Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochem Cell Biol ; 99(4): 499-507, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34357813

RESUMO

Adenylate kinases (AK) play a pivotal role in the regulation of cellular energy. The aim of our work was to achieve the overproduction and purification of AKs from two groups of bacteria and to determine, for the first time, the comprehensive biochemical and kinetic properties of adenylate kinase from Gram-negative Aquifex aeolicus (AKaq) and Gram-positive Geobacillus stearothermophilus (AKst). Therefore we determined KM and Vmax values, and the effects of temperature, pH, metal ions, donors of the phosphate groups and inhibitor Ap5A for both thermophilic AKs. The kinetic studies indicate that both AKs exhibit significantly higher affinity for substrates with the pyrophosphate group than for adenosine monophosphate. AK activation by Mg2+ and Mn2+ revealed that both ions are efficient in the synthesis of adenosine diphosphate and adenosine triphosphate; however, Mn2+ ions at 0.2-2.0 mmol/L concentration were more efficient in the activation of the ATP synthesis than Mg2+ ions. Our research demonstrates that zinc ions inhibit the activity of enzymes in both directions, while Ap5A at a concentration of 10 µmol/L and 50 µmol/L inhibited both enzymes with a different efficiency. Sigmoid-like kinetics were detected at high ATP concentrations not balanced by Mg2+, suggesting the allosteric effect of ATP for both bacterial AKs.


Assuntos
Trifosfato de Adenosina/metabolismo , Adenilato Quinase/metabolismo , Difosfatos/metabolismo , Geobacillus stearothermophilus/enzimologia , Zinco/metabolismo , Adenilato Quinase/química , Aquifex/enzimologia , Cinética
2.
Biochim Biophys Acta Biomembr ; 1863(2): 183526, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33278347

RESUMO

FtsH is a membrane-bound protease that plays a crucial role in proteolytic regulation of many cellular functions. It is universally conserved in bacteria and responsible for the degradation of misfolded or misassembled proteins. A recent study has determined the structure of bacterial FtsH in detergent micelles. To properly study the function of FtsH in a native-like environment, we reconstituted the FtsH complex into lipid nanodiscs. We found that FtsH in membrane scaffold protein (MSP) nanodiscs maintains its native hexameric conformation and is functionally active. We further investigated the effect of the lipid bilayer composition (acyl chain length, saturation, head group charge and size) on FtsH proteolytic activity. We found that the lipid acyl chain length influences AaFtsH activity in nanodiscs, with the greatest activity in a bilayer of di-C18:1 PC. We conclude that MSP nanodiscs are suitable model membranes for further in vitro studies of the FtsH protease complex.


Assuntos
Proteases Dependentes de ATP/química , Proteínas de Bactérias/química , Bicamadas Lipídicas/química , Nanoestruturas/química , Dobramento de Proteína , Aquifex/enzimologia , Aquifex/genética , Proteínas de Bactérias/genética
3.
J Biol Chem ; 296: 100029, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33154162

RESUMO

AAA+ proteases are degradation machines that use ATP hydrolysis to unfold protein substrates and translocate them through a central pore toward a degradation chamber. FtsH, a bacterial membrane-anchored AAA+ protease, plays a vital role in membrane protein quality control. How substrates reach the FtsH central pore is an open key question that is not resolved by the available atomic structures of cytoplasmic and periplasmic domains. In this work, we used both negative stain TEM and cryo-EM to determine 3D maps of the full-length Aquifex aeolicus FtsH protease. Unexpectedly, we observed that detergent solubilization induces the formation of fully active FtsH dodecamers, which consist of two FtsH hexamers in a single detergent micelle. The striking tilted conformation of the cytosolic domain in the FtsH dodecamer visualized by negative stain TEM suggests a lateral substrate entrance between the membrane and cytosolic domain. Such a substrate path was then resolved in the cryo-EM structure of the FtsH hexamer. By mapping the available structural information and structure predictions for the transmembrane helices to the amino acid sequence we identified a linker of ∼20 residues between the second transmembrane helix and the cytosolic domain. This unique polypeptide appears to be highly flexible and turned out to be essential for proper functioning of FtsH as its deletion fully eliminated the proteolytic activity of FtsH.


Assuntos
Citoplasma/metabolismo , Metaloendopeptidases/metabolismo , Aquifex/enzimologia , Cromatografia em Gel , Biologia Computacional/métodos , Microscopia Crioeletrônica , Hidrólise , Metaloendopeptidases/química , Metaloendopeptidases/isolamento & purificação , Conformação Proteica , Transporte Proteico , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA