Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Plant Cell Rep ; 43(7): 174, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38878164

RESUMO

KEY MESSAGE: Interactor of WOX2, CDC48A, is crucial for early embryo patterning and shoot meristem stem cell initiation, but is not required for WOX2 protein turnover or subcellular localization. During Arabidopsis embryo patterning, the WUSCHEL HOMEOBOX 2 (WOX2) transcription factor is a major regulator of protoderm and shoot stem cell initiation. Loss of WOX2 function results in aberrant protodermal cell divisions and, redundantly with its paralogs WOX1, WOX3, and WOX5, compromised shoot meristem formation. To elucidate the molecular basis for WOX2 function, we searched for protein interactors by IP-MS/MS from WOX2-overexpression roots displaying reprogramming toward shoot-like cell fates. Here, we report that WOX2 directly interacts with the type II AAA ATPase molecular chaperone CELL DIVISION CYCLE 48A (CDC48A). We confirmed this interaction with bimolecular fluorescence complementation and co-immunoprecipitation and found that both proteins co-localize in the nucleus. We show that CDC48A loss of function results in protoderm and shoot meristem stem cell initiation defects similar to WOX2 loss of function. We also provide evidence that CDC48A promotes WOX2 activity independently of proteolysis or the regulation of nuclear localization, common mechanisms of CDC48A function in other processes. Our results point to a new role of CDC48A in potentiating WOX2 function during early embryo patterning.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Ciclo Celular , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio , Meristema , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/embriologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Meristema/metabolismo , Meristema/genética , Meristema/embriologia , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/genética , Sementes/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , ATPases Associadas a Diversas Atividades Celulares , Fatores de Transcrição
2.
Dev Biol ; 479: 1-10, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34314693

RESUMO

Along with a strict determinism of early embryogenesis in most living organisms, some of them exhibit variability of cell fates and developmental pathways. Here we discuss the phenomena of determinism and variability of developmental pathways, defining its dependence upon cell potency, cell sensitivity to the external signals and cell signaling. We propose a set of conjectures on the phenomenon of variability of developmental pathways, and denote a difference between a normal (local) variability, leading to an invariant final structure (e.g., embryo shape), and fundamental one, which is a switching between different developmental pathways, leading to different possible structures. For illustrating our conjectures, we analyzed early developmental stages of plant embryos with different levels of variability of morphogenesis pathways, and provide a set of computational experiments by Morphogenesis Software.


Assuntos
Diferenciação Celular/fisiologia , Linhagem da Célula/fisiologia , Desenvolvimento Vegetal/fisiologia , Arabidopsis/embriologia , Fumaria/embriologia , Morfogênese/fisiologia , Desenvolvimento Vegetal/genética , Polygala/embriologia , Pulsatilla/embriologia
3.
Nat Commun ; 12(1): 2508, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33947865

RESUMO

Plant somatic cells can be reprogrammed into totipotent embryonic cells that are able to form differentiated embryos in a process called somatic embryogenesis (SE), by hormone treatment or through overexpression of certain transcription factor genes, such as BABY BOOM (BBM). Here we show that overexpression of the AT-HOOK MOTIF CONTAINING NUCLEAR LOCALIZED 15 (AHL15) gene induces formation of somatic embryos on Arabidopsis thaliana seedlings in the absence of hormone treatment. During zygotic embryogenesis, AHL15 expression starts early in embryo development, and AH15 and other AHL genes are required for proper embryo patterning and development beyond the globular stage. Moreover, AHL15 and several of its homologs are upregulated and required for SE induction upon hormone treatment, and they are required for efficient BBM-induced SE as downstream targets of BBM. A significant number of plants derived from AHL15 overexpression-induced somatic embryos are polyploid. Polyploidisation occurs by endomitosis specifically during the initiation of SE, and is caused by strong heterochromatin decondensation induced by AHL15 overexpression.


Assuntos
Motivos AT-Hook , Proteínas de Arabidopsis/metabolismo , Arabidopsis/embriologia , Arabidopsis/genética , Montagem e Desmontagem da Cromatina/genética , Regulação da Expressão Gênica de Plantas/genética , Técnicas de Embriogênese Somática de Plantas , Proteínas de Arabidopsis/genética , Segregação de Cromossomos/genética , Duplicação Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Resposta ao Choque Térmico/genética , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Poliploidia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação para Cima
4.
Plant Cell ; 33(5): 1615-1632, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-33793860

RESUMO

TARGET OF RAPAMYCIN (TOR) is a conserved eukaryotic Ser/Thr protein kinase that coordinates growth and metabolism with nutrient availability. We conducted a medium-throughput functional genetic screen to discover essential genes that promote TOR activity in plants, and identified a critical regulatory enzyme, cytosolic phosphoribosyl pyrophosphate (PRPP) synthetase (PRS4). PRS4 synthesizes cytosolic PRPP, a key upstream metabolite in nucleotide synthesis and salvage pathways. We found that prs4 knockouts are embryo-lethal in Arabidopsis thaliana, and that silencing PRS4 expression in Nicotiana benthamiana causes pleiotropic developmental phenotypes, including dwarfism, aberrant leaf shape, and delayed flowering. Transcriptomic analysis revealed that ribosome biogenesis is among the most strongly repressed processes in prs4 knockdowns. Building on these results, we discovered that TOR activity is inhibited by chemical or genetic disruption of nucleotide biosynthesis, but that this effect can be reversed by supplying plants with nucleobases. Finally, we show that TOR transcriptionally promotes nucleotide biosynthesis to support the demands of ribosomal RNA synthesis. We propose that TOR coordinates ribosome biogenesis with nucleotide availability in plants to maintain metabolic homeostasis and support growth.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Nucleotídeos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Ribossomos/metabolismo , Arabidopsis/embriologia , Arabidopsis/genética , Citosol/metabolismo , Inativação Gênica , Genes de Plantas , Fósforo/metabolismo , Células Vegetais/metabolismo , Desenvolvimento Vegetal , Purinas/biossíntese , Pirimidinas/biossíntese , Nicotiana/metabolismo , Transcriptoma/genética
5.
Mol Biol Evol ; 38(8): 3445-3458, 2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-33878189

RESUMO

The high mutational load of mitochondrial genomes combined with their uniparental inheritance and high polyploidy favors the maintenance of deleterious mutations within populations. How cells compose and adapt to the accumulation of disadvantageous mitochondrial alleles remains unclear. Most harmful changes are likely corrected by purifying selection, however, the intimate collaboration between mitochondria- and nuclear-encoded gene products offers theoretical potential for compensatory adaptive changes. In plants, cytoplasmic male sterilities are known examples of nucleo-mitochondrial coadaptation situations in which nuclear-encoded restorer of fertility (Rf) genes evolve to counteract the effect of mitochondria-encoded cytoplasmic male sterility (CMS) genes and restore fertility. Most cloned Rfs belong to a small monophyletic group, comprising 26 pentatricopeptide repeat genes in Arabidopsis, called Rf-like (RFL). In this analysis, we explored the functional diversity of RFL genes in Arabidopsis and found that the RFL8 gene is not related to CMS suppression but essential for plant embryo development. In vitro-rescued rfl8 plantlets are deficient in the production of the mitochondrial heme-lyase complex. A complete ensemble of molecular and genetic analyses allowed us to demonstrate that the RFL8 gene has been selected to permit the translation of the mitochondrial ccmFN2 gene encoding a heme-lyase complex subunit which derives from the split of the ccmFN gene, specifically in Brassicaceae plants. This study represents thus a clear case of nuclear compensation to a lineage-specific mitochondrial genomic rearrangement in plants and demonstrates that RFL genes can be selected in response to other mitochondrial deviancies than CMS suppression.


Assuntos
Arabidopsis/genética , Genoma Mitocondrial , Seleção Genética , Arabidopsis/embriologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Grupo dos Citocromos c/metabolismo , Desenvolvimento Embrionário , Biossíntese de Proteínas , Splicing de RNA
6.
Sci Rep ; 11(1): 4776, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33637848

RESUMO

Stress response signals can propagate between cells damaged by targeted effects (TE) of ionizing radiation (e.g. energy depositions and ionizations in the nucleus) and undamaged "bystander" cells, sometimes over long distances. Their consequences, called non-targeted effects (NTE), can substantially contribute to radiation-induced damage (e.g. cell death, genomic instability, carcinogenesis), particularly at low doses/dose rates (e.g. space exploration, some occupational and accidental exposures). In addition to controlled laboratory experiments, analysis of observational data on wild animal and plant populations from areas contaminated by radionuclides can enhance our understanding of radiation responses because such data span wide ranges of dose rates applied over many generations. Here we used a mechanistically-motivated mathematical model of TE and NTE to analyze published embryonic mortality data for plants (Arabidopsis thaliana) and rodents (Clethrionomys glareolus) from the Chernobyl nuclear power plant accident region. Although these species differed strongly in intrinsic radiosensitivities and post-accident radiation exposure magnitudes, model-based analysis suggested that NTE rather than TE dominated the responses of both organisms to protracted low-dose-rate irradiation. TE were predicted to become dominant only above the highest dose rates in the data. These results support the concept of NTE involvement in radiation-induced health risks from chronic radiation exposures.


Assuntos
Arabidopsis/embriologia , Arabidopsis/efeitos da radiação , Arvicolinae/embriologia , Acidente Nuclear de Chernobyl , Animais , Perda do Embrião/etiologia , Modelos Biológicos , Doses de Radiação , Radiação Ionizante
7.
Proc Natl Acad Sci U S A ; 117(9): 5049-5058, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32051250

RESUMO

The coordinated redistribution of sugars from mature "source" leaves to developing "sink" leaves requires tight regulation of sugar transport between cells via plasmodesmata (PD). Although fundamental to plant physiology, the mechanisms that control PD transport and thereby support development of new leaves have remained elusive. From a forward genetic screen for altered PD transport, we discovered that the conserved eukaryotic glucose-TOR (TARGET OF RAPAMYCIN) metabolic signaling network restricts PD transport in leaves. Genetic approaches and chemical or physiological treatments to either promote or disrupt TOR activity demonstrate that glucose-activated TOR decreases PD transport in leaves. We further found that TOR is significantly more active in mature leaves photosynthesizing excess sugars than in young, growing leaves, and that this increase in TOR activity correlates with decreased rates of PD transport. We conclude that leaf cells regulate PD trafficking in response to changing carbohydrate availability monitored by the TOR pathway.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Células Vegetais/metabolismo , Folhas de Planta/metabolismo , Plasmodesmos/metabolismo , Arabidopsis/embriologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transporte Biológico , Metabolismo dos Carboidratos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Técnicas de Silenciamento de Genes , Inativação Gênica , Folhas de Planta/crescimento & desenvolvimento , Transporte Proteico , Transdução de Sinais , Nicotiana/genética , Nicotiana/metabolismo
8.
New Phytol ; 225(4): 1606-1617, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31569267

RESUMO

Two types of tonoplast proton pumps, H+ -pyrophosphatase (V-PPase) and the H+ -ATPase (V-ATPase), establish the proton gradient that powers molecular traffic across the tonoplast thereby facilitating turgor regulation and nutrient homeostasis. However, how proton pumps regulate development remains unclear. In this study, we investigated the function of two types of proton pumps in Arabidopsis embryo development and pattern formation. While disruption of either V-PPase or V-ATPase had no obvious effect on plant embryo development, knocking out both resulted in severe defects in embryo pattern formation from the early stage. While the first division in wild-type zygote was asymmetrical, a nearly symmetrical division occurred in the mutant, followed by abnormal pattern formation at all stages of embryo development. The embryonic defects were accompanied by dramatic differences in vacuole morphology and distribution, as well as disturbed localisation of PIN1. The development of mutant cotyledons and root, and the auxin response of mutant seedlings supported the hypothesis that mutants lacking tonoplast proton pumps were defective in auxin transport and distribution. Taking together, we proposed that two tonoplast proton pumps are required for vacuole morphology and PIN1 localisation, thereby controlling vacuole and auxin-related developmental processes in Arabidopsis embryos and seedlings.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/embriologia , Desenvolvimento Embrionário/fisiologia , Pirofosfatase Inorgânica/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/fisiologia , Gravitropismo/fisiologia , Pirofosfatase Inorgânica/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Mutação , Naftóis/farmacologia , Ftalimidas/farmacologia , Raízes de Plantas/crescimento & desenvolvimento , Transporte Proteico
9.
Elife ; 82019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31789592

RESUMO

MADS-box transcription factors (TFs) are ubiquitous in eukaryotic organisms and play major roles during plant development. Nevertheless, their function in seed development remains largely unknown. Here, we show that the imprinted Arabidopsis thaliana MADS-box TF PHERES1 (PHE1) is a master regulator of paternally expressed imprinted genes, as well as of non-imprinted key regulators of endosperm development. PHE1 binding sites show distinct epigenetic modifications on maternal and paternal alleles, correlating with parental-specific transcriptional activity. Importantly, we show that the CArG-box-like DNA-binding motifs that are bound by PHE1 have been distributed by RC/Helitron transposable elements. Our data provide an example of the molecular domestication of these elements which, by distributing PHE1 binding sites throughout the genome, have facilitated the recruitment of crucial endosperm regulators into a single transcriptional network.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/embriologia , Arabidopsis/genética , Elementos de DNA Transponíveis/genética , Domesticação , Endosperma/genética , Impressão Genômica , Proteínas de Domínio MADS/metabolismo , Motivos de Aminoácidos , Proteínas de Arabidopsis/genética , Sequência de Bases , Cruzamentos Genéticos , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Histonas/metabolismo , Lisina/metabolismo , Proteínas de Domínio MADS/genética , Metilação , Poliploidia , Regiões Promotoras Genéticas/genética , Ligação Proteica/genética , Sementes/genética
10.
Plant Cell ; 31(11): 2697-2710, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31511315

RESUMO

Arabidopsis (Arabidopsis thaliana) efficiently synthesizes the antifungal phytoalexin camalexin without the apparent release of bioactive intermediates, such as indole-3-acetaldoxime, suggesting that the biosynthetic pathway of this compound is channeled by the formation of an enzyme complex. To identify such protein interactions, we used two independent untargeted coimmunoprecipitation (co-IP) approaches with the biosynthetic enzymes CYP71B15 and CYP71A13 as baits and determined that the camalexin biosynthetic P450 enzymes copurified with these enzymes. These interactions were confirmed by targeted co-IP and Förster resonance energy transfer measurements based on fluorescence lifetime microscopy (FRET-FLIM). Furthermore, the interaction of CYP71A13 and Arabidopsis P450 Reductase1 was observed. We detected increased substrate affinity of CYP79B2 in the presence of CYP71A13, indicating an allosteric interaction. Camalexin biosynthesis involves glutathionylation of the intermediary indole-3-cyanohydrin, which is synthesized by CYP71A12 and especially CYP71A13. FRET-FLIM and co-IP demonstrated that the glutathione transferase GSTU4, which is coexpressed with Trp- and camalexin-specific enzymes, is physically recruited to the complex. Surprisingly, camalexin concentrations were elevated in knockout and reduced in GSTU4-overexpressing plants. This shows that GSTU4 is not directly involved in camalexin biosynthesis but rather plays a role in a competing mechanism.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Vias Biossintéticas/fisiologia , Indóis/metabolismo , Tiazóis/metabolismo , Arabidopsis/embriologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Vias Biossintéticas/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Sesquiterpenos , Nicotiana/genética , Nicotiana/metabolismo , Fitoalexinas
11.
Dev Cell ; 50(6): 767-779.e7, 2019 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-31447263

RESUMO

Eukaryotic organisms accomplish the removal of introns to produce mature mRNAs through splicing. Nuclear and organelle splicing mechanisms are distinctively executed by spliceosome and group II intron complex, respectively. Here, we show that LEFKOTHEA, a nuclear encoded RNA-binding protein, participates in chloroplast group II intron and nuclear pre-mRNA splicing. Transiently optimized LEFKOTHEA nuclear activity is fundamental for plant growth, whereas the loss of function abruptly arrests embryogenesis. Nucleocytoplasmic partitioning and chloroplast allocation are efficiently balanced via functional motifs in LEFKOTHEA polypeptide. In the context of nuclear-chloroplast coevolution, our results provide a strong paradigm of the convergence of RNA maturation mechanisms in the nucleus and chloroplasts to coordinately regulate gene expression and effectively control plant growth.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Núcleo Celular/genética , Cloroplastos/genética , Splicing de RNA/genética , Proteínas de Ligação a RNA/metabolismo , Arabidopsis/embriologia , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/genética , Núcleo Celular/ultraestrutura , Cloroplastos/ultraestrutura , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Íntrons/genética , Meristema/metabolismo , Modelos Biológicos , Mutação/genética , Fenótipo , Ligação Proteica/genética , Precursores de RNA/genética , Precursores de RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Sementes/metabolismo , Sementes/ultraestrutura , Spliceossomos/metabolismo
12.
Nat Commun ; 10(1): 3896, 2019 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-31467270

RESUMO

Iron (Fe) is essential for life, but in excess can cause oxidative cytotoxicity through the generation of Fe-catalyzed reactive oxygen species. It is yet unknown which genes and mechanisms can provide Fe-toxicity tolerance. Here, we identify S-nitrosoglutathione-reductase (GSNOR) variants underlying a major quantitative locus for root tolerance to Fe-toxicity in Arabidopsis using genome-wide association studies and allelic complementation. These variants act largely through transcript level regulation. We further show that the elevated nitric oxide is essential for Fe-dependent redox toxicity. GSNOR maintains root meristem activity and prevents cell death via inhibiting Fe-dependent nitrosative and oxidative cytotoxicity. GSNOR is also required for root tolerance to Fe-toxicity throughout higher plants such as legumes and monocots, which exposes an opportunity to address crop production under high-Fe conditions using natural GSNOR variants. Overall, this study shows that genetic or chemical modulation of the nitric oxide pathway can broadly modify Fe-toxicity tolerance.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/embriologia , Arabidopsis/metabolismo , Tolerância a Medicamentos/fisiologia , Glutationa Redutase/metabolismo , Ferro/metabolismo , Ferro/toxicidade , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Morte Celular , Loci Gênicos , Estudo de Associação Genômica Ampla , Glutationa Redutase/genética , Haplótipos , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/toxicidade , Meristema/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico/toxicidade , Nitrosação , Estresse Oxidativo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas
13.
Plant J ; 99(6): 1192-1202, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31112314

RESUMO

Seed germination is a fundamental process in the plant life cycle and is regulated by functionally opposing internal and external inputs. Here we explored the role of a negative regulator of photomorphogenesis, a B-box-containing protein (BBX19), as a molecular link between the inhibitory action of the phytohormone abscisic acid (ABA) and the promoting role of light in germination. We show that seeds of BBX19-overexpressing lines, in contrast to those of BBX19 RNA interference lines, display ABA hypersensitivity, albeit independently of elongated hypocotyl 5 (HY5). Moreover, we establish that BBX19 functions neither via perturbation of GA signaling, the ABA antagonistic phytohormone, nor through interference with the DELLA protein germination repressors. Rather, BBX19 functions as an inducer of ABA INSENSITIVE5 (ABI5) by binding to the light-responsive GT1 motifs in the gene promoter. In summary, we identify BBX19 as a regulatory checkpoint, directing diverse developmental processes and tailoring adaptive responses to distinct endogenous and exogenous signals.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/embriologia , Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Germinação/genética , Sementes/metabolismo , Fatores de Transcrição/metabolismo , Ácido Abscísico/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica de Plantas/genética , Germinação/efeitos dos fármacos , Giberelinas/metabolismo , Luz , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Regiões Promotoras Genéticas/efeitos dos fármacos , Ligação Proteica , Plântula/efeitos dos fármacos , Plântula/embriologia , Plântula/genética , Plântula/metabolismo , Sementes/efeitos dos fármacos , Sementes/embriologia , Sementes/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Nicotiana/metabolismo , Fatores de Transcrição/genética , Regulação para Cima
14.
Proc Natl Acad Sci U S A ; 116(7): 2761-2766, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30692258

RESUMO

Arabidopsis seed development involves maternal small interfering RNAs (siRNAs) that induce RNA-directed DNA methylation (RdDM) through the NRPD1-mediated pathway. To investigate their biological functions, we characterized siRNAs in the endosperm and seed coat that were separated by laser-capture microdissection (LCM) in reciprocal genetic crosses with an nrpd1 mutant. We also monitored the spatial-temporal activity of the NRPD1-mediated pathway on seed development using the AGO4:GFP::AGO4 (promoter:GFP::protein) reporter and promoter:GUS sensors of siRNA-mediated silencing. From these approaches, we identified four distinct groups of siRNA loci dependent on or independent of the maternal NRPD1 allele in the endosperm or seed coat. A group of maternally expressed NRPD1-siRNA loci targets endosperm-preferred genes, including those encoding AGAMOUS-LIKE (AGL) transcription factors. Using translational promoter:AGL::GUS constructs as sensors, we demonstrate that spatial and temporal expression patterns of these genes in the endosperm are regulated by the NRPD1-mediated pathway irrespective of complete silencing (AGL91) or incomplete silencing (AGL40) of these target genes. Moreover, altered expression of these siRNA-targeted genes affects seed size. We propose that the corresponding maternal siRNAs could account for parent-of-origin effects on the endosperm in interploidy and hybrid crosses. These analyses reconcile previous studies on siRNAs and imprinted gene expression during seed development.


Assuntos
Arabidopsis/embriologia , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Impressão Genômica , Óvulo Vegetal , RNA de Plantas/fisiologia , RNA Interferente Pequeno/genética , Sementes/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética
15.
Plant Reprod ; 32(1): 105-111, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30547251

RESUMO

Plant zygotes usually undergo asymmetrical cell division, giving rise to the formation of two daughter cells with distinct developmental cell fate. The small apical cell will develop into the major part of embryo proper, whereas the larger basal cell will divide to form a transient suspensor. Thus, the apical and basal cell lineages are an excellent model to study cell fate determination in relation to zygote polarity. However, the molecular mechanism underlying the differentiation of two distinct cell lineages is not yet understood, possibly due to the technique limitations. Previously, we have established a protocol for isolating apical cell and basal cell for cDNA library construction in tobacco. However, the method for isolating tiny Arabidopsis embryos has long been considered much more difficult. Here, we present a detailed protocol for isolating early Arabidopsis proembryos and separating apical and basal cell lineages of proembryos, which allow us to establish cell lineage-specific transcriptomes of early proembryos.


Assuntos
Arabidopsis/citologia , Linhagem da Célula , Separação Celular/métodos , Células Vegetais , Sementes/citologia , Sementes/genética , Arabidopsis/embriologia , Arabidopsis/genética , Perfilação da Expressão Gênica , RNA de Plantas
16.
J Hazard Mater ; 344: 1007-1024, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30216961

RESUMO

This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of the Editor, after consultation with the corresponding author Dr. Shiliang Liu due to image issues. The article reused several images from the author's paper published in Environmental Pollution 239 (2018) 53-68 (which has been retracted due to image issues): Figures 1c, 1d, 2a, 2b, 2c, 4a, 9a and 9b. The article also plagiarized part of a paper from other authors that had appeared in Plant Physiology, 150, 229-243 (2009). The images that were reused were Fig 5 a, 5c, 5e and 5 g. This was brought to the editors' attention via a letter to the editor. One of the conditions of submission of a paper for publication is that authors declare explicitly that their work is original and has not appeared in a publication elsewhere. Re-use of any data should be appropriately cited. As such this article represents a severe abuse of the scientific publishing system. The scientific community takes a very strong view on this matter and apologies are offered to readers of the journal that this was not detected during the submission process.


Assuntos
Arabidopsis/efeitos dos fármacos , Cádmio/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/metabolismo , Arabidopsis/embriologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Corantes Fluorescentes/química , Glutationa Redutase/metabolismo , Óxido Nítrico/biossíntese , S-Nitrosoglutationa/metabolismo , Espectrofotometria Atômica , Estresse Fisiológico/efeitos dos fármacos
17.
Physiol Plant ; 161(3): 414-430, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28675462

RESUMO

In higher plants, chloroplasts carry out many important functions, and normal chloroplast development is required for embryogenesis. Numerous chloroplast-targeted proteins involved in embryogenesis have been identified. Nevertheless, their functions remain unclear. In this study, a chloroplast-localized protein, EMB2738, was reported to be involved in Arabidopsis embryogenesis. EMB2738 knockout led to defective embryos, and the embryo development in emb2738 was interrupted after the globular stage. Complementation experiments identified the AT3G12080 locus as EMB2738. Cellular observation indicated that severely impaired chloroplast development was observed in these aborted embryos. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis showed that chloroplast-encoded photosynthetic genes, which are transcribed by plastid-encoded RNA polymerase (PEP), are predominantly decreased in defective embryogenesis, compared with those in the wild-type. In contrast, genes encoding PEP core subunits, which are transcribed by nucleus-encoded RNA polymerase (NEP), were increased. These results suggested that the knockout of EMB2738 strongly blocked chloroplast-encoded photosynthesis gene expression in embryos. Silencing of the EMB2738 orthologue in tobacco through a virus-induced genome silencing technique resulted in an albinism phenotype, vacuolated chloroplasts and decreased PEP-dependent plastid transcription. These results suggested that NtEMB2738 might be involved in plastid gene expression. Nevertheless, genetic analysis showed that the NtEMB2738 coding sequence could not fully rescue the defective embryogenesis of the emb2738 mutant, which suggested functional divergence between NtEMB2738 and EMB2738 in embryogenesis. Taken together, these results indicated that both EMB2738 and NtEMB2738 are involved in the expression of plastid genes in higher plants, and there is a functional divergence between NtEMB2738 and EMB2738 in embryogenesis.


Assuntos
Arabidopsis/embriologia , Cloroplastos/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Nicotiana/embriologia , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/ultraestrutura , Cloroplastos/ultraestrutura , Cruzamentos Genéticos , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Inativação Gênica , Teste de Complementação Genética , Mutação/genética , Fenótipo , Filogenia , Proteínas de Plantas/genética , Transporte Proteico , Sementes/embriologia , Sementes/genética , Sementes/ultraestrutura , Análise de Sequência de Proteína , Nicotiana/genética , Transcrição Gênica
18.
PLoS One ; 12(7): e0180478, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28678890

RESUMO

Eukaryotic protein phosphatase 4 (PP4) is a PP2A-type protein phosphatase that is part of a conserved complex with regulatory factors PSY2 and PP4R2. Various lines of Arabidopsis thaliana with mutated PP4 subunit genes were constructed to study the so far completely unknown functions of PP4 in plants. Mutants with knocked out putative functional homolog of the PSY2 LIKE (PSY2L) gene were dwarf and bushy, while plants with knocked out PP4R2 LIKE (PP4R2L) looked very similar to WT. The psy2l seedlings had short roots with disorganized morphology and impaired meristem. Seedling growth was sensitive to the genotoxin cisplatin. Global transcript analysis (RNA-seq) of seedlings and rosette leaves revealed several groups of genes, shared between both types of tissues, strongly influenced by knocked out PSY2L. Receptor kinases, CRINKLY3 and WAG1, important for growth and development, were down-regulated 3-7 times. EUKARYOTIC ELONGATION FACTOR5A1 was down-regulated 4-6 fold. Analysis of hormone sensitive genes indicated that abscisic acid levels were high, while auxin, cytokinin and gibberellic acid levels were low in psy2l. Expression of specific transcription factors involved in regulation of anthocyanin synthesis were strongly elevated, e.g. the master regulator PAP1, and intriguingly TT8, which is otherwise mainly expressed in seeds. The psy2l mutants accumulated anthocyanins under conditions where WT did not, pointing to PSY2L as a possible upstream negative regulator of PAP1 and TT8. Expression of the sugar-phosphate transporter GPT2, important for cellular sugar and phosphate homeostasis, was enhanced 7-8 times. Several DNA damage response genes, including the cell cycle inhibitor gene WEE1, were up-regulated in psy2l. The activation of DNA repair signaling genes, in combination with phenotypic traits showing aberrant root meristem and sensitivity to the genotoxic cisplatin, substantiate the involvement of Arabidopsis PSY2L in maintenance of genome integrity.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Raízes de Plantas/anatomia & histologia , Sementes , Estresse Fisiológico , Arabidopsis/embriologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Genes de Plantas , Testes de Mutagenicidade , Proteínas Associadas a Pancreatite
19.
Plant Physiol ; 174(3): 1633-1647, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28461400

RESUMO

Metal accumulation in seeds is a prerequisite for germination and establishment of plants but also for micronutrient delivery to humans. To investigate metal transport processes and their interactions in seeds, we focused on METAL TOLERANCE PROTEIN8 (MTP8), a tonoplast transporter of the manganese (Mn) subclade of cation diffusion facilitators, which in Arabidopsis (Arabidopsis thaliana) is expressed in embryos of seeds. The x-ray fluorescence imaging showed that expression of MTP8 was responsible for Mn localization in subepidermal cells on the abaxial side of the cotyledons and in cortical cells of the hypocotyl. Accordingly, under low Mn availability, MTP8 increased seed stores of Mn, required for efficient seed germination. In mutant embryos lacking expression of VACUOLAR IRON TRANSPORTER1 (VIT1), MTP8 built up iron (Fe) hotspots in MTP8-expressing cells types, suggesting that MTP8 transports Fe in addition to Mn. In mtp8 vit1 double mutant seeds, Mn and Fe were distributed in all cell types of the embryo. An Fe transport function of MTP8 was confirmed by its ability to complement Fe hypersensitivity of a yeast mutant defective in vacuolar Fe transport. Imbibing mtp8-1 mutant seeds in the presence of Mn or subjecting seeds to wet-dry cycles showed that MTP8 conferred Mn tolerance. During germination, MTP8 promoted reallocation of Fe from the vasculature. These results indicate that cell type-specific accumulation of Mn and Fe in seeds depends on MTP8 and that this transporter plays an important role in the generation of seed metal stores as well as for metal homeostasis and germination efficiency under challenging environmental conditions.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/embriologia , Arabidopsis/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Germinação , Homeostase , Ferro/metabolismo , Manganês/metabolismo , Sementes/embriologia , Arabidopsis/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Teste de Complementação Genética , Germinação/genética , Modelos Biológicos , Mutação/genética , Regiões Promotoras Genéticas/genética , Saccharomyces cerevisiae/metabolismo , Sementes/genética , Espectrometria por Raios X
20.
Science ; 356(6336)2017 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-28450583

RESUMO

To produce seeds, flowering plants need to specify somatic cells to undergo meiosis. Here, we reveal a regulatory cascade that controls the entry into meiosis starting with a group of redundantly acting cyclin-dependent kinase (CDK) inhibitors of the KIP-RELATED PROTEIN (KRP) class. KRPs function by restricting CDKA;1-dependent inactivation of the Arabidopsis Retinoblastoma homolog RBR1. In rbr1 and krp triple mutants, designated meiocytes undergo several mitotic divisions, resulting in the formation of supernumerary meiocytes that give rise to multiple reproductive units per future seed. One function of RBR1 is the direct repression of the stem cell factor WUSCHEL (WUS), which ectopically accumulates in meiocytes of triple krp and rbr1 mutants. Depleting WUS in rbr1 mutants restored the formation of only a single meiocyte.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/embriologia , Proteínas de Homeodomínio/metabolismo , Óvulo Vegetal/embriologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular , Proteínas Inibidoras de Quinase Dependente de Ciclina/genética , Proteínas Inibidoras de Quinase Dependente de Ciclina/metabolismo , Proteínas de Homeodomínio/genética , Meiose/genética , Meiose/fisiologia , Mutação , Óvulo Vegetal/genética , Óvulo Vegetal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA