Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nature ; 627(8003): 407-415, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38383779

RESUMO

Neuromyelitis optica is a paradigmatic autoimmune disease of the central nervous system, in which the water-channel protein AQP4 is the target antigen1. The immunopathology in neuromyelitis optica is largely driven by autoantibodies to AQP42. However, the T cell response that is required for the generation of these anti-AQP4 antibodies is not well understood. Here we show that B cells endogenously express AQP4 in response to activation with anti-CD40 and IL-21 and are able to present their endogenous AQP4 to T cells with an AQP4-specific T cell receptor (TCR). A population of thymic B cells emulates a CD40-stimulated B cell transcriptome, including AQP4 (in mice and humans), and efficiently purges the thymic TCR repertoire of AQP4-reactive clones. Genetic ablation of Aqp4 in B cells rescues AQP4-specific TCRs despite sufficient expression of AQP4 in medullary thymic epithelial cells, and B-cell-conditional AQP4-deficient mice are fully competent to raise AQP4-specific antibodies in productive germinal-centre responses. Thus, the negative selection of AQP4-specific thymocytes is dependent on the expression and presentation of AQP4 by thymic B cells. As AQP4 is expressed in B cells in a CD40-dependent (but not AIRE-dependent) manner, we propose that thymic B cells might tolerize against a group of germinal-centre-associated antigens, including disease-relevant autoantigens such as AQP4.


Assuntos
Aquaporina 4 , Autoanticorpos , Autoantígenos , Linfócitos B , Tolerância Imunológica , Neuromielite Óptica , Animais , Humanos , Camundongos , Proteína AIRE , Aquaporina 4/deficiência , Aquaporina 4/genética , Aquaporina 4/imunologia , Aquaporina 4/metabolismo , Autoanticorpos/imunologia , Autoantígenos/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Antígenos CD40/imunologia , Centro Germinativo/citologia , Centro Germinativo/imunologia , Neuromielite Óptica/imunologia , Neuromielite Óptica/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia , Timo/citologia , Timo/imunologia , Células Epiteliais da Tireoide/imunologia , Células Epiteliais da Tireoide/metabolismo , Transcriptoma
2.
FASEB J ; 33(8): 8935-8944, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31034776

RESUMO

Aquaporin (AQP) 4 is expressed in the basolateral membrane of colonic epithelial cells, and the purpose of this study was to explore the mechanistic role of AQP4 in experimental colitis. Experimental colitis was induced in AQP4 knockout (AQP4-/-) CD-1 mice and AQP4 wild-type (AQP4wt) mice by oral administration of dextran sulfate sodium (DSS). Experimental colitis was clinically established. Compared with AQP4wt mice, AQP4-/- mice showed increased tolerance to DSS-induced experimental colitis, including lesser degree of weight loss, diarrhea and bleeding, lower disease activity index scores, longer colon lengths, and lesser histologic scores. DSS-treated AQP4-/- mice had lower serum levels of IL-6 and TNF, higher IL-10 level, and lesser inflammatory cell infiltration. DSS-treated AQP4-/- mice also had lower immunostaining of NF-κB p65 as well as nuclear levels of p65 and phosphorylated p65. Sequencing of 16S rRNA indicated that DSS-treated AQP4-/- mice maintained intestinal microbial diversity and had higher Firmicutes/Bacteroidetes ratios and greater relative abundance of Erysipelotrichaceae species. These results suggested for the first time that AQP4 deficiency alleviates experimental colitis in mice. Our study helps to understand the pathogenesis of inflammatory bowel diseases, and blocking AQP4 may represent a novel therapeutic approach for ulcerative colitis.-Wang, L., Tang, H., Wang, C., Hu, Y., Wang, S., Shen, L. Aquaporin 4 deficiency alleviates experimental colitis in mice.


Assuntos
Aquaporina 4/genética , Colite Ulcerativa/genética , Animais , Aquaporina 4/deficiência , Colite Ulcerativa/etiologia , Colite Ulcerativa/metabolismo , Sulfato de Dextrana/toxicidade , Microbioma Gastrointestinal , Interleucina-10/sangue , Interleucina-6/sangue , Mucosa Intestinal/metabolismo , Masculino , Camundongos , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/sangue
3.
J Neuroinflammation ; 15(1): 157, 2018 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-29793504

RESUMO

BACKGROUND: Severe hypoglycemia induces brain edema by upregulating aquaporin-4 (AQP4) expression and by degrading tight junctions. Acute severe hypoglycemia induces a proinflammatory environment that may contribute to a disruption in the epithelial barrier by decreasing tight junction protein expression. Interestingly, the altered AQP4 expression has been considered to play a critical role in neuroinflammation during acute brain injury. It has been shown that AQP4 deletion reduces brain inflammation in AQP4-null mice after intracerebral LPS injection. However, the effect of AQP4 deletion regarding protection against hypoglycemia-induced blood-brain barrier (BBB) breakdown is unknown. METHODS: An acute severe hypoglycemic stress model was established via injection of 4 unit/kg body weight of insulin. Evans blue (EB) staining and water measurement were used to assess BBB permeability. Western blot, reverse transcription polymerase chain reaction, and immunofluorescence were used to detect the expression of related proteins. The production of cytokines was assessed via enzyme-linked immunosorbent assay. RESULTS: Hypoglycemia-induced brain edema and BBB leakage were reduced in AQP4-/- mice. AQP4 deletion upregulated PPAR-γ and inhibited proinflammatory responses. Moreover, knockdown of aquaporin-4 by small interfering RNA in astrocytes co-cultured with endothelial cells effectively reduced transendothelial permeability and degradation of tight junctions. Treatment with PPAR-γ inhibitors showed that upregulation of PPAR-γ was responsible for the protective effect of AQP4 deletion under hypoglycemic conditions. CONCLUSIONS: Our data suggest that AQP4 deletion protects BBB integrity by reducing inflammatory responses due to the upregulation of PPAR-γ expression and attenuation of proinflammatory cytokine release. Reduction in AQP4 may be protective in acute severe hypoglycemia.


Assuntos
Aquaporina 4/deficiência , Barreira Hematoencefálica/fisiopatologia , Hipoglicemia/complicações , Hipoglicemia/patologia , Inflamação/etiologia , Animais , Aquaporina 4/genética , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Edema Encefálico/etiologia , Edema Encefálico/genética , Permeabilidade Capilar/genética , Claudina-5/metabolismo , Técnicas de Cocultura , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Proteína Glial Fibrilar Ácida/metabolismo , Hipoglicemia/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Inflamação/terapia , Insulina/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , PPAR gama/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
4.
J Cell Mol Med ; 22(1): 613-627, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28940930

RESUMO

Hypoxia-dependent accumulation of vascular endothelial growth factor (VEGF) plays a major role in retinal diseases characterized by neovessel formation. In this study, we investigated whether the glial water channel Aquaporin-4 (AQP4) is involved in the hypoxia-dependent VEGF upregulation in the retina of a mouse model of oxygen-induced retinopathy (OIR). The expression levels of VEGF, the hypoxia-inducible factor-1α (HIF-1α) and the inducible form of nitric oxide synthase (iNOS), the production of nitric oxide (NO), the methylation status of the HIF-1 binding site (HBS) in the VEGF gene promoter, the binding of HIF-1α to the HBS, the retinal vascularization and function have been determined in the retina of wild-type (WT) and AQP4 knock out (KO) mice under hypoxic (OIR) or normoxic conditions. In response to 5 days of hypoxia, WT mice were characterized by (i) AQP4 upregulation, (ii) increased levels of VEGF, HIF-1α, iNOS and NO, (iii) pathological angiogenesis as determined by engorged retinal tufts and (iv) dysfunctional electroretinogram (ERG). AQP4 deletion prevents VEGF, iNOS and NO upregulation in response to hypoxia thus leading to reduced retinal damage although in the presence of high levels of HIF-1α. In AQP4 KO mice, HBS demethylation in response to the beginning of hypoxia is lower than in WT mice reducing the binding of HIF-1α to the VEGF gene promoter. We conclude that in the absence of AQP4, an impaired HBS demethylation prevents HIF-1 binding to the VEGF gene promoter and the relative VEGF transactivation, reducing the VEGF-induced retinal damage in response to hypoxia.


Assuntos
Aquaporina 4/deficiência , Metilação de DNA/genética , Hipóxia/genética , Oxigênio/efeitos adversos , Doenças Retinianas/genética , Fator A de Crescimento do Endotélio Vascular/genética , Animais , Aquaporina 4/metabolismo , Sequência de Bases , Sítios de Ligação/genética , Ilhas de CpG/genética , Eletrorretinografia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Camundongos Knockout , Modelos Biológicos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica , Retina/metabolismo , Retina/patologia , Doenças Retinianas/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
5.
Brain Struct Funct ; 222(9): 3959-3972, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28551776

RESUMO

Aquaporin-4 (AQP4) is the predominant water channel in the brain and is expressed in high density in astrocytes. By fluxing water along osmotic gradients, AQP4 contributes to brain volume and ion homeostasis. Here we ask whether deletion of Aqp4 leads to upregulation of the gap junctional proteins connexin-43 (Cx43) and connexin-30 (Cx30). These molecules couple adjacent astrocytes to each other and allow water and ions to redistribute within the astrocyte syncytium. Immunogold analysis of parietal cortex and hippocampus showed that the number of gap junctions per capillary profile is increased in AQP4 knockout (AQP4 KO) mice. The most pronounced changes were observed for Cx43 in hippocampus where the number of connexin labeled gap junctions increased by 100% following AQP4 KO. Western blot analysis of whole tissue homogenates showed no change in the amount of Cx43 or Cx30 protein after AQP4 KO. However, AQP4 KO led to a significant increase in the amount of Cx43 in a Triton X-100 insoluble fraction. This fraction is associated with connexin assembly into gap junctional plaques in the plasma membrane. In line with our immunoblot data, RT-qPCR showed no significant increase in Cx43 and Cx30 mRNA levels after AQP4 KO. Our findings suggest that AQP4 KO leads to increased aggregation of Cx43 into gap junctions and provide a putative mechanistic basis for the enhanced tracer coupling in hippocampi of AQP4 KO mice. The increased number of gap junctions in AQP4 deficient mice may explain why Aqp4 deletion has rather modest effects on brain volume and K+ homeostasis.


Assuntos
Aquaporina 4/deficiência , Astrócitos/metabolismo , Junções Comunicantes/metabolismo , Regulação da Expressão Gênica/genética , Adenosina Trifosfatases/metabolismo , Animais , Aquaporina 4/genética , Astrócitos/ultraestrutura , Encéfalo/metabolismo , Encéfalo/ultraestrutura , Conexina 30/metabolismo , Conexina 43/genética , Conexina 43/metabolismo , Conexinas/genética , Conexinas/metabolismo , Junções Comunicantes/ultraestrutura , Proteína Glial Fibrilar Ácida/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Confocal , Microscopia Imunoeletrônica
6.
Cerebrovasc Dis ; 44(1-2): 10-25, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28402976

RESUMO

BACKGROUND: Apelin-13 has been found to have protective effects on many neurological diseases, including cerebral ischemia. However, whether Apelin-13 acts on blood-brain barrier (BBB) disruption following cerebral ischemia is largely unknown. Aquaporin-4 (AQP4) has a close link with BBB due to the high concentration in astrocyte foot processes and regulation of astrocytes function. Here, we aimed to test Apelin-13's effects on ischemic BBB injury and examine whether the effects were dependent on AQP4. METHODS: We detected the expression of AQP4 induced by Apelin-13 injection at 1, 3, and 7 days after middle cerebral artery occlusion. Meanwhile, we examined the effects of Apelin-13 on neurological function, infarct volume, and BBB disruption owing to cerebral ischemia in wild type mice, and tested whether such effects were AQP4 dependent by using AQP4 knock-out mice. Furthermore, we assessed the possible signal transduction pathways activated by Apelin-13 to regulate AQP4 expression via astrocyte cultures. RESULTS: It was found that Apelin-13 highly increased AQP4 expression as well as reduced neurological scores and infarct volume. Importantly, Apelin-13 played a role of BBB protection in both types of mice by reducing BBB permeability, increased vascular endothelial growth factor, upregulated endothelial nitric oxide synthase, and downregulated inducible NOS. In morphology, we demonstrated Apelin-13 suppressed tight junction opening and endothelial cell swelling via electron microscopy detection. Meanwhile, Apelin-13 also alleviated apoptosis of astrocytes and promoted angiogenesis. Interestingly, effects of AQP4 on neurological function and infarct volume varied with time course, while AQP4 elicited protective effects on BBB at all time points. Statistical analysis of 2-way analysis of variance with replication indicated that AQP4 was required for these effects. In addition, Apelin-13 upregulated phosphorylation of extracellular signal-regulated kinase (ERK) and Akt as well as AQP4 protein in cultured astrocytes. The latter was inhibited by ERK and phosphatidylinositol 3'-kinase (PI3K) inhibitors. CONCLUSION: Our data suggest that Apelin-13 protects BBB from disruption after cerebral ischemia both morphologically and functionally, which is highly associated with the increased levels of AQP4, possibly through the activation of ERK and PI3K/Akt pathways. This study provides double targets to protection of ischemic BBB damage, which can present new insights to drugs development.


Assuntos
Aquaporina 4/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Permeabilidade Capilar/efeitos dos fármacos , Infarto da Artéria Cerebral Média/tratamento farmacológico , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Fármacos Neuroprotetores/farmacologia , Animais , Apoptose/efeitos dos fármacos , Aquaporina 4/deficiência , Aquaporina 4/genética , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/patologia , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/fisiopatologia , Barreira Hematoencefálica/ultraestrutura , Células Cultivadas , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/ultraestrutura , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/fisiopatologia , Masculino , Camundongos Knockout , Neovascularização Fisiológica/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo , Junções Íntimas/ultraestrutura , Fatores de Tempo , Fator A de Crescimento do Endotélio Vascular/metabolismo
7.
Exp Eye Res ; 146: 259-268, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27018215

RESUMO

Aquaporin-4 (AQP4) is the Central Nervous System water channel highly expressed at the perivascular glial domain. In the retina, two types of AQP4 expressing glial cells take part in the blood-retinal barrier (BRB), astrocytes and Müller cells. The aim of the present study is to investigate the effect of AQP4 deletion on the retinal vasculature by looking at typical pathological hallmark such as BRB dysfunction and gliotic condition. AQP4 dependent BRB properties were evaluated by measuring the number of extravasations in WT and AQP4 KO retinas by Evans blue injection assay. AQP4 deletion did not affect the retinal vasculature, as assessed by Isolectin B4 staining, but caused BRB impairment to the deep plexus capillaries while the superficial and intermediate capillaries were not compromised. To investigate for gliotic responses caused by AQP4 deletion, Müller cells and astrocytes were analysed by immunofluorescence and western blot, using the Müller cell marker Glutamine Synthetase (GS) and the astrocyte marker GFAP. While GS expression was not altered in AQP4 KO retinas, a strong GFAP upregulation was found at the level of AQP4 KO astrocytes at the superficial plexus and not at Müller cells at the intermediate and deep plexi. These data, together with the upregulation of inflammatory markers (TNF-α, IL-6, IL-1ß and ICAM-1) in AQP4 KO retinas indicated AQP4 deletion as responsible for a gliotic phenotype. Interestingly, no GFAP altered expression was found in AQP4 siRNA treated astrocyte primary cultures. All together these results indicate that AQP4 deletion is directly responsible for BRB dysfunction and gliotic condition in the mouse retina. The selective activation of glial cells at the primary plexus suggests that different regulatory elements control the reaction of astrocytes and Müller cells. Finally, GFAP upregulation is strictly linked to gliovascular crosstalk, as it is absent in astrocytes in culture. This study is useful to understand the role of AQP4 in the perivascular domain in the retina and its possible implications in the pathogenesis of retinal vascular diseases and of Neuromyelitis Optica, a human disease characterized by anti-AQP4 auto-antibodies.


Assuntos
Aquaporina 4/fisiologia , Retina/fisiologia , Doenças Retinianas/fisiopatologia , Análise de Variância , Animais , Aquaporina 4/deficiência , Astrócitos/metabolismo , Barreira Hematorretiniana/fisiologia , Western Blotting , Células Cultivadas , Modelos Animais de Doenças , Proteína Glial Fibrilar Ácida/metabolismo , Glutamato-Amônia Ligase/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Interleucina-6/metabolismo , Camundongos , Camundongos Knockout , Neuroglia/metabolismo , Ratos , Ratos Wistar , Retina/metabolismo , Doenças Retinianas/genética , Fator de Necrose Tumoral alfa/metabolismo
8.
Mol Neurobiol ; 49(3): 1327-37, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24390474

RESUMO

Atrophy of upper motor neurons hampers axonal regeneration and functional recovery following spinal cord injury (SCI). Apart from the severity of primary injury, a series of secondary pathological damages including spinal cord edema and glial scar formation affect the fate of injured upper motor neurons. The aquaporin-4 (AQP4) water channel plays a critical role in water homeostasis and migration of astrocytes in the central nervous system, probably offering a new therapeutic target for protecting against upper motor neuron degeneration after SCI. To test this hypothesis, we examined the effect of AQP4 deficiency on atrophy of rubrospinal neurons after unilateral rubrospinal tract transection at the fourth cervical level in mice. AQP4 gene knockout (AQP4-/-) mice exhibited high extent of spinal cord edema at 72 h after lesion compared with wild-type littermates. AQP4-/- mice showed impairments in astrocyte migration toward the transected site with a greater lesion volume at 1 week after surgery and glial scar formation with a larger cyst volume at 6 weeks. More severe atrophy and loss of axotomized rubrospinal neurons as well as axonal degeneration in the rubrospinal tract rostral to the lesion were observed in AQP4-/- mice at 6 weeks after SCI. AQP4 expression was downregulated at the lesioned spinal segment at 3 days and 1 week after injury, but upregulated at 6 weeks. These results demonstrated that AQP4 not only mitigates spinal cord damage but also ameliorates retrograde degeneration of rubrospinal neurons by promoting edema clearance and glial scar formation after laceration SCI. This finding supports the notion that AQP4 may be a promising therapeutic target for SCI.


Assuntos
Aquaporina 4/deficiência , Cicatriz/metabolismo , Edema/metabolismo , Neuroglia/metabolismo , Degeneração Retrógrada/metabolismo , Traumatismos da Medula Espinal/metabolismo , Animais , Vértebras Cervicais/metabolismo , Vértebras Cervicais/patologia , Cicatriz/patologia , Edema/patologia , Feminino , Camundongos , Camundongos Knockout , Neuroglia/patologia , Neurônios/metabolismo , Neurônios/patologia , Núcleo Rubro/metabolismo , Núcleo Rubro/patologia , Degeneração Retrógrada/patologia , Traumatismos da Medula Espinal/patologia
9.
PLoS One ; 8(6): e66051, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23805198

RESUMO

Vascular endothelial growth factor (VEGF) has protective effects on many neurological diseases. However, whether VEGF acts on brain edema following intracerebral hemorrhage (ICH) is largely unknown. Our previous study has shown aquaporin-4 (AQP4) plays an important role in brain edema elimination following ICH. Meanwhile, there is close relationship between VEGF and AQP4. In this study, we aimed to test effects of VEGF on brain edema following ICH and examine whether they were AQP4 dependent. Recombinant human VEGF165 (rhVEGF165) was injected intracerebroventricularly 1 d after ICH induced by microinjecting autologous whole blood into striatum. We detected perihemotomal AQP4 protein expression, then examined the effects of rhVEGF165 on perihemotomal brain edema at 1 d, 3 d, and 7 d after injection in wild type (AQP4(+/+)) and AQP4 knock-out (AQP4(-/-)) mice. Furthermore, we assessed the possible signal transduction pathways activated by VEGF to regulate AQP4 expression via astrocyte cultures. We found perihemotomal AQP4 protein expression was highly increased by rhVEGF165. RhVEGF165 alleviated perihemotomal brain edema in AQP4(+/+) mice at each time point, but had no effect on AQP4(-/-) mice. Perihemotomal EB extravasation was increased by rhVEGF165 in AQP4(-/-) mice, but not AQP4(+/+) mice. RhVEGF165 reduced neurological deficits and increased Nissl's staining cells surrounding hemotoma in both types of mice and these effects were related to AQP4. RhVEGF165 up-regulated phospharylation of C-Jun amino-terminal kinase (p-JNK) and extracellular signal-regulated kinase (p-ERK) and AQP4 protein in cultured astrocytes. The latter was inhibited by JNK and ERK inhibitors. In conclusion, VEGF reduces neurological deficits, brain edema, and neuronal death surrounding hemotoma but has no influence on BBB permeability. These effects are closely related to AQP4 up-regulation, possibly through activating JNK and ERK pathways. The current study may present new insights to treatment of brain edema following ICH.


Assuntos
Aquaporina 4/metabolismo , Edema Encefálico/prevenção & controle , Proteínas Recombinantes/uso terapêutico , Animais , Aquaporina 4/deficiência , Aquaporina 4/genética , Astrócitos/citologia , Astrócitos/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Edema Encefálico/complicações , Edema Encefálico/terapia , Células Cultivadas , Córtex Cerebral/citologia , Hemorragia Cerebral/complicações , Hemorragia Cerebral/metabolismo , Hemorragia Cerebral/patologia , Modelos Animais de Doenças , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Masculino , Camundongos , Camundongos Knockout , Fosforilação/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/farmacologia , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia
10.
Neurosci Bull ; 28(6): 680-92, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23132680

RESUMO

OBJECTIVE: Aquaporin-4 (AQP4), the main water channel protein in the brain, plays a critical role in water homeostasis and brain edema. Here, we investigated its role in the inflammatory responses after focal cerebral ischemia. METHODS: In AQP4-knockout (KO) and wild-type mice, focal cerebral ischemia was induced by 30 min of middle cerebral arterial occlusion (MCAO). Ischemic neuronal injury and cellular inflammatory responses, as well as the expression and localization of cysteinyl leukotriene CysLT(2) and CysLT(1) receptors, were determined at 24 and 72 h after MCAO. RESULTS: AQP4-KO mice showed more neuronal loss, more severe microglial activation and neutrophil infiltration, but less astrocyte proliferation in the brain after MCAO than wild-type mice. In addition, the protein levels of both CysLT(1) and CysLT(2) receptors were up-regulated in the ischemic brain, and the up-regulation was more pronounced in AQP4-KO mice. The CysLT(1) and CysLT(2) receptors were primarily localized in neurons, microglia and neutrophils; those localized in microglia and neutrophils were enhanced in AQP4-KO mice. CONCLUSION: AQP4 may play an inhibitory role in postischemic inflammation.


Assuntos
Aquaporina 4/deficiência , Isquemia Encefálica/metabolismo , Inflamação/metabolismo , Receptores de Leucotrienos/biossíntese , Animais , Aquaporina 4/genética , Astrócitos/metabolismo , Western Blotting , Isquemia Encefálica/patologia , Contagem de Células , Imuno-Histoquímica , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Inflamação/patologia , Leucócitos/metabolismo , Camundongos , Camundongos Knockout , Microglia/fisiologia , Neutrófilos/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Regulação para Cima , Intoxicação por Água/metabolismo
11.
Ann Neurol ; 70(6): 943-54, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22069219

RESUMO

OBJECTIVE: Neuromyelitis optica (NMO) is a neuroinflammatory disease of spinal cord and optic nerve associated with serum autoantibodies (NMO-immunoglobulin G [IgG]) against astrocyte water channel aquaporin-4 (AQP4). Recent studies suggest that AQP4 autoantibodies are pathogenic. The objectives of this study were to establish an ex vivo spinal cord slice model in which NMO-IgG exposure produces lesions with characteristic NMO pathology, and to test the involvement of specific inflammatory cell types and soluble factors. METHODS: Vibratome-cut transverse spinal cord slices were cultured on transwell porous supports. After 7 days in culture, spinal cord slices were exposed to NMO-IgG and complement for 1 to 3 days. In some studies inflammatory cells or factors were added. Slices were examined for glial fibrillary acidic protein (GFAP), AQP4, and myelin immunoreactivity. RESULTS: Spinal cord cellular structure, including astrocytes, microglia, neurons, and myelin, was preserved in culture. NMO-IgG bound strongly to astrocytes in the spinal cord slices. Slices exposed to NMO-IgG and complement showed marked loss of GFAP, AQP4, and myelin. Lesions were not seen in the absence of complement or in spinal cord slices from AQP4 null mice. In cultures treated with submaximal NMO-IgG, the severity of NMO lesions was increased with inclusion of neutrophils, natural killer cells, or macrophages, or the soluble factors tumor necrosis factor α (TNFα), interleukin-6 (IL-6), IL-1ß, or interferon-γ. Lesions were also produced in ex vivo optic nerve and hippocampal slice cultures. INTERPRETATION: These results provide evidence for AQP4, complement- and NMO-IgG-dependent NMO pathogenesis in spinal cord, and implicate the involvement of specific immune cells and cytokines. Our ex vivo model allows for direct manipulation of putative effectors of NMO disease pathogenesis in a disease-relevant tissue.


Assuntos
Neuromielite Óptica/imunologia , Neuromielite Óptica/patologia , Medula Espinal/imunologia , Medula Espinal/metabolismo , Animais , Aquaporina 4/deficiência , Aquaporina 4/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/metabolismo , Imunoglobulina G/farmacologia , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos/metabolismo , Proteína Básica da Mielina/metabolismo , Bainha de Mielina/metabolismo , Neuromielite Óptica/induzido quimicamente , Neuromielite Óptica/genética , Nervo Óptico/efeitos dos fármacos , Nervo Óptico/imunologia , Nervo Óptico/metabolismo , Nervo Óptico/patologia , Técnicas de Cultura de Órgãos , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia , Tubulina (Proteína)/metabolismo
12.
Glia ; 59(6): 973-80, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21446052

RESUMO

Aquaporin-4 (AQP4) is the main water channel in the brain and primarily localized to astrocytes where the channels are thought to contribute to water and K(+) homeostasis. The close apposition of AQP4 and inward rectifier K(+) channels (Kir4.1) led to the hypothesis of direct functional interactions between both channels. We investigated the impact of AQP4 on stimulus-induced alterations of the extracellular K(+) concentration ([K(+)](o)) in murine hippocampal slices. Recordings with K(+)-selective microelectrodes combined with field potential analyses were compared in wild type (wt) and AQP4 knockout (AQP4(-/-)) mice. Astrocyte gap junction coupling was assessed with tracer filling during patch clamp recording. Antidromic fiber stimulation in the alveus evoked smaller increases and slower recovery of [K(+)](o) in the stratum pyramidale of AQP4(-/-) mice indicating reduced glial swelling and a larger extracellular space when compared with control tissue. Moreover, the data hint at an impairment of the glial Na(+)/K(+) ATPase in AQP4-deficient astrocytes. In a next step, we investigated the laminar profile of [K(+)](o) by moving the recording electrode from the stratum pyramidale toward the hippocampal fissure. At distances beyond 300 µm from the pyramidal layer, the stimulation-induced, normalized increases of [K(+)](o) in AQP4(-/-) mice exceeded the corresponding values of wt mice, indicating facilitated spatial buffering. Astrocytes in AQP4(-/-) mice also displayed enhanced tracer coupling, which might underlie the improved spatial re- distribution of [K(+)](o) in the hippocampus. These findings highlight the role of AQP4 channels in the regulation of K(+) homeostasis.


Assuntos
Aquaporina 4/fisiologia , Junções Comunicantes/metabolismo , Hipocampo/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/fisiologia , Potássio/metabolismo , Animais , Aquaporina 4/deficiência , Soluções Tampão , Comunicação Celular/genética , Junções Comunicantes/enzimologia , Junções Comunicantes/genética , Hipocampo/enzimologia , Homeostase/genética , Potenciais da Membrana/genética , Camundongos , Camundongos Knockout , Técnicas de Cultura de Órgãos , Técnicas de Patch-Clamp/métodos , Potássio/fisiologia , ATPase Trocadora de Sódio-Potássio/metabolismo
13.
Aging Cell ; 10(3): 368-82, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21255222

RESUMO

Aquaporin-4 (AQP4) is highly expressed in mammalian brains and is involved in the pathophysiology of cerebral disorders, including stroke, tumors, infections, hydrocephalus, epilepsy, and traumatic brain injury. We found that AQP4-deficient mice were hypersensitive to stimulations such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or lipopolysaccharide compared to wild-type (WT) littermates. In a mouse model of MPTP-induced Parkinson's disease (PD), AQP4-deficient animals show more robust microglial inflammatory responses and more severe loss of dopaminergic neurons (DNs) compared with WT mice. However, a few studies have investigated the association of abnormal AQP4 levels with immune dysfunction. Here, for the first time, we report AQP4 expression in mouse thymus, spleen, and lymph nodes. Furthermore, the significantly lower numbers of CD4(+) CD25(+) regulatory T cells in AQP4-deficient mice compared to WT mice, perhaps resulting from impaired thymic generation, may be responsible for the uncontrolled microglial inflammatory responses and subsequent severe loss of DNs in the substantia nigra pars compacta in the MPTP-induced PD model. These novel findings suggest that AQP4 deficiency may disrupt immunosuppressive regulators, resulting in hyperactive immune responses and potentially contributing to the increased severity of PD or other immune-associated diseases.


Assuntos
Aquaporina 4 , Inflamação/imunologia , Neurônios/metabolismo , Doença de Parkinson/imunologia , Linfócitos T Reguladores/imunologia , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Animais , Aquaporina 4/deficiência , Aquaporina 4/genética , Aquaporina 4/imunologia , Antígenos CD4/análise , Antígenos CD4/biossíntese , Células Cultivadas , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Modelos Animais de Doenças , Dopamina/metabolismo , Dopamina/farmacologia , Expressão Gênica , Imuno-Histoquímica , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Subunidade alfa de Receptor de Interleucina-2/análise , Subunidade alfa de Receptor de Interleucina-2/biossíntese , Lipopolissacarídeos/farmacologia , Linfonodos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Índice de Gravidade de Doença , Baço/metabolismo , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo , Substância Negra/patologia , Linfócitos T Reguladores/metabolismo , Linfócitos T Reguladores/patologia , Timo/metabolismo
14.
Ann Neurol ; 67(6): 794-801, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20517941

RESUMO

OBJECTIVE: Spinal cord injury (SCI) is accompanied by disruption of the blood-spinal cord barrier and subsequent extravasation of fluid and proteins, which results in edema (increased water content) at the site of injury. However, the mechanisms that control edema and the extent to which edema impacts outcome after SCI are not well elucidated. METHODS: Here, we examined the role of aquaporin-4 (AQP4) water channels after experimental contusion injury in mice, a clinically relevant animal model of SCI. RESULTS: Mice lacking AQP4 (AQP4(-/-) mice) exhibited significantly impaired locomotor function and prolonged bladder dysfunction compared with wild-type (WT) littermates after contusion SCI. Consistent with a greater extent of functional deterioration, AQP4(-/-) mice showed greater neuronal loss and demyelination, with prominent cyst formation, which is generally absent in mouse SCI. The extent of spinal cord edema, as expressed by percentage water content, was persistently increased above control levels in AQP4(-/-) mice but not WT mice at 14 and 28 days after injury. Immunohistochemical analysis indicated that blood vessels in the vicinity of the lesion core had incomplete barrier function because of sparse tight junctions. INTERPRETATION: These results suggest that AQP4 plays a protective role after contusion SCI by facilitating the clearance of excess water, and that targeting edema after SCI may be a novel therapeutic strategy.


Assuntos
Aquaporina 4/metabolismo , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/prevenção & controle , Animais , Apoptose/genética , Aquaporina 4/deficiência , Modelos Animais de Doenças , Edema/etiologia , Fibronectinas/metabolismo , Marcação In Situ das Extremidades Cortadas/métodos , Locomoção/efeitos dos fármacos , Locomoção/genética , Camundongos , Camundongos Knockout , Transtornos dos Movimentos/etiologia , Desempenho Psicomotor/fisiologia , Recuperação de Função Fisiológica/genética , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/patologia , Fatores de Tempo , Doenças da Bexiga Urinária/etiologia
15.
J Neurosci Res ; 88(13): 2877-88, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20544823

RESUMO

The glial water channel aquaporin-4 (AQP4) is implicated in the control of ion and osmohomeostasis in the sensory retina. Using retinal slices from AQP4-deficient and wild-type mice, we investigated whether AQP4 is involved in the regulation of glial cell volume under altered osmotic conditions. Superfusion of retinal slices with a hypoosmolar solution induced a rapid swelling of glial somata in tissues from AQP4 null mice but not from wild-type mice. The swelling was mediated by oxidative stress, inflammatory lipid mediators, and sodium influx into the cells and was prevented by activation of glutamatergic and purinergic receptors. Distinct inflammatory proteins, including interleukin-1 beta, interleukin-6, and inducible nitric oxide synthase, were up-regulated in the retina of AQP4 null mice compared with control, whereas cyclooxygenase-2 was down-regulated. The data suggest that water flux through AQP4 is involved in the rapid volume regulation of retinal glial (Müller) cells in response to osmotic stress and that deletion of AQP4 results in an inflammatory response of the retinal tissue. Possible implications of the data for understanding the pathophysiology of neuromyelitis optica, a human disease that has been suggested to involve serum antibodies to AQP4, are discussed.


Assuntos
Aquaporina 4/deficiência , Neuroglia/fisiologia , Osmose , Estresse Oxidativo/genética , Retina/citologia , Adenosina/farmacologia , Trifosfato de Adenosina/farmacologia , Animais , Aquaporina 1/genética , Aquaporina 1/metabolismo , Regulação da Expressão Gênica/genética , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Ácido Glutâmico/farmacologia , Soluções Hipotônicas/farmacologia , Técnicas In Vitro , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Knockout , Estresse Oxidativo/fisiologia , Técnicas de Patch-Clamp/métodos , Canais de Potássio Corretores do Fluxo de Internalização/genética , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , RNA Mensageiro/metabolismo , Xantinas/farmacologia
16.
Prog Brain Res ; 170: 589-601, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18655912

RESUMO

Of the several aquaporin (AQP) water channels expressed in the central nervous system, AQP4 is an attractive target for drug discovery. AQP4 is expressed in astroglia, most strongly at the blood-brain and brain-cerebrospinal fluid barriers. Phenotype analysis of AQP4 knockout mice indicates the involvement of AQP4 in three distinct processes: brain water balance, astroglial cell migration and neural signal transduction. By slowing water uptake into the brain, AQP4 knockout mice manifest reduced brain swelling and improved outcome in models of cytotoxic cerebral oedema such as water intoxication, focal ischaemia and meningitis. However, by slowing the clearance of excess water from brain, AQP4 knockout mice do worse in models of vasogenic oedema such as brain tumour, abscess and hydrocephalus. AQP4 deficient astroglial cells show greatly impaired migration in response to chemotactic stimuli, reducing glial scar formation, by a mechanism that we propose involves AQP4-facilitated water flux in lamellipodia of migrating cells. AQP4 knockout mice also manifest increased seizure threshold and duration, by a mechanism that may involve slowed K(+) uptake from the extracellular space (ECS) following neuroexcitation, as well as ECS expansion. Notwithstanding challenges in drug delivery to the central nervous system and their multiplicity of actions, AQP4 inhibitors have potential utility in reducing cytotoxic brain swelling, increasing seizure threshold and reducing glial scar formation; enhancers of AQP4 expression have potential utility in reducing vasogenic brain swelling. AQP4 modulators may thus offer new therapeutic options for stroke, tumour, infection, hydrocephalus, epilepsy and traumatic brain and spinal cord injury.


Assuntos
Aquaporina 4/uso terapêutico , Aquaporinas/fisiologia , Encefalopatias/tratamento farmacológico , Actinas/fisiologia , Processamento Alternativo , Animais , Aquaporina 4/deficiência , Aquaporina 4/genética , Astrócitos/fisiologia , Edema Encefálico/fisiopatologia , Edema Encefálico/prevenção & controle , Movimento Celular , Líquido Cefalorraquidiano/fisiologia , Modelos Animais de Doenças , Variação Genética , Camundongos , Modelos Neurológicos , Neuroglia/fisiologia , Ratos , Equilíbrio Hidroeletrolítico/fisiologia
17.
J Neurochem ; 105(6): 2156-65, 2008 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-18284610

RESUMO

Altered aquaporin-4 (AQP4) expression has been reported in brain edema, tumors, muscular dystrophy, and neuromyelitis optica. However, the plasma membrane organization of AQP4 and its interaction with proteins such as the dystrophin-associated protein complex are not well understood. In this study, we used sucrose density gradient ultracentrifugation and 2D blue native/sodium dodecyl sulfate-polyacrylamide gel electrophoresis and showed the expression of several AQP4 multi-subunit complexes (pools) of different sizes, ranging from >> 1 MDa to approximately 500 kDa and containing different ratios of the 30/32 kDa AQP4 isoforms, indicative of orthogonal arrays of particles of various sizes. A high molecular weight pool co-purified with dystrophin and beta-dystroglycan and was drastically reduced in the skeletal muscle of mdx3cv mice, which have no dystrophin. The number and size of the AQP4 pools were the same in the kidney where dystrophin is not expressed, suggesting the presence of dystrophin-like proteins for their expression. We found that AQP2 is expressed only in one major pool of approximately 500 kDa, indicating that the presence of different pools is a peculiarity of AQP4 rather than a widespread feature in the AQP family. Finally, in skeletal muscle caveolin-3 did not co-purify with any AQP4 pool, indicating the absence of interaction of the two proteins and confirming that caveolae and orthogonal arrays of particles are two independent plasma membrane microdomains. These results contribute to a better understanding of AQP4 membrane organization and raise the possibility that abnormal expression of specific AQP4 pools may be found in pathological states.


Assuntos
Aquaporina 4/biossíntese , Aquaporina 4/metabolismo , Membrana Celular/metabolismo , Proteínas Associadas à Distrofina/biossíntese , Proteínas do Tecido Nervoso/biossíntese , Animais , Aquaporina 4/deficiência , Aquaporina 4/genética , Membrana Celular/química , Células Cultivadas , Proteínas Associadas à Distrofina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Proteínas do Tecido Nervoso/metabolismo , Ligação Proteica/fisiologia , Ratos , Ratos Wistar
18.
J Biol Chem ; 282(30): 21866-72, 2007 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-17525153

RESUMO

Indirect evidence suggests that the Müller/glial cell water channel aquaporin-4 (AQP4) modulates K(+) channel function of the closely associated Kir4.1 protein. We used patch clamp to compare Kir4.1 K(+) channel function in freshly isolated Müller cells from retinas of wild-type (+/+) and AQP4 knock-out (-/-) mice. Immunocytochemistry showed a comparable Kir4.1 protein expression pattern in Müller cells from +/+ and -/- retinas, with greatest expression at their end feet. Osmotic water permeability was >4-fold reduced in -/- than in +/+ Müller cells. Resting membrane potential did not differ significantly in +/+ versus -/- Müller cells (-64 +/- 1 versus -64 +/- 1 mV, S.E., n = 24). Whole-cell K(+) currents recorded with a micropipette inserted into the cell soma were Ba(2+)-sensitive and showed no significant differences in magnitude in +/+ versus -/- Müller cells (1.3 +/- 0.1 versus 1.2 +/- 0.1 nA at -160 mV) or in inwardly rectifying current-voltage relationships. Spatially resolved K(+) currents generated by pulsed K(+) injections along Müller cell bodies were also comparable in +/+ versus -/- Müller cells. Single-channel cell-attached patch clamp showed comparable unitary conductance, current-voltage data, and open probability in +/+ versus -/- Müller cells. Thus, contrary to the generally accepted view, our results provide direct evidence against functionally significant AQP4 modulation of Müller cell Kir4.1 K(+) channel function.


Assuntos
Aquaporina 4/metabolismo , Retina/fisiologia , Animais , Aquaporina 4/deficiência , Aquaporina 4/genética , Eletrofisiologia , Enucleação Ocular , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Técnicas de Patch-Clamp , Permeabilidade , Retina/citologia
19.
Pediatr Nephrol ; 22(6): 778-84, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17347837

RESUMO

Aquaporin-4 (AQP4) is a water-channel protein expressed strongly in the brain, predominantly in astrocyte foot processes at the borders between the brain parenchyma and major fluid compartments, including cerebrospinal fluid (CSF) and blood. This distribution suggests that AQP4 controls water fluxes into and out of the brain parenchyma. Experiments using AQP4-null mice provide strong evidence for AQP4 involvement in cerebral water balance. AQP4-null mice are protected from cellular (cytotoxic) brain edema produced by water intoxication, brain ischemia, or meningitis. However, AQP4 deletion aggravates vasogenic (fluid leak) brain edema produced by tumor, cortical freeze, intraparenchymal fluid infusion, or brain abscess. In cytotoxic edema, AQP4 deletion slows the rate of water entry into brain, whereas in vasogenic edema, AQP4 deletion reduces the rate of water outflow from brain parenchyma. AQP4 deletion also worsens obstructive hydrocephalus. Recently, AQP4 was also found to play a major role in processes unrelated to brain edema, including astrocyte migration and neuronal excitability. These findings suggest that modulation of AQP4 expression or function may be beneficial in several cerebral disorders, including hyponatremic brain edema, hydrocephalus, stroke, tumor, infection, epilepsy, and traumatic brain injury.


Assuntos
Aquaporina 4/metabolismo , Edema Encefálico/metabolismo , Animais , Aquaporina 4/deficiência , Aquaporina 4/genética , Edema Encefálico/etiologia , Edema Encefálico/patologia , Modelos Animais de Doenças , Humanos , Hidrocefalia/etiologia , Hidrocefalia/metabolismo , Hidrocefalia/patologia , Hiponatremia/complicações , Hiponatremia/metabolismo , Hiponatremia/fisiopatologia , Camundongos , Camundongos Knockout , Água/metabolismo , Intoxicação por Água/metabolismo , Intoxicação por Água/patologia , Intoxicação por Água/fisiopatologia
20.
J Cell Sci ; 118(Pt 24): 5691-8, 2005 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-16303850

RESUMO

Aquaporin-4, the major water-selective channel in astroglia throughout the central nervous system, facilitates water movement into and out of the brain. Here, we identify a novel role for aquaporin-4 in astroglial cell migration, as occurs during glial scar formation. Astroglia cultured from the neocortex of aquaporin-4-null mice had similar morphology, proliferation and adhesion, but markedly impaired migration determined by Transwell migration efficiency (18+/-2 vs 58+/-4% of cells migrated towards 10% serum in 8 hours; P<0.001) and wound healing rate (4.6 vs 7.0 microm/hour speed of wound edge; P<0.001) compared with wild-type mice. Transwell migration was similarly impaired (25+/-4% migrated cells) in wild-type astroglia after approximately 90% reduction in aquaporin-4 protein expression by RNA inhibition. Aquaporin-4 was polarized to the leading edge of the plasma membrane in migrating wild-type astroglia, where rapid shape changes were seen by video microscopy. Astroglial cell migration was enhanced by a small extracellular osmotic gradient, suggesting that aquaporin-4 facilitates water influx across the leading edge of a migrating cell. In an in vivo model of reactive gliosis and astroglial cell migration produced by cortical stab injury, glial scar formation was remarkably impaired in aquaporin-4-null mice, with reduced migration of reactive astroglia towards the site of injury. Our findings provide evidence for the involvement of aquaporin-4 in astroglial cell migration, which occurs during glial scar formation in brain injury, stroke, tumor and focal abscess.


Assuntos
Aquaporina 4/metabolismo , Astrócitos/metabolismo , Encefalopatias/metabolismo , Movimento Celular , Cicatriz/metabolismo , Animais , Aquaporina 4/deficiência , Astrócitos/patologia , Encefalopatias/genética , Movimento Celular/genética , Células Cultivadas , Cicatriz/patologia , Camundongos , Camundongos Knockout , Osmose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA