Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
J Hazard Mater ; 471: 134313, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38669927

RESUMO

Secondary lignification of the root exodermis of Kandelia obovata is crucial for its response to adversity such as high salinity and anaerobic environment, and this lignification is also effective in blocking cadmium transport to the roots. However, how the differences in lignification of root exodermis at different developmental stages respond to Cd stress and its regulatory mechanisms have not been revealed. In this study, after analyzing the root structure and cell wall thickness using a Phenom scanning electron microscope as well as measuring cadmium content in the root cell wall, we found that the exodermis of young and mature roots of K. obovata responded to Cd stress through the polymerization of different lignin monomers, forming two different mechanisms: chelation and blocking. Through small RNA sequencing, RLM-5'-RACE and dual luciferase transient expression system, we found that miR397 targets and regulates KoLAC4/17/7 expression. The expression of KoLAC4/17 promoted the accumulation of guaiacyl lignin during lignification and enhanced the binding of cadmium to the cell wall. Meanwhile, KoLAC7 expression promotes the accumulation of syringyl lignin during lignification, which enhances the obstruction of cadmium and improves the tolerance to cadmium. These findings enhance our understanding of the molecular mechanisms underlying the differential lignification of the root exodermis of K. obovata in response to cadmium stress, and provide scientific guidance for the conservation of mangrove forests under heavy metal pollution.


Assuntos
Cádmio , Lignina , MicroRNAs , Raízes de Plantas , Lignina/química , Cádmio/toxicidade , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , MicroRNAs/metabolismo , MicroRNAs/genética , Estresse Fisiológico/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Polimerização/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Araceae/efeitos dos fármacos , Araceae/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
2.
Int J Mol Sci ; 24(15)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37569533

RESUMO

Cadmium (Cd) is one of the most toxic metals in the environment and exerts deleterious effects on plant growth and production. Duckweed has been reported as a promising candidate for Cd phytoremediation. In this study, the growth, Cd enrichment, and antioxidant enzyme activity of duckweed were investigated. We found that both high-Cd-tolerance duckweed (HCD) and low-Cd-tolerance duckweed (LCD) strains exposed to Cd were hyper-enriched with Cd. To further explore the underlying molecular mechanisms, a genome-wide transcriptome analysis was performed. The results showed that the growth rate, chlorophyll content, and antioxidant enzyme activities of duckweed were significantly affected by Cd stress and differed between the two strains. In the genome-wide transcriptome analysis, the RNA-seq library generated 544,347,670 clean reads, and 1608 and 2045 differentially expressed genes were identified between HCD and LCD, respectively. The antioxidant system was significantly expressed during ribosomal biosynthesis in HCD but not in LCD. Fatty acid metabolism and ethanol production were significantly increased in LCD. Alpha-linolenic acid metabolism likely plays an important role in Cd detoxification in duckweed. These findings contribute to the understanding of Cd tolerance mechanisms in hyperaccumulator plants and lay the foundation for future phytoremediation studies.


Assuntos
Araceae , Transcriptoma , Cádmio/toxicidade , Cádmio/metabolismo , Antioxidantes/metabolismo , Perfilação da Expressão Gênica , Araceae/genética , Araceae/metabolismo
3.
Sci Total Environ ; 859(Pt 2): 160389, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36423841

RESUMO

Duckweed is a newly reported Cd hyperaccumulator that grow rapidly; however, little is known about its tolerance and detoxification mechanisms. In this study, we investigated the tissue, subcellular, and chemical form distribution of the Cd in duckweed and studied the influences of Cd on duckweed growth, ultrastructure, and rhizosphere microbial community. The results showed that Cd could negatively affect the growth of duckweed and shorten the root length. More Cd accumulated in the roots than in the leaves, and Cd was transferred from the roots to the leaves with time. During 12-24 h, Cd mainly existed in the cell wall fraction (2.05 %-95.52 %) and the organelle fraction (5.03 %-97.80 %), followed the soluble fraction (0.14 %-16.98 %). Over time, the proportion of Cd in the organelles increased (46.64 %-92.83 %), exceeding that in the cell wall (6.79 %-66.23 %), which indicated that duckweed detoxification mechanism may be related to the retention of cell wall and vacuole. The main chemical form of Cd was the NaCl-extracted state (30.15 %-88.66 %), which was integrated with pectate and protein. With increasing stress concentration and time, the proportion of the HCl-extracted state and HAc-extracted state increased, and they were low-toxic Cd oxalate and Cd phosphate, respectively. Cd damaged the ultrastructure of cells such as chloroplasts and mitochondria and inhibited the diversity of microbial communities in the duckweed rhizosphere; however, the dominant populations that could tolerate heavy metals increased. It was speculated that duckweed distributed Cd in a less toxic chemical form in a less active location, mainly through retention in the root cell wall and sequestration in the leaf vacuoles, and is dynamically adjusted. The rhizosphere microbial communities tolerate heavy metals may also be one of the mechanisms by which duckweed can tolerate Cd. This study revealed the mechanism of duckweed tolerance and detoxification of Cd at the molecular level and provides a theoretical basis for further development of duckweed.


Assuntos
Araceae , Metais Pesados , Microbiota , Cádmio/metabolismo , Rizosfera , Araceae/metabolismo , Metais Pesados/metabolismo , Raízes de Plantas/metabolismo
4.
Plant Physiol Biochem ; 178: 1-11, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35245706

RESUMO

Pistia stratiotes is a cadmium (Cd) hyperaccumulating plant with strong bioaccumulation and translocation capacity for Cd. A hydroponic experiment was used to evaluate the combined effect of Zinc (Zn) and Cd at different concentrations on leaf growth and metabolism of P. stratiotes. This study revealed the physiological defense and metabolic strategy of responses to Zn-Cd co-pollution. With the Zn50Cd1, Zn50Cd10, Zn100Cd1, and Zn100Cd10 treatments for 9 d, the relative crown diameter, relative leave number, and ramet number of the plant had no significant difference with the control. Under the compound treatments containing Zn50Cd50 and Zn100Cd50, the activity of the glyoxalase system and amino acid metabolism in the leaves were inhibited. The leaf photosynthetic apparatus increased heat dissipation to reduce the damage to the photosystem II (PS II) reaction center caused by excess excitation energy under Zn-Cd stress. This safeguarded the balance between the absorption and utilization of light energy. Compared to the control, the Zn and Cd co-pollution for 9 d had no effect on the reduced glutathione (GSH) and oxidized glutathione (GSSG) contents. There was no effect on the dehydroascorbate reductase (DHAR) and glutathione reductase (GR) activities, but there was increased ascorbate peroxidase (APX) activity and oxidized ascorbic acid (DHA) content. These increased the antioxidant capacity of the ascorbate-glutathione (AsA-GSH) cycle. The treated plants also had increased levels of carnosol and substances related to lipid metabolism including 9, 10-Dihydroxystearate, Prostaglandin G2, Sphingosine, and 13-L-Hydroperoxylinoleic acid, maintaining the cell stability and resistance to the Zn-Cd stress.


Assuntos
Araceae , Cádmio , Antioxidantes/metabolismo , Araceae/metabolismo , Ácido Ascórbico/metabolismo , Cádmio/toxicidade , Glutationa/metabolismo , Estresse Oxidativo , Zinco/farmacologia
5.
Environ Sci Pollut Res Int ; 29(31): 47233-47241, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35179688

RESUMO

In this study, the use of natural adsorbents, such as zeolite (clinoptilolite), leonardite, and duckweed (Lemna minor, L. 1753) was investigated for the regulation of optimum water qualities in freshwater aquaculture. The study was carried out in 3 experiments in triplicate. In the first experiment, aquarium fish feed (35% protein) was used as the ammonia source at 3 different rates (0.2, 0.4, and 0.6 g feed per 500 mL of tap water). In the second experiment, clinoptilolite (C) and leonardite (L) mixture (C:L = 1:2) were added to balance excessive ammonia. In the third experiment, duckweed (1.5 g/500 mL) was added to aquaria (10 cm in diameter) in a way to cover the surface area, and the ammonium adsorption of duckweed at low NH4+-N concentrations was determined with 9 measurements. In this study, NH3 values reached their peaks (0.19 mg/L) at the end of 1st experiment, in which ammonia values originating from the unconsumed feed were determined. In the 2nd experiment, NH3 values began to decline (0.06 mg/L) with the addition of natural adsorbents (zeolite + leonardite) and were decreased to 0.003 mg/L with the addition of duckweed in experiment III, where natural adsorbents started to reach saturation. When the data obtained at the end of this study were evaluated, it was determined that all 3 natural materials had a positive effect on water parameters in aquaculture systems. As a result, it was determined that in high concentrations of zeolite + leonardite mixture and in low concentration of duckweed there had been a good removal efficiency.


Assuntos
Araceae , Poluentes Químicos da Água , Zeolitas , Amônia/metabolismo , Animais , Aquicultura , Araceae/metabolismo , Água Doce , Água/metabolismo , Poluentes Químicos da Água/análise
6.
Int J Phytoremediation ; 24(12): 1259-1266, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35037542

RESUMO

Pistia stratiotes can not only effectively remediate eutrophic water, but also displays strong absorption and bioaccumulation abilities for heavy metals. However, it has not been well-understood how the plant resists the combined stress of heavy metals. In these experiments, the morphophysiological traits, the ascorbate-glutathione (AsA-GSH) cycle, the glyoxalase system, and the contents of zinc (Zn) and cadmium (Cd) were investigated under Zn and Cd co-pollution. The AsA-GSH cycle and glyoxalase system could coordinately alleviate the oxidative and carbonyl stress, which was identified as an important tolerance mechanism. With Zn50Cd1, Zn50Cd10, Zn100Cd1, and Zn100Cd10 treatments for 18 days, 90.75-93.69% of Zn and 88.13-96.96% Cd accumulated in the roots. Treatments with Zn50Cd50, and Zn100Cd50 for 18 days resulted in a decrease of stress tolerance and chlorophyll content in leaves, an increase in plasma membrane permeability, a massive accumulation of methylglyoxal (MG), and visible toxic symptoms. Additionally, the bioaccumulation factor (BCF) for roots and shoots and the translocation factor (TF) were >1, and the content of Cd in shoots was no <100 mg·kg-1. This indicated P. stratiotes was a Cd hyperaccumulator and have great potential for the phytoremediation of heavy metal contaminated water.Novelty statement Pistia stratiotes, a cadmium hyperaccumulator, has great application potential for the phytoremediation of zinc and cadmium co-polluted water.


Assuntos
Araceae , Metais Pesados , Poluentes Químicos da Água , Araceae/metabolismo , Biodegradação Ambiental , Cádmio/metabolismo , Metais Pesados/metabolismo , Raízes de Plantas/metabolismo , Água/metabolismo , Poluentes Químicos da Água/metabolismo , Zinco/metabolismo
7.
Ecotoxicol Environ Saf ; 227: 112907, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34673410

RESUMO

As a pollutant, Cd causes severe impact to the environment and damages living organisms. It can be uptaken from the environment by the natural resistance-associated macrophage protein (Nramp) in plants. However, the ion absorption function of Nramp transporter genes in Spirodela polyrhiza has not been reported. In this study, SpNramp1, SpNramp2, and SpNramp3 from S. polyrhiza were cloned and their functions were analyzed in S. polyrhiza and yeast. Growth parameters and physicochemical indices of wild-type and transgenic lines were measured under Cd stress. Results revealed that SpNramp1, SpNramp2, and SpNramp3 were identified as plasma membrane-localized transporters, and their roles in transporting Cd were verified in yeast. In S. polyrhiza, SpNramp1 overexpression significantly increased the content of Cd, Fe, Mn, and fresh weight. SpNramp2 overexpression increased Mn and Cd. SpNramp3 overexpression increased Fe and Mn concentrations. These results indicate that SpNramp1, SpNramp2, and SpNramp3 had a different preference for ion absorption. Two S. polyrhiza transgenic lines (OE1 and OE3) were obtained. One of them (OE1) showed a stronger accumulation ability, and the other one (OE3) exhibited tolerance capacity to Cd. This study provides new insight into the functions of SpNramp1, SpNramp2, and SpNramp3 and obtains important enrichment lines (OE1) for manipulating Cd accumulation, phytoremediation, and ecological safety.


Assuntos
Araceae , Proteínas de Transporte de Cátions , Araceae/metabolismo , Biodegradação Ambiental , Cádmio/metabolismo , Cádmio/toxicidade , Proteínas de Transporte de Cátions/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
8.
Nutrients ; 13(6)2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-34070816

RESUMO

BACKGROUND: Polyphenols are secondary metabolites produced by plants to defend themselves from environmental stressors. We explored the effect of Wolffia globosa 'Mankai', a novel cultivated strain of a polyphenol-rich aquatic plant, on the metabolomic-gut clinical axis in vitro, in-vivo and in a clinical trial. METHODS: We used mass-spectrometry-based metabolomics methods from three laboratories to detect Mankai phenolic metabolites and examined predicted functional pathways in a Mankai artificial-gut bioreactor. Plasma and urine polyphenols were assessed among the 294 DIRECT-PLUS 18-month trial participants, comparing the effect of a polyphenol-rich green-Mediterranean diet (+1240 mg/polyphenols/day, provided by Mankai, green tea and walnuts) to a walnuts-enriched (+440 mg/polyphenols/day) Mediterranean diet and a healthy controlled diet. RESULTS: Approximately 200 different phenolic compounds were specifically detected in the Mankai plant. The Mankai-supplemented bioreactor artificial gut displayed a significantly higher relative-abundance of 16S-rRNA bacterial gene sequences encoding for enzymes involved in phenolic compound degradation. In humans, several Mankai-related plasma and urine polyphenols were differentially elevated in the green Mediterranean group compared with the other groups (p < 0.05) after six and 18 months of intervention (e.g., urine hydroxy-phenyl-acetic-acid and urolithin-A; plasma Naringenin and 2,5-diOH-benzoic-acid). Specific polyphenols, such as urolithin-A and 4-ethylphenol, were directly involved with clinical weight-related changes. CONCLUSIONS: The Mankai new plant is rich in various unique potent polyphenols, potentially affecting the metabolomic-gut-clinical axis.


Assuntos
Araceae/metabolismo , Araceae/microbiologia , Dieta Mediterrânea , Microbioma Gastrointestinal/efeitos dos fármacos , Metabolômica/métodos , Polifenóis/sangue , Polifenóis/urina , Adulto , Humanos , Israel , Juglans/metabolismo , Juglans/microbiologia , Espectrometria de Massas , Valor Nutritivo , Polifenóis/administração & dosagem , Chá/metabolismo , Chá/microbiologia
9.
PLoS One ; 16(4): e0250118, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33930032

RESUMO

Many phytochemicals can affect the growth and development of plants and insects which can be used as biological control agents. In this study, different concentrations of crude, hexane, chloroform, butanol, and aqueous extracts of Euphorbia nivulia Buch.-Ham., an endemic plant of the Cholistan desert in South Punjab of Pakistan, were analysed for their chemical constituents. Their various concentrations were also tested for their phytotoxic and insecticidal potential against duckweed, Lemna minor L., and the dusky cotton bug, Oxycarenus hyalinipennis Costa. various polyphenols, i.e., quercetin, gallic acid, caffeic acid, syringic acid, coumaric acid, ferulic acid, and cinnamic acid were detected in different concentrations with different solvents during the phytochemical screening of E. nivulia. In the phytotoxicity test, except for 100 µg/mL of the butanol extract gave 4.5% growth regulation, no phytotoxic lethality could be found at 10 and 100 µg/mL of all the extracts. The highest concentration, 1000 µg/mL, of the chloroform, crude, and butanol extracts showed 100, 63.1, and 27.1% of growth inhibition in duckweed, respectively. In the insecticidal bioassay, the highest O. hyalinipennis mortalities (87 and 75%) were recorded at 15% concentration of the chloroform and butanol extracts of E. nivulia. In contrast, the lower concentrations of the E. nivulia extracts caused the lower mortalities. Altogether, these findings revealed that E. nivulia chloroform extracts showed significant phytotoxicity while all the extracts showed insecticidal potential. This potential can be, further, refined to be developed for bio-control agents.


Assuntos
Euphorbia/química , Euphorbia/metabolismo , Extratos Vegetais/farmacologia , Alcaloides , Animais , Araceae/efeitos dos fármacos , Araceae/metabolismo , Artemia/efeitos dos fármacos , Euphorbia/fisiologia , Hemípteros/efeitos dos fármacos , Heterópteros/efeitos dos fármacos , Hexanos , Inseticidas/farmacologia , Paquistão , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/metabolismo
10.
Food Chem ; 343: 128392, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33191012

RESUMO

Duckweeds have long been consumed as vegetables in several South Asian countries. In this study of the chemical constituents of duckweed Landoltia punctata, a new compound, apigenin 6-C-[ß-D-apiofuranosyl-(1 â†’ 2)]-ß-D-glucopyranoside (1), and a previously LC-MS identified compound, quercetin 3-O-ß-D-apiofuranoside (3), as well as three known compounds, luteolin 6-C-[ß-D-apiofuranosyl-(1 â†’ 2)]-ß-D-glucopyranoside (2), apigenin 6-C-ß-D-glucopyranoside (4), and luteolin 7-O-neohespirodise (5), were isolated and identified on the basis of MS and NMR spectroscopic analyses and chemical derivations. In total, 24 flavonoids were identified in L. punctata 0001 by UPLC-ESI-QTOF-MS2. In DPPH and ABTS assays, 3 exhibited significant antioxidant activity with IC50 values of 4.03 ± 1.31 µg/mL and 14.9 ± 2.28 µg/mL, respectively. In in vivo antioxidant activity assays, 1 significantly increased the survival rate of juglone-exposed Caenorhabditis elegans by 2 to 3-fold, and by 75% following thermal damage. Compounds 1-5 exhibited moderate scavenging capacities of intracellular reactive oxygen species in C. elegans exposed to H2O2.


Assuntos
Antioxidantes/química , Araceae/química , Flavonoides/análise , Animais , Antioxidantes/farmacologia , Araceae/metabolismo , Caenorhabditis elegans/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Flavonoides/farmacologia , Peróxido de Hidrogênio/farmacologia , Naftoquinonas/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Espectrometria de Massas por Ionização por Electrospray
11.
J Plant Res ; 133(4): 587-596, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32458160

RESUMO

Duckweed is a kind of floating aquatic plant and increasing its starch production is favorable for bioenergy. In this study, we found that starch biosynthesis was greatly promoted by the supplement of nickel ion (Ni2+) through the comparison of other different ions. The starch content in duckweed was increased by nearly eightfold when duckweed was treated with 20 µM Ni2+. The analysis of paraffin sections visually found that starch granules were more complete and dark blue in Ni2+ treated duckweed than the control. Quantitative real-time PCR demonstrated that the expressions of starch synthesis-related enzymes were up-regulated in Ni2+ treated duckweed. Further analysis revealed that the accumulation of Ni2+ in duckweed effectively increased the activity of urease, which compensated for the deficiency of certain decrease in biomass and accelerated biosynthesis of the starch. Thus, our results represent another strategy to improve starch production of duckweed.


Assuntos
Araceae , Amido , Araceae/metabolismo , Biomassa , Metabolismo dos Carboidratos , Níquel , Amido/metabolismo
12.
Chemosphere ; 251: 126366, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32145575

RESUMO

In this study, the effects of excess nickel (Ni) (100 µM and 200 µM) on growth, antioxidant production, fatty acid, organic and amino acids profiles were examined in Lemna minor L. After 7 days of Ni treatment, chlorosis, growth inhibition and ROS overproduction were observed, accompanied by Ni accumulation. Interestingly, decreased malondialdehyde (MDA) levels were recorded in fronds upon Ni exposure. Fatty acid profiles in Ni-treated L. minor were characterized by increases in saturated- and decreases in unsaturated fatty acids. Ni excess increased the activities of antioxidant enzymes such as superoxide dismutase (SOD), guiacol peroxidase (GPX), and glutathione reductase (GR), and non-enzymatic antioxidants such as glutathione (GSH) and ascorbic acid (AsA); however, deactivation of ascorbate peroxidase (APX) and catalase (CAT) activities were also observed. Disruption of amino acid metabolism in Ni-exposed fronds was evidenced by the accumulation of cysteine, arginine, threonine, valine, isoleucine, leucine, lysine and phenylalanine, as well as reduced levels of tyrosine, alanine, aspartate and proline. Approximately 299%-396%, 139%-254% and 56%-97% concentration increments in citric, malic and oxalic acids, respectively, were concomitantly observed with significant decreases in tartaric, acetic, and fumaric acids in fronds subjected to Ni stress. Taken together, these results indicated that Ni stress induced negative effects on plant physiological, biochemical and morphological processes; however, it is likely that the coordination of metabolites and antioxidants may ameliorate the damaging effects of Ni accumulation.


Assuntos
Araceae/metabolismo , Níquel/metabolismo , Antioxidantes/metabolismo , Araceae/efeitos dos fármacos , Ascorbato Peroxidases/metabolismo , Ácido Ascórbico/farmacologia , Catalase/metabolismo , Ácidos Graxos/metabolismo , Glutationa/metabolismo , Glutationa Redutase/metabolismo , Malondialdeído/metabolismo , Oxirredução , Peroxidase/metabolismo , Peroxidases/metabolismo , Prolina/metabolismo , Superóxido Dismutase/metabolismo
13.
Braz. j. biol ; 79(3): 423-431, July-Sept. 2019. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1001462

RESUMO

Abstract The usage of aquatic plants represents an alternative in the treatment of residues originating from swine. In these systems, one of the N removal methods is the ammonium (NH4 +) uptake and volatilization of ammonia (NH3). In this way, the objective of this work was to evaluate the volatilization rates of NH3 in waste treatment systems swine fluids (SSF) with aquatic macrophytes, as well as the concentration of NH 4+ present in the swine fluids. The experiment was carried out at Campus II/UNOESTE. The treatment systems were composed of 16 boxes of PVC and characterized as: T1 = Control sample 50% of SSF/50% of water; T2 = 50% SSF/50% water + Eichhornia crassipes (Mart.) Solms; T3 = 50% SSF/50% water + Pistia stratiotes L.; T4 = 50% SSF/50% water + Salvinia auriculata Aubl. The design was randomized blocks, with 4 treatments and 4 replicates. The hydrogen potential (pH) and the NH4 + content of the effluent were analyzed weekly, and the volatilization of NH 3 by means of collectors installed in each treatment unit. The presence of aquatic macrophytes promoted the reduction of NH4+ concentration and of the pH values ​​of swine fluids, and this resulted in the reduction of NH3 volatilization rates to the environment, with emphasis on the system with Eichhornia crassipes (Mart.) Solms, which presented the lowest rate of volatilization.


Resumo A utilização de plantas aquáticas representa uma alternativa no tratamento de resíduos oriundos da suinocultura. Nestes sistemas, uma das formas de remoção de nitrogênio (N) é a absorção de amônio (NH4+) pelas plantas, entretanto, também ocorre a volatilização de amônia (NH3). Dessa forma, o objetivo do trabalho foi avaliar as taxas de volatilização de NH3 em sistemas de tratamentos de dejetos líquidos de suínos (DLS) com macrófitas aquáticas, bem como a concentração de NH4+ presente nos dejetos. O experimento foi realizado em área de ambiente aberto no Campus II/UNOESTE. Os sistemas de tratamento foram constituídos de 16 caixas de PVC e caracterizados como: T1 = Testemunha 50% de DLS/50% de água; T2 = 50% de DLS/50% de água + Eichhornia crassipes (Mart.) Solms; T3 = 50% de DLS/50% de água + Pistia stratiotes L.; T4 = 50% de DLS/50% de água + Salvinia auriculata Aubl. O delineamento adotado foi em blocos casualizados, com 4 tratamentos e 4 repetições. Foram analisados o potencial hidrogeniônico (pH) e o teor de NH4 + do efluente semanalmente, e a volatilização de NH3 por meio de coletores instalados em cada unidade de tratamento. A presença das macrófitas aquáticas proporcionou a redução da concentração de NH4+ e dos valores de pH dos dejetos líquidos de suínos, e isto resultou na redução das taxas de volatilização de NH 3 ao meio ambiente, com destaque ao sistema com Eichhornia crassipes (Mart.) Solms, que apresentou a menor taxa de volatilização.


Assuntos
Animais , Eliminação de Resíduos Líquidos , Araceae/metabolismo , Eichhornia/metabolismo , Amônia , Esterco/análise , Suínos , Volatilização , Biodegradação Ambiental , Distribuição Aleatória , Consumo de Água (Saúde Ambiental) , Resíduos Industriais/análise , Criação de Animais Domésticos
14.
Ecotoxicol Environ Saf ; 182: 109397, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31299476

RESUMO

Cadmium (Cd) is a serious threat to plants health. Though some genes have been reported to get involved in the regulation of tolerance to Cd, the mechanisms underlying this process are not fully understood. Na+/H+ antiporter (NHX1) plays an important role in Na+/H+ trafficking. The salt and cadmium stress tolerance were found to be enhanced by NHX1 in duckweed according to our previous study, however, its function in Cd2+ flux under Cd stress has not been studied. Here we explored the Cd2+ flux in wild type (WT) and NHX1 transgenic duckweed (NHX1) under Cd stress. We found that the Cd2+ influx in NHX1 duckweed was significantly declined, followed by an increased Cd2+ efflux after 20 min treatment of Cd, which resulted a less accumulation of Cd in NHX1. Reversely, inhibition of NHX1 by amiloride treatment, enhanced Cd2+ influx in NHX1 duckweed, subsequently delayed Cd2+ efflux in both genotypes of duckweed under Cd2+ shock. H+ efflux in NHX1 duckweed was lower compare with that in WT with 20 min Cd2+ shock. NHX1 also increased the pH value with Cd2+ stress in the transgenic rhizoid. These finding suggested a new function of NHX1 in regulation of Cd2+ and H+ flow during short-term Cd2+ shock.


Assuntos
Araceae/fisiologia , Cádmio/metabolismo , Poluentes Químicos da Água/metabolismo , Araceae/metabolismo , Cádmio/toxicidade , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Plantas Geneticamente Modificadas/metabolismo , Sódio/metabolismo , Trocadores de Sódio-Hidrogênio , Poluentes Químicos da Água/toxicidade
15.
Environ Sci Pollut Res Int ; 26(23): 24121-24131, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31228067

RESUMO

Although iron oxide occurs naturally in the environment, iron oxide nanoparticles have distinct mobility, reactivity, and toxicity, which can harm the human health and nature. This scenario has motivated the investigation of the toxic effects of iron oxide nanoparticles (akaganeite predominance + hematite) on the aquatic plant Lemna minor. First, nanoparticles were synthesized and characterized; then, different iron oxide NP concentrations were added to Lemna minor culture. After 7 days, all the Lemna minor leaves died, irrespective of the added NP concentration. The iron oxide NP impact on the plant was evaluated based on malondialdehyde (MDA) production from thiobarbituric acid reactive substances (TBARS), which was dose-dependent; i.e., lipid peroxidation in the plant increased with rising iron oxide NP concentration. The chlorophyll content decreased at high iron oxide NP concentrations, which disrupted the light absorption mechanism. Fe accumulation in Lemna minor roots also occurred, which can harm nutrient uptake. Therefore, the iron oxide NP toxic impact on plants and related ecosystems requires further studies in order to prevent environmental damage.


Assuntos
Araceae/efeitos dos fármacos , Compostos Férricos/toxicidade , Nanopartículas/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Poluentes Químicos da Água/toxicidade , Araceae/metabolismo , Clorofila/metabolismo , Clorofila A/metabolismo , Ferro/farmacocinética , Peroxidação de Lipídeos/efeitos dos fármacos , Malondialdeído/metabolismo , Nanopartículas/química , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Poluentes Químicos da Água/química
16.
Ecotoxicol Environ Saf ; 179: 79-87, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31026753

RESUMO

Lemna minor could tolerate and accumulate more than 5,000 µg g-1 DW of cobalt (Co) without foliar symptoms, indicating it is a Co hyperaccumulator. However, the physiological and metabolomics mechanisms that are responsible for Co accumulation and tolerance are largely unknown. In the present study, Fourier transform infrared spectroscopy suggested that CO, CH, and OH groups are involved in Co biosorption. The activation of antioxidant enzymes, such as superoxide dismutase, guiacol peroxidase, catalase, and glutathione reductase, as well as ascorbic acid and glutathione might be involved in capturing reactive oxygen species as evidenced by decreased malondialdehyde in fronds treated with Co. Metabolomics analysis revealed that Co stress significantly increased the production of several amino acids (except aspartic acid and cysteine at 200 µM) and organic acids (with the exception of succinic acid). In particular, an approximate 15-fold increase was noted in the citric acid concentration. Upon exposure to Co, increases were observed in citrate synthase, malate dehydrogenase, and phosphoenolpyruvate carboxylase activities, and a decrease was observed in isocitrate dehydrogenase related to the metabolism of organic acids. Overall, the increase in concentration of organic and amino acids and antioxidants support their effective involvement in improving Co tolerance and accumulation in L. minor.


Assuntos
Antioxidantes/metabolismo , Araceae/metabolismo , Cobalto/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Araceae/efeitos dos fármacos , Ácido Ascórbico/metabolismo , Biodegradação Ambiental , Catalase/metabolismo , Cobalto/toxicidade , Glutationa/metabolismo , Glutationa Redutase/metabolismo , Malondialdeído/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
17.
J Environ Radioact ; 203: 179-186, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30925263

RESUMO

Biosorption-based technologies have been proposed for the removal of radionuclides from radioactive liquid waste containing organic compounds. Nevertheless, pytoremediation potential of uranium (U) by nonliving aquatic macrophytes Lemna sp. and Pistia stratiotes has not been previously addressed. In this study, uranium biosorption capacity by Pistia stratiotes and Lemna sp. was evaluated by equilibrium and kinetics experiments. The biomasses were added to synthetic and real waste solutions. The assays were tested in polypropylene vials containing 10 mL of uranium nitrate solution and 0.20 g of biomass. Solutions ranging from 0.25 to 84.03 mmol l-1 were employed for the assessment of uranium concentration in each macrophyte. The equilibrium time was 1 h for both macrophytes. Lemna sp. achieved the highest sorption capacity with the use of the synthetic solution, which was 0.68 mmol g-1 for the macrophyte. Since Lemna sp. exhibit a much higher adsorption capacity, only this biomass was exposed to the actual waste solution, being able to adsorb 9.24 × 10-3 mmol g-1 U (total). The results show that these materials are potentially applicable to the treatment of liquid radioactive waste.


Assuntos
Araceae/metabolismo , Biodegradação Ambiental , Urânio/metabolismo , Poluentes Radioativos da Água/metabolismo , Adsorção
18.
Ecotoxicol Environ Saf ; 170: 127-140, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30529611

RESUMO

Aluminum (Al) is commonly considered an abiotic stress factor under acidic conditions. Duckweed (Lemna minor L.) has wide application in ecotoxicological research as a model organism and, in this study, its response to Al bioaccumulation was evaluated at morphological, physiological and proteomic levels. The Al accumulation in L. minor was accompanied by chlorosis and growth inhibition. Overproduction of superoxide and hydrogen peroxide, and decreased chlorophyll and protein contents, suggested that Al exposure induced oxidative stress. Inhibition of photosynthesis was evident in a significant decrease in maximum photosystem II quantum yield. There were 261 proteins, with significant changes in expression, successfully identified and quantified through isobaric tags for relative and absolute quantification (iTRAQ) analysis. Among the KEGG pathway enrichment proteins, those related to the citrate cycle and amino acid metabolism were predominantly up-regulated, whereas those associated with energy metabolism and glyoxylate and dicarboxylate metabolism were predominantly down-regulated. In addition, antioxidant enzyme related proteins played an important role in the response of L. minor to Al. The western blot analysis further validated the changes in photosynthetic related proteins. These results provide comprehensive insights into the physiological and molecular mechanisms of Al toxicity and tolerance in L. minor.


Assuntos
Alumínio/toxicidade , Araceae/metabolismo , Proteômica , Estresse Fisiológico/efeitos dos fármacos , Aminoácidos/metabolismo , Clorofila/metabolismo , Ácido Cítrico/metabolismo , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fotossíntese , Complexo de Proteína do Fotossistema II/metabolismo , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
19.
Ecotoxicol Environ Saf ; 147: 334-341, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28858706

RESUMO

The purpose of this study was to determine the toxicity of two different sources of cadmium, i.e. CdCl2 and Cd-based Quantum Dots (QDs), for freshwater model plant Lemna minor L. Cadmium telluride QDs were capped with two coating ligands: glutathione (GSH) or 3-mercaptopropionic acid (MPA). Growth rate inhibition and final biomass inhibition of L. minor after 168-h exposure were monitored as toxicity endpoints. Dose-response curves for Cd toxicity and EC50168h values were statistically evaluated for all sources of Cd to uncover possible differences among the toxicities of tested compounds. Total Cd content and its bioaccumulation factors (BAFs) in L. minor after the exposure period were also determined to distinguish Cd bioaccumulation patterns with respect to different test compounds. Laser-Induced Breakdown Spectroscopy (LIBS) with lateral resolution of 200µm was employed in order to obtain two-dimensional maps of Cd spatial distribution in L. minor fronds. Our results show that GSH- and MPA-capped Cd-based QDs have similar toxicity for L. minor, but are significantly less toxic than CdCl2. However, both sources of Cd lead to similar patterns of Cd bioaccumulation and distribution in L. minor fronds. Our results are in line with previous reports that the main mediators of Cd toxicity and bioaccumulation in aquatic plants are Cd2+ ions dissolved from Cd-based QDs.


Assuntos
Araceae/efeitos dos fármacos , Cloreto de Cádmio/toxicidade , Compostos de Cádmio/toxicidade , Monitoramento Ambiental/métodos , Pontos Quânticos/toxicidade , Telúrio/toxicidade , Poluentes Químicos da Água/toxicidade , Ácido 3-Mercaptopropiônico/química , Adsorção , Araceae/crescimento & desenvolvimento , Araceae/metabolismo , Biomassa , Cloreto de Cádmio/metabolismo , Compostos de Cádmio/metabolismo , Água Doce/química , Glutationa/química , Modelos Teóricos , Pontos Quânticos/metabolismo , Telúrio/metabolismo , Poluentes Químicos da Água/química
20.
Chemosphere ; 190: 154-165, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28987404

RESUMO

Cadmium (Cd) is a detrimental environmental pollutant. Duckweeds have been considered promising candidates for Cd phytoremediation. Although many physiological studies have been conducted, the molecular mechanisms underlying Cd hyperaccumulation in duckweeds are largely unknown. In this study, clone 6001 of Landoltia punctata, which showed high Cd tolerance, was obtained by large-scale screening of over 200 duckweed clones. Subsequently, its growth, Cd flux, Cd accumulation, and Cd distribution characteristics were investigated. To further explore the global molecular mechanism, a comprehensive transcriptome analysis was performed. For RNA-Seq, samples were treated with 20 µM CdCl2 for 0, 1, 3, and 6 days. In total, 9,461, 9,847, and 9615 differentially expressed unigenes (DEGs) were discovered between Cd-treated and control (0 day) samples. DEG clustering and enrichment analysis identified several biological processes for coping with Cd stress. Genes involved in DNA repair acted as an early response to Cd, while RNA and protein metabolism would be likely to respond as well. Furthermore, the carbohydrate metabolic flux tended to be modulated in response to Cd stress, and upregulated genes involved in sulfur and ROS metabolism might cause high Cd tolerance. Vacuolar sequestration most likely played an important role in Cd detoxification in L. punctata 6001. These novel findings provided important clues for molecular assisted screening and breeding of Cd hyperaccumulating cultivars for phytoremediation.


Assuntos
Araceae/efeitos dos fármacos , Araceae/genética , Biodegradação Ambiental , Cádmio/farmacocinética , Perfilação da Expressão Gênica , Araceae/metabolismo , Cádmio/metabolismo , Tolerância a Medicamentos/genética , Perfilação da Expressão Gênica/métodos , Genes de Plantas/efeitos dos fármacos , Genes de Plantas/genética , Análise de Sequência de RNA , Estresse Fisiológico/genética , Transcriptoma/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA