4.25%, runners: 59.33 ± 4.02%, p = 0.0357), restored impairment in motor skill acquisition (latency to fall on day 1: 50.85 ± 15.45 and day 2: 168.50 ± 37.08 s, p = 0.0004), but failed to rescue spatial memory deficit. Immunostaining results revealed that sorafenib treatment did not affect the number of proliferating cells and immature neurons in the hippocampal dentate gyrus (DG), whereas running significantly increased cell proliferation in both vehicle- (total Ki-67+ cells, sedentary: 16,687.34 ± 72.63, exercise: 3320.03 ± 182.57, p < 0.0001) and sorafenib-treated mice (Ki-67+ cells in the ventral DG, sedentary: 688.82.34 ± 38.16, exercise: 979.53 ± 73.88, p < 0.0400). Our results suggest that spatial memory impairment and anhedonia-like behaviour precede the presence of muscle wasting, and these behavioural deficits are independent of the changes in adult hippocampal neurogenesis. Running effectively prevents body weight loss, improves motor skill acquisition and reduces anhedonia-like behaviour associated with increased proliferating cells and immature neurons in DG. Taken together, they support physical exercise rehabilitation as an effective strategy to prevent chemotherapy side effects in terms of mood dysregulation and motor deficit.


Assuntos
Anedonia , Atividade Motora , Camundongos , Masculino , Animais , Atividade Motora/fisiologia , Sorafenibe , Antígeno Ki-67 , Qualidade de Vida , Aprendizagem em Labirinto/fisiologia , Hipocampo , Transtornos da Memória , Neurogênese/fisiologia , Cognição/fisiologia , Camundongos Endogâmicos C57BL
18.
Sci Rep ; 13(1): 2164, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36750584

RESUMO

Progesterone and its receptors (PRs) participate in mating and reproduction, but their role in spatial declarative memory is not understood. Male mice expressed PRs, predominately in excitatory neurons, in brain regions that support spatial memory, such as the hippocampus and entorhinal cortex (EC). Furthermore, segesterone, a specific PR agonist, activates neurons in both the EC and hippocampus. We assessed the contribution of PRs in promoting spatial and non-spatial cognitive learning in male mice by examining the performance of mice lacking this receptor (PRKO), in novel object recognition, object placement, Y-maze alternation, and Morris-Water Maze (MWM) tasks. In the recognition test, the PRKO mice preferred the familiar object over the novel object. A similar preference for the familiar object was also seen following the EC-specific deletion of PRs. PRKO mice were also unable to recognize the change in object position. We confirmed deficits in spatial memory of PRKO mice by testing them on the Y-maze forced alternation and MWM tasks; PR deletion affected animal's performance in both these tasks. In contrast to spatial tasks, PR removal did not alter the response to fear conditioning. These studies provide novel insights into the role of PRs in facilitating spatial, declarative memory in males, which may help with finding reproductive partners.


Assuntos
Sistema Límbico , Aprendizagem em Labirinto , Receptores de Progesterona , Memória Espacial , Animais , Masculino , Camundongos , Córtex Entorrinal/fisiologia , Hipocampo/fisiologia , Sistema Límbico/fisiologia , Aprendizagem em Labirinto/fisiologia , Transtornos da Memória/fisiopatologia , Progesterona/fisiologia , Receptores de Progesterona/fisiologia , Memória Espacial/fisiologia
19.
Behav Brain Res ; 442: 114328, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36740076

RESUMO

BACKGROUND: Cognitive impairment, which includes perioperative psychological distress and cognitive dysfunction, can be determined by preoperative and post-operative neuropsychological tests. Several mechanisms have been proposed regarding the two-way communication between the immune system and the brain after surgery. We aimed to understand the mechanisms underlying perioperative neurocognitive disorders (PND) in elderly rats using an experimental abdominal surgery model. METHODS: 24-month-old SD rats were exposed to the abdominal surgery model (AEL) under 3% anesthesia. On day 15 and day 30 post-surgery, fractional anisotropy (FA) using diffusion kurtosis imaging (DKI) was measured. From day 25 to day 30 post-surgery, behavioral tests, including open field test (OFT), Morris water maze (MWM), novel object recognition (NOR), force swimming test (FST), and elevated plus maze (EPM), were performed. Then, the rats were euthanized to perform pathological analysis and western blot measurement. RESULTS: The rats exposed to AEL surgical treatment demonstrated significantly decreased time crossing the platform in the MWM, decreased recognition index in the NOR, reduced time in the open arm in the EPM, increased immobility time in the FST, and increased number of crossings in the OFT. Aged rats, after AEL exposure, further demonstrated decreased FA in the mPFC, nucleus accumbens (NAc), and hippocampus, together with reduced MAP2 intensity, attenuation of GAD65, VGlut2, CHAT, and phosphorylated P38MAPK expression, and increased reactive astrocytes and microglia. CONCLUSIONS: In this study, the aged rats exposed to abdominal surgery demonstrated both emotional changes and cognitive dysfunction, which may be associated with neuronal degeneration and reduced phosphorylated P38MAPK.


Assuntos
Disfunção Cognitiva , Ratos , Animais , Sevoflurano , Ratos Sprague-Dawley , Disfunção Cognitiva/metabolismo , Emoções , Encéfalo/metabolismo , Hipocampo/metabolismo , Aprendizagem em Labirinto/fisiologia
20.
Biol Trace Elem Res ; 201(11): 5309-5320, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36823489

RESUMO

Aluminum has been found to be closely related to the pathogenesis of neurodegenerative diseases and damage learning and memory functions. Many changes in epigenetics may be one of the mechanisms of aluminum neurotoxicity. The purpose of this study is to further investigate the mechanism of action of sub-chronic aluminum exposure on learning memory and histone H4 acetylation modification in Wistar rats, and the correlation between learning memory impairment and histone H4 acetylation in aluminum-exposed rats. Rats in each dose group were given 0.0 g/L, 2.0 g/L, 4.0 g/L, and 8.0 g/L of AlCl3 distilled water daily for 12 weeks. The learning and memory ability of rats was measured by the Morris water maze test; the neuronal morphology of rat hippocampus was observed by Nissl staining and transmission electron microscope; real-time PCR, and Western blot were used to detect mRNA expression and protein content in hippocampus of rats. The results suggest that aluminum may affect the gene and protein expression of HAT1 and HDAC2, and then affect histone H4 and the acetylation of H4K12 (acH4K12), which may lead to learning and memory dysfunction in rats.


Assuntos
Alumínio , Histonas , Ratos , Animais , Alumínio/metabolismo , Ratos Wistar , Histonas/metabolismo , Acetilação , Aprendizagem em Labirinto/fisiologia , Hipocampo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA