Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microb Cell Fact ; 23(1): 166, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840157

RESUMO

BACKGROUND: Recombinant peptide production in Escherichia coli provides a sustainable alternative to environmentally harmful and size-limited chemical synthesis. However, in-vivo production of disulfide-bonded peptides at high yields remains challenging, due to degradation by host proteases/peptidases and the necessity of translocation into the periplasmic space for disulfide bond formation. RESULTS: In this study, we established an expression system for efficient and soluble production of disulfide-bonded peptides in the periplasm of E. coli. We chose model peptides with varying complexity (size, structure, number of disulfide bonds), namely parathyroid hormone 1-84, somatostatin 1-28, plectasin, and bovine pancreatic trypsin inhibitor (aprotinin). All peptides were expressed without and with the N-terminal, low molecular weight CASPON™ tag (4.1 kDa), with the expression cassette being integrated into the host genome. During BioLector™ cultivations at microliter scale, we found that most of our model peptides can only be sufficiently expressed in combination with the CASPON™ tag, otherwise expression was only weak or undetectable on SDS-PAGE. Undesired degradation by host proteases/peptidases was evident even with the CASPON™ tag. Therefore, we investigated whether degradation happened before or after translocation by expressing the peptides in combination with either a co- or post-translational signal sequence. Our results suggest that degradation predominantly happened after the translocation, as degradation fragments appeared to be identical independent of the signal sequence, and expression was not enhanced with the co-translational signal sequence. Lastly, we expressed all CASPON™-tagged peptides in two industry-relevant host strains during C-limited fed-batch cultivations in bioreactors. We found that the process performance was highly dependent on the peptide-host-combination. The titers that were reached varied between 0.6-2.6 g L-1, and exceeded previously published data in E. coli. Moreover, all peptides were shown by mass spectrometry to be expressed to completion, including full formation of disulfide bonds. CONCLUSION: In this work, we demonstrated the potential of the CASPON™ technology as a highly efficient platform for the production of soluble peptides in the periplasm of E. coli. The titers we show here are unprecedented whenever parathyroid hormone, somatostatin, plectasin or bovine pancreatic trypsin inhibitor were produced in E. coli, thus making our proposed upstream platform favorable over previously published approaches and chemical synthesis.


Assuntos
Dissulfetos , Escherichia coli , Peptídeos , Periplasma , Escherichia coli/metabolismo , Escherichia coli/genética , Periplasma/metabolismo , Dissulfetos/metabolismo , Peptídeos/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Aprotinina/metabolismo , Aprotinina/genética
2.
FEBS Open Bio ; 10(10): 1947-1956, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33017095

RESUMO

Poor immunogenicity of small proteins is a major hurdle in developing vaccines or producing antibodies for biopharmaceutical usage. Here, we systematically analyzed the effects of 10 solubility controlling peptide tags (SCP-tags) on the immunogenicity of a non-immunogenic model protein, bovine pancreatic trypsin inhibitor (BPTI-19A; 6 kDa). CD, fluorescence, DLS, SLS, and AUC measurements indicated that the SCP-tags did not change the secondary structure content nor the tertiary structures of the protein nor its monomeric state. ELISA results indicated that the 5-proline (C5P) and 5-arginine (C5R) tags unexpectedly increased the IgG level of BPTI-19A by 240- and 73-fold, respectively, suggesting that non-oligomerizing SCP-tags may provide a novel method for increasing the immunogenicity of a protein in a highly specific manner.


Assuntos
Imunidade Adaptativa/genética , Peptídeos/imunologia , Engenharia de Proteínas/métodos , Aprotinina/genética , Aprotinina/imunologia , Modelos Moleculares , Mutagênese Sítio-Dirigida/métodos , Conformação Proteica , Estrutura Secundária de Proteína/genética , Proteínas/genética , Solubilidade/efeitos dos fármacos
3.
Int J Mol Med ; 37(5): 1310-6, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27035617

RESUMO

Urokinase-type plasminogen activator (uPA) acts by breaking down the basement membrane and is involved in cell proliferation, migration and invasion. These actions are mediated by binding to the uPA receptor (uPAR) via its growth factor domain (GFD). The present study evaluated the effects of uPAg-KPI, a fusion protein of uPA-GFD and a kunitz protease inhibitor (KPI) domain that is present in the amyloid ß-protein precursor. Using SKOV-3 cells, an ovarian cancer cell line, we examined cell viability, migration, invasion and also protein expression. Furthermore, we examined wound healing, and migration and invasion using a Transwell assay. Our data showed that uPAg-KPI treatment reduced the viability of ovarian cancer SKOV-3 cells in both a concentration and time-dependent manner by arresting tumor cells at G1/G0 phase of the cell cycle. The IC50 of uPAg-KPI was 0.5 µg/µl after 48 h treatment. At this concentration, uPAg-KPI also inhibited tumor cell colony formation, wound closure, as well as cell migration and invasion capacity. At the protein level, western blot analysis demonstrated that uPAg-KPI exerted no significant effect on the expression of total extracellular signal-regulated kinase (ERK)1/ERK2 and AKT, whereas it suppressed levels of phosphorylated ERK1/ERK2 and AKT. Thus, we suggest that this novel uPAg-KPI fusion protein reduced cell viability, colony formation, wound healing and the invasive ability of human ovarian cancer SKOV-3 cells in vitro by regulating ERK and AKT signaling. Further studies using other cell lines will confirm these findings.


Assuntos
Aprotinina/metabolismo , Neoplasias Ovarianas/metabolismo , Proteínas Recombinantes de Fusão , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Aprotinina/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Feminino , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Neoplasias Ovarianas/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Transdução de Sinais/efeitos dos fármacos , Ativador de Plasminogênio Tipo Uroquinase/genética
4.
Oncol Rep ; 34(3): 1337-44, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26166362

RESUMO

The aim of the present study was to develop a new therapeutic drug to improve the prognosis of ovarian cancer patients. Human urokinase-type plasminogen activator (uPA)17-34-kunitz-type protease inhibitor (KPI) eukaryotic expression vector was constructed and recombinant human uPA17-34-KPI (rhuPA17-34-KPI) in P. pastoris was expressed. In the present study, the DNA sequences that encode uPA 17-34 amino acids were created according to the native amino acids sequence and inserted into the KPI-pPICZαC vector, which was constructed. Then, uPA17­34-KPI-pPICZαC was transformed into P. pastoris X-33, and rhuPA17-34-KPI was expressed by induction of methanol. The bioactivities of a recombinant fusion protein were detected with trypsin inhibition analysis, and the inhibitory effects on the growth of ovarian cancer cells were identified using the TUNEL assay, in vitro wound­healing assay and Matrigel model analysis. The results of the DNA sequence analysis of the recombinant vector uPA17-34-KPI­pPICZα demonstrated that the DNA­encoding human uPA 17-34 amino acids, 285-288 amino acids of amyloid precursor protein (APP) and 1-57 amino acids of KPI were correctly inserted into the pPICZαC vector. Following induction by methonal, the fusion protein with a molecular weight of 8.8 kDa was observed using SDS-PAGE and western blot analysis. RhuPA17-34-KPI was expressed in P. pastoris with a yield of 50 mg/l in a 50-ml tube. The recombinant fusion protein was able to inhibit the activity of trypsin, inhibit growth and induce apoptosis of SKOV3 cells, and inhibit the invasion and metastasis of ovarian cancer cells. By considering uPA17-34 amino acid specific binding uPAR as the targeted part of fusion protein and utilizing the serine protease inhibitor activity of KPI, it was found that the recombinant fusion protein uPA17-34-KPI inhibited the invasion and metastasis of ovarian tumors, and may therefore be regarded as effective in targeted treatment.


Assuntos
Aprotinina/genética , Neoplasias Ovarianas/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes/genética , Ativador de Plasminogênio Tipo Uroquinase/genética , Sequência de Aminoácidos/genética , Apoptose/efeitos dos fármacos , Apoptose/genética , Aprotinina/administração & dosagem , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Colágeno , Combinação de Medicamentos , Feminino , Regulação Neoplásica da Expressão Gênica , Vetores Genéticos , Humanos , Laminina , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/terapia , Proteoglicanas , Receptores de Ativador de Plasminogênio Tipo Uroquinase/genética , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes/administração & dosagem , Ativador de Plasminogênio Tipo Uroquinase/administração & dosagem
5.
J Biol Chem ; 289(47): 32783-97, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25301953

RESUMO

Mesotrypsin is an isoform of trypsin that is uniquely resistant to polypeptide trypsin inhibitors and can cleave some inhibitors rapidly. Previous studies have shown that the amyloid precursor protein Kunitz protease inhibitor domain (APPI) is a specific substrate of mesotrypsin and that stabilization of the APPI cleavage site in a canonical conformation contributes to recognition by mesotrypsin. We hypothesized that other proteins possessing potential cleavage sites stabilized in a similar conformation might also be mesotrypsin substrates. Here we evaluated a series of candidate substrates, including human Kunitz protease inhibitor domains from amyloid precursor-like protein 2 (APLP2), bikunin, hepatocyte growth factor activator inhibitor type 2 (HAI2), tissue factor pathway inhibitor-1 (TFPI1), and tissue factor pathway inhibitor-2 (TFPI2), as well as E-selectin, an unrelated protein possessing a potential cleavage site displaying canonical conformation. We find that Kunitz domains within APLP2, bikunin, and HAI2 are cleaved by mesotrypsin with kinetic profiles of specific substrates. TFPI1 and TFPI2 Kunitz domains are cleaved less efficiently by mesotrypsin, and E-selectin is not cleaved at the anticipated site. Cocrystal structures of mesotrypsin with HAI2 and bikunin Kunitz domains reveal the mode of mesotrypsin interaction with its canonical substrates. Our data suggest that major determinants of mesotrypsin substrate specificity include sequence preferences at the P1 and P'2 positions along with conformational stabilization of the cleavage site in the canonical conformation. Mesotrypsin up-regulation has been implicated previously in cancer progression, and proteolytic clearance of Kunitz protease inhibitors offers potential mechanisms by which mesotrypsin may mediate pathological effects in cancer.


Assuntos
Inibidores de Proteases/química , Conformação Proteica , Estrutura Terciária de Proteína , Tripsina/química , alfa-Globulinas/química , alfa-Globulinas/genética , alfa-Globulinas/metabolismo , Sequência de Aminoácidos , Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Aprotinina/química , Aprotinina/genética , Aprotinina/metabolismo , Sítios de Ligação/genética , Cristalografia por Raios X , Selectina E/química , Selectina E/genética , Selectina E/metabolismo , Glicoproteínas/química , Glicoproteínas/genética , Glicoproteínas/metabolismo , Humanos , Cinética , Lipoproteínas/química , Lipoproteínas/genética , Lipoproteínas/metabolismo , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Inibidores de Proteases/metabolismo , Ligação Proteica , Especificidade por Substrato , Tripsina/genética , Tripsina/metabolismo
6.
PLoS One ; 8(1): e53343, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23308198

RESUMO

Kunitz-type serine protease inhibitors are involved in various physiological processes, such as ion channel blocking, blood coagulation, fibrinolysis, and inflammation. While spider-derived Kunitz-type proteins show activity in trypsin or chymotrypsin inhibition and K(+) channel blocking, no additional role for these proteins has been elucidated. In this study, we identified the first spider (Araneus ventricosus) Kunitz-type serine protease inhibitor (AvKTI) that acts as a plasmin inhibitor and an elastase inhibitor. AvKTI possesses a Kunitz domain consisting of a 57-amino-acid mature peptide that displays features consistent with Kunitz-type inhibitors, including six conserved cysteine residues and a P1 lysine residue. Recombinant AvKTI, expressed in baculovirus-infected insect cells, showed a dual inhibitory activity against trypsin (K(i) 7.34 nM) and chymotrypsin (K(i) 37.75 nM), defining a role for AvKTI as a spider-derived Kunitz-type serine protease inhibitor. Additionally, AvKTI showed no detectable inhibitory effects on factor Xa, thrombin, or tissue plasminogen activator; however, AvKTI inhibited plasmin (K(i) 4.89 nM) and neutrophil elastase (K(i) 169.07 nM), indicating that it acts as an antifibrinolytic factor and an antielastolytic factor. These findings constitute molecular evidence that AvKTI acts as a plasmin inhibitor and an elastase inhibitor and also provide a novel view of the functions of a spider-derived Kunitz-type serine protease inhibitor.


Assuntos
Antifibrinolíticos/química , Aprotinina/química , Proteínas de Artrópodes/química , Fibrinolisina/antagonistas & inibidores , Elastase Pancreática/antagonistas & inibidores , Proteínas Recombinantes/química , Inibidores de Serina Proteinase/química , Aranhas/química , Inibidores da Tripsina/química , Sequência de Aminoácidos , Animais , Antifibrinolíticos/metabolismo , Aprotinina/genética , Proteínas de Artrópodes/genética , Baculoviridae/genética , Quimotripsina/antagonistas & inibidores , Quimotripsina/metabolismo , Sequência Conservada , Fator Xa/química , Fibrinolisina/química , Expressão Gênica , Dados de Sequência Molecular , Elastase Pancreática/química , Estrutura Terciária de Proteína , Proteínas Recombinantes/genética , Alinhamento de Sequência , Inibidores de Serina Proteinase/genética , Aranhas/metabolismo , Trombina/química , Ativador de Plasminogênio Tecidual/química , Tripsina/metabolismo , Inibidores da Tripsina/genética
7.
J Biol Chem ; 287(19): 15427-38, 2012 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-22411994

RESUMO

This study describes a novel bifunctional metallocarboxypeptidase and serine protease inhibitor (SmCI) isolated from the tentacle crown of the annelid Sabellastarte magnifica. SmCI is a 165-residue glycoprotein with a molecular mass of 19.69 kDa (mass spectrometry) and 18 cysteine residues forming nine disulfide bonds. Its cDNA was cloned and sequenced by RT-PCR and nested PCR using degenerated oligonucleotides. Employing this information along with data derived from automatic Edman degradation of peptide fragments, the SmCI sequence was fully characterized, indicating the presence of three bovine pancreatic trypsin inhibitor/Kunitz domains and its high homology with other Kunitz serine protease inhibitors. Enzyme kinetics and structural analyses revealed SmCI to be an inhibitor of human and bovine pancreatic metallocarboxypeptidases of the A-type (but not B-type), with nanomolar K(i) values. SmCI is also capable of inhibiting bovine pancreatic trypsin, chymotrypsin, and porcine pancreatic elastase in varying measures. When the inhibitor and its nonglycosylated form (SmCI N23A mutant) were overproduced recombinantly in a Pichia pastoris system, they displayed the dual inhibitory properties of the natural form. Similarly, two bi-domain forms of the inhibitor (recombinant rSmCI D1-D2 and rSmCI D2-D3) as well as its C-terminal domain (rSmCI-D3) were also overproduced. Of these fragments, only the rSmCI D1-D2 bi-domain retained inhibition of metallocarboxypeptidase A but only partially, indicating that the whole tri-domain structure is required for such capability in full. SmCI is the first proteinaceous inhibitor of metallocarboxypeptidases able to act as well on another mechanistic class of proteases (serine-type) and is the first of this kind identified in nature.


Assuntos
Carboxipeptidases/metabolismo , Poliquetos/genética , Serina Proteases/metabolismo , Inibidores de Serina Proteinase/genética , Sequência de Aminoácidos , Animais , Aprotinina/química , Aprotinina/genética , Aprotinina/farmacologia , Sequência de Bases , Sítios de Ligação/genética , Biocatálise/efeitos dos fármacos , Carboxipeptidases/antagonistas & inibidores , Bovinos , Clonagem Molecular , Relação Dose-Resposta a Droga , Humanos , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Peso Molecular , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Análise de Sequência de DNA , Inibidores de Serina Proteinase/química , Inibidores de Serina Proteinase/farmacologia
8.
BMC Evol Biol ; 12: 4, 2012 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-22244187

RESUMO

BACKGROUND: Recent studies of the tick saliva transcriptome have revealed the profound role of salivary proteins in blood feeding. Kunitz/BPTI proteins are abundant in the salivary glands of ticks and perform multiple functions in blood feeding, such as inhibiting blood coagulation, regulating host blood supply and disrupting host angiogenesis. However, Kunitz/BPTI proteins in soft and hard ticks have different functions and molecular mechanisms. How these differences emerged and whether they are associated with the evolution of long-term blood feeding in hard ticks remain unknown. RESULTS: In this study, the evolution, expansion and expression of Kunitz/BPTI family in Ixodes scapularis were investigated. Single- and multi-domain Kunitz/BPTI proteins have similar gene structures. Single-domain proteins were classified into three groups (groups I, II and III) based on their cysteine patterns. Group I represents the ancestral branch of the Kunitz/BPTI family, and members of this group function as serine protease inhibitors. The group I domain was used as a module to create multi-domain proteins in hard ticks after the split between hard and soft ticks. However, groups II and III, which evolved from group I, are only present and expanded in the genus Ixodes. These lineage-specific expanded genes exhibit significantly higher expression during long-term blood feeding in Ixodes scapularis. Interestingly, functional site analysis suggested that group II proteins lost the ability to inhibit serine proteases and evolved a new function of modulating ion channels. Finally, evolutionary analyses revealed that the expansion and diversification of the Kunitz/BPTI family in the genus Ixodes were driven by positive selection. CONCLUSIONS: These results suggest that the differences in the Kunitz/BPTI family between soft and hard ticks may be linked to the evolution of long-term blood feeding in hard ticks. In Ixodes, the lineage-specific expanded genes (Group II and III) lost the ancient function of inhibiting serine proteases and evolved new functions to adapt to long-term blood feeding. Therefore, these genes may play a profound role in the long-term blood feeding of hard ticks. Based our analysis, we propose that the six genes identified in our study may be candidate target genes for tick control.


Assuntos
Aprotinina/genética , Proteínas de Artrópodes/genética , Evolução Molecular , Ixodes/genética , Proteínas e Peptídeos Salivares/genética , Carrapatos/genética , Sequência de Aminoácidos , Animais , Aprotinina/química , Proteínas de Artrópodes/química , Sangue , Comportamento Alimentar , Ixodes/fisiologia , Dados de Sequência Molecular , Família Multigênica , Estrutura Terciária de Proteína , Proteínas e Peptídeos Salivares/química , Alinhamento de Sequência , Carrapatos/classificação , Transcriptoma
9.
FEMS Yeast Res ; 11(7): 575-86, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22093684

RESUMO

Pichia pastoris is a highly successful system for the large-scale expression of heterologous proteins, with the added capability of performing most eukaryotic post-translational modifications. However, this system has one significant disadvantage - frequent proteolytic degradation by P. pastoris proteases of heterologously expressed proteins. Several methods have been proposed to address this problem, but none has proven fully effective. We tested the effectiveness of a broad specificity protease inhibitor to control proteolysis. A recombinant variant of the BPTI-Kunitz protease inhibitor ShPI-1 isolated from the sea anemone Stichodactyla helianthus, was expressed in P. pastoris. The recombinant inhibitor (rShPI-1A), containing four additional amino acids (EAEA) at the N-terminus, was folded similarly to the natural inhibitor, as assessed by circular dichroism. rShPI-1A had broad protease specificity, inhibiting serine, aspartic, and cysteine proteases similarly to the natural inhibitor. rShPI-1A protected a model protein, recombinant human miniproinsulin (rhMPI), from proteolytic degradation during expression in P. pastoris. The addition of purified rShPI-1A at the beginning of the induction phase significantly protected rhMPI from proteolysis in culture broth. The results suggest that a broad specificity protease inhibitor such as rShPI-1A can be used to improve the yield of recombinant proteins secreted from P. pastoris.


Assuntos
Aprotinina/biossíntese , Expressão Gênica , Pichia/metabolismo , Proinsulina/metabolismo , Proteínas Recombinantes/biossíntese , Animais , Aprotinina/genética , Biotecnologia/métodos , Humanos , Engenharia Metabólica , Pichia/genética , Proinsulina/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Anêmonas-do-Mar/genética
10.
BMC Biochem ; 12: 55, 2011 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-21988899

RESUMO

BACKGROUND: We have previously identified a locus on human chromosome 20q13.1, encompassing related genes of postulated WFDC-type protease inhibitors and semen coagulum proteins. Three of the genes with WFDC motif also coded for the Kunitz-type protease inhibitor motif. In this report, we have reinvestigated the locus for homologous genes encoding Kunitz motif only. The identified genes have been analyzed with respect to structure, expression and function. RESULTS: We identified three novel genes; SPINT3, SPINT4 and SPINT5, and the structure of their transcripts were determined by sequencing of DNA generated by rapid amplification of cDNA ends. Each gene encodes a Kunitz domain preceded by a typical signal peptide sequence, which indicates that the proteins of 7.6, 8.7, and 9.7 kDa are secreted. Analysis of transcripts in 26 tissues showed that the genes predominantly are expressed in the epididymis. The recombinantly produced proteins could not inhibit the amidolytic activity of trypsin, chymotrypsin, plasmin, thrombin, coagulation factor Xa, elastase, urokinase and prostate specific antigen, whereas similarly made bovine pancreatic trypsin inhibitor (BPTI) had the same bioactivity as the protein isolated from bovine pancreas. CONCLUSIONS: The similar organization, chromosomal location and site of expression, suggests that the novel genes are homologous with the genes of WFDC-type protease inhibitors and semen coagulum proteins, despite the lack of similarity in primary structure of their protein products. Their restricted expression to the epididymis suggests that they could be important for male reproduction. The recombinantly produced proteins are presumably bioactive, as demonstrated with similarly made BPTI, but may have a narrower spectrum of inhibition, as indicated by the lacking activity against eight proteases with differing specificity. Another possibility is that they have lost the protease inhibiting properties, which is typical of Kunitz domains, in favor of hitherto unknown functions.


Assuntos
Aprotinina/química , Aprotinina/genética , Epididimo/metabolismo , Regulação Enzimológica da Expressão Gênica , Inibidores de Proteases/metabolismo , Sêmen/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Aprotinina/metabolismo , Sequência de Bases , Bovinos , Cromossomos Humanos Par 20/genética , Humanos , Masculino , Dados de Sequência Molecular , Estrutura Terciária de Proteína , RNA Mensageiro/genética , Sêmen/enzimologia , Homologia de Sequência do Ácido Nucleico
11.
Biochemistry ; 50(46): 10052-60, 2011 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-22014283

RESUMO

Trypsin-like activities are present within the endocytic pathway and allow cells to inactivate a fraction of incoming toxins, such as Pseudomonas exotoxin (PE), that require endocytic uptake before reaching the cytosol to inactivate protein synthesis. PE is a favorite toxin for building immunotoxins. The latter are promising molecules to fight cancer or transplant rejection, and producing more active toxins is a key challenge. More broadly, increasing protein stability is a potentially useful approach to improve the efficiency of therapeutic proteins. We report here that fusing an antiproteasic peptide (bovine pancreatic trypsin inhibitor, BPTI) to PE increases its toxicity to human cancer cell lines by 20-40-fold. Confocal microscopic examination of toxin endocytosis, digestion, and immunoprecipitation experiments showed that the fused antiproteasic peptide specifically protects PE from trypsin-like activities. Hence, the attached BPTI acts as a bodyguard for the toxin within the endocytic pathway. Moreover, it increased the PE elimination half-time in mice by 70%, indicating that the fused BPTI stabilizes the toxin in vivo. This BPTI-fusion approach may be useful for protecting other circulating or internalized proteins of therapeutic interest from premature degradation.


Assuntos
Antineoplásicos/farmacologia , Aprotinina/farmacologia , Exotoxinas/farmacologia , Neoplasias/tratamento farmacológico , Pseudomonas/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Animais , Antineoplásicos/metabolismo , Antineoplásicos/farmacocinética , Aprotinina/genética , Aprotinina/metabolismo , Aprotinina/farmacocinética , Linhagem Celular Tumoral , Endossomos/metabolismo , Exotoxinas/genética , Exotoxinas/metabolismo , Exotoxinas/farmacocinética , Feminino , Furina/metabolismo , Humanos , Camundongos , Estabilidade Proteica , Pseudomonas/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/farmacocinética , Inibidores da Tripsina/genética , Inibidores da Tripsina/metabolismo , Inibidores da Tripsina/farmacocinética , Inibidores da Tripsina/farmacologia
12.
Biochem J ; 440(1): 95-105, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21806544

RESUMO

PRSS3/mesotrypsin is an atypical isoform of trypsin, the up-regulation of which has been implicated in promoting tumour progression. Mesotrypsin inhibitors could potentially provide valuable research tools and novel therapeutics, but small-molecule trypsin inhibitors have low affinity and little selectivity, whereas protein trypsin inhibitors bind poorly and are rapidly degraded by mesotrypsin. In the present study, we use mutagenesis of a mesotrypsin substrate, APPI (amyloid precursor protein Kunitz protease inhibitor domain), and of a poor mesotrypsin inhibitor, BPTI (bovine pancreatic trypsin inhibitor), to dissect mesotrypsin specificity at the key P(2)' position. We find that bulky and charged residues strongly disfavour binding, whereas acidic residues facilitate catalysis. Crystal structures of mesotrypsin complexes with BPTI variants provide structural insights into mesotrypsin specificity and inhibition. Through optimization of the P(1) and P(2)' residues of BPTI, we generate a stable high-affinity mesotrypsin inhibitor with an equilibrium binding constant K(i) of 5.9 nM, a >2000-fold improvement in affinity over native BPTI. Using this engineered inhibitor, we demonstrate the efficacy of pharmacological inhibition of mesotrypsin in assays of breast cancer cell malignant growth and pancreatic cancer cell invasion. Although further improvements in inhibitor selectivity will be important before clinical potential can be realized, the results of the present study support the feasibility of engineering protein protease inhibitors of mesotrypsin and highlight their therapeutic potential.


Assuntos
Precursor de Proteína beta-Amiloide/genética , Antineoplásicos/química , Inibidores da Tripsina/farmacologia , Tripsina/química , Precursor de Proteína beta-Amiloide/metabolismo , Antineoplásicos/metabolismo , Aprotinina/genética , Aprotinina/metabolismo , Neoplasias da Mama/tratamento farmacológico , Cristalografia por Raios X , Descoberta de Drogas , Feminino , Humanos , Invasividade Neoplásica/prevenção & controle , Neoplasias Pancreáticas/tratamento farmacológico , Engenharia de Proteínas/métodos , Especificidade por Substrato , Termodinâmica , Tripsina/genética , Tripsina/metabolismo , Inibidores da Tripsina/genética , Células Tumorais Cultivadas
13.
J Pharmacol Exp Ther ; 331(3): 940-5, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19776384

RESUMO

Bovine aprotinin, a reversible inhibitor of plasmin and kallikrein, has been clinically approved for over two decades to prevent perioperative blood loss during cardiac surgery. However, because of postoperative renal dysfunction in thousands of these patients, aprotinin was voluntarily withdrawn from the market. Our earlier studies indicated that a R24K mutant of the first Kunitz-type domain of human tissue factor pathway inhibitor-2 (R24K KD1) exhibited plasmin inhibitory activity equivalent to aprotinin in vitro. In this study, we compared the effects on renal function after infusion of aprotinin and recombinant R24K KD1 in chronically instrumented, conscious rats. Aprotinin-infused rats exhibited statistically significant decreases in glomerular filtration rate and effective renal plasma flow relative to rats infused with phosphate-buffered saline (PBS) or R24K KD1 dissolved in PBS. In addition, aprotinin-treated rats exhibited marked increases in serum creatinine, blood urea nitrogen, urinary protein, and effective renal vascular resistance, whereas these renal parameters remained essentially unchanged in vehicle and R24K KD1-treated rats for a one-week period. Moreover, with use of a highly sensitive apoptosis detection assay, a significant increase in the rate of early and late apoptotic events in renal tubule cells occurred in aprotinin-treated rats relative to R24K KD1-treated rats. In addition, histological examination of the rat kidney revealed markedly higher levels of protein reabsorption droplets in the aprotinin-infused rats. Our data collectively provide suggestive evidence that R24K KD1 does not induce the renal dysfunction associated with aprotinin, and may be an effective clinical alternative to aprotinin as an antifibrinolytic agent in cardiac surgery.


Assuntos
Aprotinina/efeitos adversos , Glicoproteínas/efeitos adversos , Rim/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Aprotinina/administração & dosagem , Aprotinina/genética , Bovinos , Escherichia coli/genética , Feminino , Glicoproteínas/administração & dosagem , Glicoproteínas/genética , Humanos , Rim/patologia , Testes de Função Renal , Microscopia Confocal , Mutação , Ratos , Ratos Long-Evans , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/efeitos adversos , Proteínas Recombinantes/genética , Transfecção
14.
J Mol Biol ; 389(4): 734-47, 2009 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-19394347

RESUMO

Ra-KLP, a 75 amino acid protein secreted by the salivary gland of the brown ear tick Rhipicephalus appendiculatus has a sequence resembling those of Kunitz/BPTI proteins. We report the detection, purification and characterization of the function of Ra-KLP. In addition, determination of the three-dimensional crystal structure of Ra-KLP at 1.6 A resolution using sulphur single-wavelength anomalous dispersion reveals that much of the loop structure of classical Kunitz domains, including the protruding protease-binding loop, has been replaced by beta-strands. Even more unusually, the N-terminal portion of the polypeptide chain is pinned to the "Kunitz head" by two disulphide bridges not found in classical Kunitz/BPTI proteins. The disulphide bond pattern has been further altered by the loss of the bridge that normally stabilizes the protease-binding loop. Consistent with the conversion of this loop into a beta-strand, Ra-KLP shows no significant anti-protease activity; however, it activates maxiK channels in an in vitro system, suggesting a potential mechanism for regulating host blood supply during feeding.


Assuntos
Aprotinina/química , Canais Iônicos/metabolismo , Estrutura Terciária de Proteína , Rhipicephalus/química , Saliva/química , Sequência de Aminoácidos , Animais , Aprotinina/classificação , Aprotinina/genética , Aprotinina/metabolismo , Linhagem Celular , Cristalografia por Raios X , Dimerização , Evolução Molecular , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Técnicas de Patch-Clamp , Filogenia , Estrutura Secundária de Proteína , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
15.
Protein Expr Purif ; 66(1): 22-7, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19233283

RESUMO

Aprotinin is a polypeptide composed of 58 amino acid residues and has a molecular weight of 6512Da. The 58 amino acid residues are arranged in a single polypeptide chain, which is cross-linked by three disulfide bridges and folded to form a pear-shaped molecule. To express recombinant aprotinin in Saccharomyces cerevisiae, a synthetic gene encoding aprotinin was constructed and fused in frame with the pre-sequence of the S. cerevisiae MATalpha1 gene at the cleavage site of signal peptidase. The expression of aprotinin in S. cerevisiae was carried out using the PRB1 promoter. Aprotinin was secreted as a biologically active protein at a concentration of 426 mg/L into high cell density fermentation medium of 70.9 g/L cell dry weight. The purification process consisted of only three major steps and provided consistent yields of recombinant aprotinin using gel filtration high-pressure liquid chromatographic (HPLC) with a purity level higher than 99% and was free of non-aprotinin-related impurities. The recombinant aprotinin had the same characteristics as bovine aprotinin in a number of analytical methods, including alpha2-plasmin inhibition assay, amino acid composition, N-terminal amino acid sequence determination, and mass spectrum analysis. With further optimization of the purification process and culture conditions for high-yield production by S. cerevisiae, this source of recombinant aprotinin may be a promising approach for the commercial manufacture of aprotinin for pharmaceutical use instead of bovine aprotinin.


Assuntos
Aprotinina/isolamento & purificação , Aprotinina/metabolismo , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae , Sequência de Aminoácidos , Animais , Aprotinina/genética , Sequência de Bases , Bovinos , Regulação Fúngica da Expressão Gênica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Dados de Sequência Molecular , Proteínas Recombinantes/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência
16.
Plant Cell Rep ; 28(2): 175-84, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18985354

RESUMO

The inhibitory activity of bovine pancreatic trypsin inhibitor (aprotinin), a natural polypeptide and a proteinase inhibitor, was demonstrated on gut proteinases of three lepidopteran borers of sugarcane using commercially available aprotinin. A synthetic gene coding for aprotinin, designed and codon optimized for better expression in plant system (Shantaram 1999), was transferred to two sugarcane cultivars namely CoC 92061 and Co 86032 through particle bombardment. Aprotinin gene expression was driven by maize ubiquitin promoter and the plant selection marker used was hygromycin resistance. The integration, expression and functionality of the transgene was confirmed by Southern, Western and insect bioassay, respectively. Southern analysis showed two to four integration sites of the transgene in the transformed plants. Independent transgenic events showed varied levels of transgene expression resulting in different levels (0.16-0.50%) of aprotinin. In in vivo bioassay studies, larvae of top borer Scirpophaga excerptalis Walker (Lepidoptera: Pyralidae) fed on transgenics showed significant reduction in larval weight which indicated impairment of their development. Results of this study show the possibility of deploying aprotinin gene for the development of transgenic sugarcane cultivars resistant to top borer.


Assuntos
Aprotinina/metabolismo , Aprotinina/fisiologia , Lepidópteros/crescimento & desenvolvimento , Saccharum/genética , Saccharum/parasitologia , Animais , Aprotinina/genética , Southern Blotting , Western Blotting , Modelos Genéticos , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/parasitologia , Reação em Cadeia da Polimerase
17.
Proteomics ; 9(2): 233-41, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19086095

RESUMO

We describe a SELDI-TOF MS procedure for the rapid detection and quantitation of low-molecular-weight recombinant proteins expressed in plants. Transgenic lines of potato (Solanum tuberosum L.) expressing the clinically useful protein bovine aprotinin or the cysteine protease inhibitor corn cystatin II were generated by Agrobacterium tumefaciens-mediated transformation, and then used as test material for the analyses. Real-time RT-PCR amplifications and detection of the recombinant proteins by immunoblotting were first conducted for transformed potato lines accumulating the proteins in different cell compartments. Both proteins were found at varying levels in leaves, depending on their final cellular destination and transgene expression rate. These conclusions drawn from standard immunodetection assays were easily confirmed by SELDI-TOF MS comparative profiling, after immobilizing the leaf proteins of control and transformed lines on protein biochips for weak cationic exchange. This procedure, carried out in less than 2 h, allows for the rapid comparison of recombinant protein levels in transgenic plant lines. The molecular weight of immobilized proteins can also be determined directly from the MS spectra, thus providing a simple way to assess the structural integrity and homogeneity of recombinant proteins in planta, and to identify the most suitable cellular compartments for their heterologous production.


Assuntos
Plantas Geneticamente Modificadas/metabolismo , Proteínas Recombinantes/análise , Proteínas Recombinantes/genética , Solanum tuberosum/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Sequência de Aminoácidos , Animais , Aprotinina/análise , Aprotinina/genética , Aprotinina/metabolismo , Bovinos , Cistatinas/análise , Cistatinas/genética , Cistatinas/metabolismo , Retículo Endoplasmático/metabolismo , Expressão Gênica , Análise dos Mínimos Quadrados , Dados de Sequência Molecular , Folhas de Planta/química , Proteínas de Plantas/análise , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Recombinantes/metabolismo
18.
J Mol Biol ; 382(4): 998-1013, 2008 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-18692070

RESUMO

The disulfide bond between Cys14 and Cys38 of bovine pancreatic trypsin inhibitor lies on the surface of the inhibitor and forms part of the protease-binding region. The functional properties of three variants lacking this disulfide, with one or both of the Cys residues replaced with Ser, were examined, and X-ray crystal structures of the complexes with bovine trypsin were determined and refined to the 1.58-A resolution limit. The crystal structure of the complex formed with the mutant with both Cys residues replaced was nearly identical with that of the complex containing the wild-type protein, with the Ser oxygen atoms positioned to replace the disulfide bond with a hydrogen bond. The two structures of the complexes with single replacements displayed small local perturbations with alternate conformations of the Ser side chains. Despite the absence of the disulfide bond, the crystallographic temperature factors show no evidence of increased flexibility in the complexes with the mutant inhibitors. All three of the variants were cleaved by trypsin more rapidly than the wild-type inhibitor, by as much as 10,000-fold, indicating that the covalent constraint normally imposed by the disulfide contributes to the remarkable resistance to hydrolysis displayed by the wild-type protein. The rates of hydrolysis display an unusual dependence on pH over the range of 3.5-8.0, decreasing at the more alkaline values, as compared with the increased hydrolysis rates for normal substrates under these conditions. These observations can be accounted for by a model for inhibition in which an acyl-enzyme intermediate forms at a significant rate but is rapidly converted back to the enzyme-inhibitor complex by nucleophilic attack by the newly created amino group. The model suggests that a lack of flexibility in the acyl-enzyme intermediate, rather than the enzyme-inhibitor complex, may be a key factor in the ability of bovine pancreatic trypsin inhibitor and similar inhibitors to resist hydrolysis.


Assuntos
Aprotinina/química , Aprotinina/metabolismo , Cisteína , Dissulfetos/química , Estrutura Terciária de Proteína , Tripsina/química , Sequência de Aminoácidos , Animais , Aprotinina/genética , Sítios de Ligação , Bovinos , Cristalografia por Raios X , Cisteína/química , Cisteína/metabolismo , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Hidrólise , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Temperatura , Termodinâmica , Tripsina/genética , Tripsina/metabolismo
19.
Plant Biotechnol J ; 6(3): 309-20, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18266824

RESUMO

Aprotinin, a bovine protease inhibitor of important therapeutic value, was expressed in tobacco plastid transformants. This disulphide bond-containing protein was targeted to the lumen of thylakoids using signal peptides derived from nuclear genes which encode lumenal proteins. Translocation was attempted via either the general secretion (Sec) or the twin-arginine translocation (Tat) pathway. In both cases, this strategy allowed the production of genuine aprotinin with its N-terminal arginine residue. The recombinant protease inhibitor was efficiently secreted within the lumen of thylakoids, accumulated in older leaves and was bound to trypsin, suggesting that the three disulphide bonds of aprotinin are correctly folded and paired in this chloroplast compartment. Mass spectrometric analysis indicated that translocation via the Sec pathway, unlike the Tat pathway, led predominantly to an oxidized protein. Translocation via the Tat pathway was linked to a slightly decreased growth rate, a pale-green leaf phenotype and supplementary expression products associated with the thylakoids.


Assuntos
Aprotinina/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Nicotiana/citologia , Nicotiana/genética , Inibidores de Proteases/metabolismo , Sequência de Aminoácidos , Aprotinina/genética , Regulação da Expressão Gênica de Plantas/genética , Engenharia Genética , Folhas de Planta/citologia , Plantas Geneticamente Modificadas , Transporte Proteico , Proteínas Recombinantes , Tilacoides
20.
Mol Plant ; 1(3): 482-95, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-19825555

RESUMO

Programmed cell death (PCD) is a central regulatory process in both plant development and in plant responses to pathogens. PCD requires a coordinate activation of pro-apoptotic factors such as proteases and suppressors inhibiting and modulating these processes. In plants, various caspase-like cysteine proteases as well as serine proteases have been implicated in PCD. Here, we show that a serine protease (Kunitz trypsin) inhibitor (KTI1) of Arabidopsis acts as a functional KTI when produced in bacteria and in planta. Expression of AtKTI1 is induced late in response to bacterial and fungal elicitors and to salicylic acid. RNAi silencing of the AtKTI1 gene results in enhanced lesion development after infiltration of leaf tissue with the PCD-eliciting fungal toxin fumonisin B1 (FB1) or the avirulent bacterial pathogen Pseudomonas syringae pv tomato DC3000 carrying avrB (Pst avrB). Overexpression of AtKTI1 results in reduced lesion development after Pst avrB and FB1 infiltration. Interestingly, RNAi silencing of AtKTI1 leads to enhanced resistance to the virulent pathogen Erwinia carotovora subsp. carotovora SCC1, while overexpression of AtKTI1 leads to higher susceptibility towards this pathogen. Together, these data indicate that AtKTI1 is involved in modulating PCD in plant-pathogen interactions.


Assuntos
Adenosina Trifosfatases/genética , Aprotinina/genética , Aprotinina/farmacologia , Proteínas de Arabidopsis/genética , Arabidopsis/efeitos dos fármacos , Arabidopsis/microbiologia , Morte Celular/efeitos dos fármacos , Fumonisinas/toxicidade , Micotoxinas/toxicidade , Adenosina Trifosfatases/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Aprotinina/química , Arabidopsis/parasitologia , Proteínas de Arabidopsis/efeitos dos fármacos , Fumonisinas/antagonistas & inibidores , Inativação Gênica , Imunidade Inata/genética , Katanina , Dados de Sequência Molecular , Micotoxinas/antagonistas & inibidores , Inibidores de Proteases/metabolismo , Inibidores de Proteases/farmacologia , Interferência de RNA , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Spodoptera/patogenicidade , Transcrição Gênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA