Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Commun Biol ; 7(1): 808, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961219

RESUMO

Insecticide resistance has been a problem in both the agricultural pests and vectors. Revealing the detoxification mechanisms may help to better manage insect pests. Here, we showed that arylalkylamine N-acetyltransferase 1 (AANAT1) regulates intestinal detoxification process through modulation of reactive oxygen species (ROS)-activated transcription factors cap"n"collar isoform-C (CncC): muscle aponeurosis fibromatosis (Maf) pathway in both the oriental fruit fly, Bactrocera dorsalis, and the arbovirus vector, Aedes aegypti. Knockout/knockdown of AANAT1 led to accumulation of biogenic amines, which induced a decreased in the gut ROS level. The reduced midgut ROS levels resulted in decreased expression of CncC and Maf, leading to lower expression level of detoxification genes. AANAT1 knockout/knockdown insects were more susceptible to insecticide treatments. Our study reveals that normal functionality of AANAT1 is important for the regulation of gut detoxification pathways, providing insights into the mechanism underlying the gut defense against xenobiotics in metazoans.


Assuntos
Arilalquilamina N-Acetiltransferase , Inativação Metabólica , Espécies Reativas de Oxigênio , Animais , Espécies Reativas de Oxigênio/metabolismo , Arilalquilamina N-Acetiltransferase/metabolismo , Arilalquilamina N-Acetiltransferase/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Aedes/genética , Aedes/metabolismo , Inseticidas/farmacologia , Trato Gastrointestinal/metabolismo
2.
Int J Mol Sci ; 25(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38892140

RESUMO

The study of the mechanisms by which melatonin protects against cadmium (Cd) toxicity in plants is still in its infancy, particularly at the molecular level. In this study, the gene encoding a novel serotonin N-acetyltransferase 3 (SNAT3) in rice, a pivotal enzyme in the melatonin biosynthetic pathway, was cloned. Rice (Oryza sativa) OsSNAT3 is the first identified plant ortholog of archaeon Thermoplasma volcanium SNAT. The purified recombinant OsSNAT3 catalyzed the conversion of serotonin and 5-methoxytryptamine to N-acetylserotonin and melatonin, respectively. The suppression of OsSNAT3 by RNAi led to a decline in endogenous melatonin levels followed by a reduction in Cd tolerance in transgenic RNAi rice lines. In addition, the expression levels of genes encoding the endoplasmic reticulum (ER) chaperones BiP3, BiP4, and BiP5 were much lower in RNAi lines than in the wild type. In transgenic rice plants overexpressing OsSNAT3 (SNAT3-OE), however, melatonin levels were higher than in wild-type plants. SNAT3-OE plants also tolerated Cd stress, as indicated by seedling growth, malondialdehyde, and chlorophyll levels. BiP4 expression was much higher in the SNAT3-OE lines than in the wild type. These results indicate that melatonin engineering could help crops withstand Cd stress, resulting in high yields in Cd-contaminated fields.


Assuntos
Arilalquilamina N-Acetiltransferase , Cádmio , Regulação da Expressão Gênica de Plantas , Melatonina , Oryza , Proteínas de Plantas , Plantas Geneticamente Modificadas , Estresse Fisiológico , Oryza/genética , Oryza/metabolismo , Oryza/efeitos dos fármacos , Melatonina/metabolismo , Melatonina/farmacologia , Cádmio/metabolismo , Cádmio/toxicidade , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/metabolismo , Arilalquilamina N-Acetiltransferase/metabolismo , Arilalquilamina N-Acetiltransferase/genética , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Serotonina/metabolismo
3.
Reprod Fertil Dev ; 35(11): 563-574, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37290449

RESUMO

CONTEXT: Melatonin influences female reproduction, but expression of the melatonin system has not been characterised in the ovine uterus. AIMS: We aimed to determine whether synthesising enzymes (arylalkylamine N-acetyltransferase (AANAT) and N-acetylserotonin-O-methyltransferase (ASMT)), melatonin receptors 1 and 2 (MT1 and MT2), and catabolising enzymes (myeloperoxidase (MPO) and indoleamine 2,3-dioxygenase 1 and 2 (IDO1 and 2)), are expressed in the ovine uterus, and if they are influenced by the oestrous cycle (Experiment 1) or by undernutrition (Experiment 2). METHODS: In Experiment 1, gene and protein expression was determined in sheep endometrium samples collected on days 0 (oestrus), 5, 10 and 14 of the oestrous cycle. In Experiment 2, we studied uterine samples from ewes fed either 1.5 or 0.5times their maintenance requirements. KEY RESULTS: We have demonstrated the expression of AANAT and ASMT in the endometrium of sheep. AANAT and ASMT transcripts, and AANAT protein were more elevated at day 10, then decreased to day 14. A similar pattern was observed for MT2 , IDO1 , and MPO mRNA, which suggests that the endometrial melatonin system might be influenced by ovarian steroid hormones. Undernutrition increased AANAT mRNA expression, but seemed to decrease its protein expression, and increased MT2 and IDO2 transcripts, whereas ASMT expression was unaffected. CONCLUSIONS: The melatonin system is expressed in the ovine uterus and is affected by oestrous cycle and undernutrition. IMPLICATIONS: The results help explain the adverse effects of undernutrition on reproduction in sheep, and the success of exogenous melatonin treatments in improving reproductive outcomes.


Assuntos
Melatonina , Animais , Ovinos/genética , Feminino , Melatonina/metabolismo , Útero/metabolismo , Endométrio/metabolismo , RNA Mensageiro/metabolismo , Arilalquilamina N-Acetiltransferase/genética , Arilalquilamina N-Acetiltransferase/metabolismo , Acetilserotonina O-Metiltransferasa/genética , Acetilserotonina O-Metiltransferasa/metabolismo
4.
J Mol Endocrinol ; 71(2)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37256589

RESUMO

Arylalkylamine N-acetyltransferase (AANAT), a rate-limiting enzyme in melatonin synthesis, is present in extra-pineal tissues such as the hippocampus. The hippocampal AANAT activity in amyloid ß (Aß) neurotoxicity has not been exactly defined. Adult male rats received bilateral intra-CA1 Aß administration. The hippocampus tissue sampling was performed 2, 12, and 24 h after Aß injection in the morning and night. The inflammation was monitored using tumor necrosis factor-alpha (TNF-α) immunohistochemistry. The AANAT enzyme activity and melatonin levels were measured using western blotting and high-performance liquid chromatography. The sampling in the morning vs night showed no significant differences in the AANAT activity. The Aß increased the area of TNF-α positive staining 24 h after injection, which indicated the induction of an inflammatory context. It was accompanied by a significant reduction in AANAT activity and hippocampal melatonin. A reverse correlation was also detected between TNF-α and AANAT activity in the 24-h group. The TNF-α positive area was significantly increased in the 24-h group as compared to the 12-h group. Data showed that inflammatory processes began 12 h after the Aß injection and augmented 24 h later. In the second experiment, the impact of Aß injection on hippocampus AANAT activity was examined in the pinealectomized (PIN×) animals. The PIN× per se did not affect the hippocampal AANAT and melatonin levels. However, there was a significant decrease in hippocampal melatonin in the PIN×+Aß group. The findings suggest the accompanying hippocampal inflammatory context and AANAT enzyme activity reduction in early stages after Aß administration. Understanding the underlying mechanism of the decreased AANAT activity may suggest new treatment strategies.


Assuntos
Melatonina , Glândula Pineal , Ratos , Masculino , Animais , Melatonina/farmacologia , Arilalquilamina N-Acetiltransferase/metabolismo , Peptídeos beta-Amiloides , Fator de Necrose Tumoral alfa , Glândula Pineal/metabolismo , Hipocampo/metabolismo , Ritmo Circadiano
5.
J Pineal Res ; 75(1): e12875, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37070273

RESUMO

In vertebrates, arylalkylamine N-acetyltransferase (AANAT; EC 2.3.1.87) is the time-keeping and key regulatory enzyme in melatonin (Mel) biosynthesis. AANAT is present in the pineal gland, retina, and other regions where it is controlled by light, cyclic adenosine monophosphate (cAMP) levels, and the molecular clock. AANAT converts serotonin to N-acetyl serotonin (NAS) and the last enzyme in the pathway, hydroxy-o-methyltransferase (HIOMT), forms Mel by NAS methylation. We have previously shown that AANAT is expressed in chicken retinal ganglion cells (RGCs) during daytime at the level of mRNA and enzyme activity. Here we investigated the presence of AANAT protein and mRNA throughout development in the chicken embryonic retina as well as AANAT expression, phosphorylation, and its sub-cellular localization in primary cultures of retinal neurons from E10 embryonic retinas exposed to blue light (BL) and controls kept in the dark (D). From embryonic days 7-10 (E7-10) AANAT mRNA and protein were visualized mainly concentrated in the forming ganglion cell layer (GCL), while from E17 through postnatal days, expression was detectable all through the different retinal cell layers. At postnatal day 10 (PN10) when animals were subjected to a 12:12 h LD cycle, AANAT was mainly expressed in the GCL and inner nuclear layer cells at noon (Zeitgeber Time (ZT 6)) and in the photoreceptor cell layer at night (ZT 21). Primary cultures of retinal neurons exhibited an induction of AANAT protein when cells were exposed to BL for 1 h as compared with D controls. After BL exposure, AANAT showed a significant change in intracellular localization from the cytoplasm to the nucleus in the BL condition, remaining in the nucleus 1-2 h in the D after BL stimulation. BL induction of nuclear AANAT was substantially inhibited when cultures were treated with the protein synthesis inhibitor cycloheximide (CHD). Furthermore, the phosphorylated form of the enzyme (pAANAT) increased after BL in nuclear fractions obtained from primary cultures as compared with D controls. Finally, the knockdown of AANAT by sh-RNA in primary cultures affected cell viability regardless of the light condition. AANAT knockdown also affected the redox balance, sh-AANAT treated cultures showing higher levels of reactive oxygen species (ROS) than in the sh-control. Our results support the idea that AANAT is a BL-sensing enzyme in the inner retina of diurnal vertebrates, undergoing phosphorylation and nuclear importation in response to BL stimulation. Moreover, it can be inferred that AANAT plays a novel role in nuclear function, cell viability, and, likely, through redox balance regulation.


Assuntos
Arilalquilamina N-Acetiltransferase , Melatonina , Glândula Pineal , Animais , Embrião de Galinha , Arilalquilamina N-Acetiltransferase/genética , Arilalquilamina N-Acetiltransferase/metabolismo , Galinhas/genética , Galinhas/metabolismo , Ritmo Circadiano/fisiologia , Luz , Melatonina/metabolismo , Glândula Pineal/metabolismo , Retina/metabolismo , RNA Mensageiro/metabolismo , Serotonina/metabolismo
6.
Int J Mol Sci ; 24(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37108290

RESUMO

In the current study, using Aanat and Mt2 KO mice, we observed that the preservation of the melatonergic system is essential for successful early pregnancy in mice. We identified that aralkylamine N-acetyltransferase (AANAT), melatonin receptor 1A (MT1), and melatonin receptor 1B (MT2) were all expressed in the uterus. Due to the relatively weak expression of MT1 compared to AANAT and MT2, this study focused on AANAT and MT2. Aanat and Mt2 KO significantly reduced the early implantation sites and the abnormal morphology of the endometrium of the uterus. Mechanistical analysis indicated that the melatonergic system is the key player in the induction of the normal nidatory estrogen (E2) response for endometrial receptivity and functions by activating the STAT signaling pathway. Its deficiency impaired the interactions between the endometrium, the placenta, and the embryo. The reduction in melatonin production caused by Aanat KO and the impairment of signal transduction caused by Mt2 KO reduced the uterine MMP-2 and MMP-9 activity, resulting in a hyperproliferative endometrial epithelium. In addition, melatonergic system deficiency also increased the local immunoinflammatory reaction with elevated local proinflammatory cytokines leading to early abortion in the Mt2 KO mice compared to the WT mice. We believe that the novel data obtained from the mice might apply to other animals including humans. Further investigation into the interaction between the melatonergic system and reproductive effects in different species would be worthwhile.


Assuntos
Arilalquilamina N-Acetiltransferase , Receptor MT2 de Melatonina , Animais , Feminino , Humanos , Camundongos , Gravidez , Acetiltransferases/metabolismo , Arilalquilamina N-Acetiltransferase/genética , Arilalquilamina N-Acetiltransferase/metabolismo , Endométrio/metabolismo , Melatonina/farmacologia , Receptor MT1 de Melatonina/genética , Receptor MT1 de Melatonina/metabolismo , Receptor MT2 de Melatonina/genética , Receptor MT2 de Melatonina/metabolismo , Útero/metabolismo
7.
Artigo em Inglês | MEDLINE | ID: mdl-36767232

RESUMO

Rice bacterial blight (BB), caused by Xanthomonas oryzae pv. oryzae (Xoo), is one of the top ten bacterial plant diseases worldwide. Serotonin N-acetyltransferase (SNAT) is one of the key rate-limiting enzymes in melatonin (MT) biosynthesis. However, its function in pathogenic bacteria remains unclear. In this study, a Xoo SNAT protein (xoSNAT3) that showed 27.39% homology with sheep SNAT was identified from a collection of 24 members of GCN5-related N-acetyltransferase (GNAT) superfamily in Xoo. This xoSNAT3 could be induced by MT. In tobacco-based transient expression system, xoSNAT3 was found localized on mitochondria. In vitro studies indicated that xoSNAT3 showed the optima enzymatic activity at 50 °C. The recombinant enzyme showed Km and Vmax values of 709.98 µM and 2.21 nmol/min/mg protein, respectively. Mutant △xoSNAT3 showed greater impaired MT biosynthesis than the wild-type strain. Additionally, △xoSNAT3 showed 14.06% less virulence and 26.07% less biofilm formation. Collectively, our results indicated that xoSNAT3 services as a SNAT involved in MT biosynthesis and pathogenicity in Xoo.


Assuntos
Arilalquilamina N-Acetiltransferase , Oryza , Animais , Ovinos , Arilalquilamina N-Acetiltransferase/genética , Arilalquilamina N-Acetiltransferase/metabolismo , Clonagem Molecular , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Virulência , Oryza/microbiologia , Doenças das Plantas/microbiologia
8.
Gene ; 814: 146128, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-34971752

RESUMO

Melatonin, an important regulator of mammalian reproduction, is mainly produced in the pineal gland, and granulosa cells (GCs), the main mammalian ovarian secretory cells, synthesize melatonin and express melatonin receptors (MRs) MT1 and MT2. However, studies on melatonin regulation in GCs are lacking in sheep. In this study, we explored the effects of ß-estradiol (E2) on melatonin production and MR expression in GCs. We cultured sheep GCs to analyze the expression of the melatonin rate-limiting enzymes AANAT and HIOMT and the effects of E2 on AANAT, HIOMT, and MR expression and melatonin synthesis. To determine whether estrogen receptors (ERs) mediated E2 action on melatonin secretion and MR expression, we assessed ERA and ERB expression in GCs and observed whether ER antagonists counterbalanced the effects of E2. GCs expressed AANAT and HIOMT mRNA, indicating that they transformed exogenous serotonin into melatonin. E2 inhibited melatonin production by downregulating AANAT, HIOMT, and MRs. GCs expressed ERA and ERB; ERA/ERB inhibitors abolished E2-mediated inhibition of melatonin secretion and MR expression. PHTPP upregulated melatonin secretion and MT1 expression in E2-treated GCs, but did not significantly affect AANAT and MT2 expression. In conclusion, melatonin secretion in GCs was inhibited by E2 through an ERA- and ERB-mediated process.


Assuntos
Estradiol/fisiologia , Células da Granulosa/metabolismo , Melatonina/biossíntese , Receptor MT1 de Melatonina/biossíntese , Receptor MT2 de Melatonina/biossíntese , Acetilserotonina O-Metiltransferasa/genética , Acetilserotonina O-Metiltransferasa/metabolismo , Animais , Arilalquilamina N-Acetiltransferase/genética , Arilalquilamina N-Acetiltransferase/metabolismo , Células Cultivadas , Feminino , Células da Granulosa/enzimologia , Ovinos
9.
Biochem Biophys Res Commun ; 584: 32-38, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34763165

RESUMO

Melatonin is a hormone majorly secreted by the pineal gland and contributes to a various type of physiological functions in mammals. The melatonin production is tightly limited to the AANAT level, yet the most known molecular mechanisms underlying AANAT gene transcription is limited in the pinealocyte. Here, we find that c-Fos and cAMP-response element-binding protein (CREB) decreases and increases the AANAT transcriptional activity in renal tubular epithelial cell, respectively. Notably, c-Fos knockdown significantly upregulates melatonin levels in renal tubular cells. Functional results indicate that AANAT expression is decreased by c-Fos and resulted in enhancement of cell damage in albumin-injury cell model. We further find an inverse correlation between c-Fos and AANAT levels in renal tubular cells from experimental membranous nephropathy (MN) samples and clinical MN specimens. Our finding provides the molecular basis of c-Fos in transcriptionally downregulating expression of AANAT and melatonin, and elucidate the protective role of AANAT in preventing renal tubular cells death in albumin-injury cell model and MN progression.


Assuntos
Arilalquilamina N-Acetiltransferase/genética , Regulação para Baixo , Células Epiteliais/metabolismo , Glomerulonefrite Membranosa/genética , Proteínas Proto-Oncogênicas c-fos/genética , Animais , Arilalquilamina N-Acetiltransferase/metabolismo , Linhagem Celular , Células Cultivadas , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Glomerulonefrite Membranosa/metabolismo , Glomerulonefrite Membranosa/patologia , Células HEK293 , Humanos , Túbulos Renais/citologia , Melatonina/metabolismo , Camundongos , Proteínas Proto-Oncogênicas c-fos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ativação Transcricional
10.
Nutrients ; 14(1)2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-35010992

RESUMO

Intestinal melatonin exerts diverse biological effects on the body. Our previous research showed that the abundance of the butyrate-producing bacteria, Roseburia, is positively related to the expression of colonic mucosal melatonin. However, the detailed relationship is unclear. Therefore, we aimed to explore whether Roseburia regulates intestinal melatonin and its underlying mechanisms. Male Sprague-Dawley germfree rats were orally administered with or without Roseburia hominis. R. hominis treatment significantly increased the intestinal melatonin level. The concentrations of propionate and butyrate in the intestinal contents were significantly elevated after gavage of R. hominis. Propionate or butyrate treatment increased melatonin, 5-hydroxytryptamine (5-HT), arylalkylamine N-acetyltransferase (AANAT), and phosphorylated cAMP-response element-binding protein (p-CREB) levels. When pretreated with telotristat ethyl, the inhibitor of tryptophan hydroxylase (TPH), or siRNA of Aanat, or 666-15, i.e., an inhibitor of CREB, propionate, or butyrate, could not promote melatonin production in the pheochromocytoma cell line BON-1. Metabolomics analysis showed that propionate and butyrate stimulation regulated levels of some metabolites and some metabolic pathways in BON-1 cell supernatants. In conclusion, propionate and butyrate, i.e., metabolites of R. hominis, can promote intestinal melatonin synthesis by increasing 5-HT levels and promoting p-CREB-mediated Aanat transcription, thereby offering a potential target for ameliorating intestinal diseases.


Assuntos
Arilalquilamina N-Acetiltransferase/metabolismo , Proteína de Ligação a CREB/metabolismo , Clostridiales/química , Melatonina/biossíntese , Transdução de Sinais/efeitos dos fármacos , Animais , Butiratos/farmacologia , Proteína de Ligação a CREB/efeitos dos fármacos , Linhagem Celular Tumoral , Colo/metabolismo , Mucosa Intestinal/metabolismo , Masculino , Fosforilação , Propionatos/farmacologia , Ratos , Ratos Sprague-Dawley , Serotonina/metabolismo
11.
Plant Physiol ; 183(3): 898-914, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32354877

RESUMO

Previous studies have clearly demonstrated that the putative phytohormone melatonin functions directly in many aspects of plant growth and development. In Arabidopsis (Arabidopsis thaliana), the role of melatonin in seed oil and anthocyanin accumulation, and corresponding underlying mechanisms, remain unclear. Here, we found that serotonin N-acetyltransferase1 (SNAT1) and caffeic acid O-methyltransferase (COMT) genes were ubiquitously and highly expressed and essential for melatonin biosynthesis in Arabidopsis developing seeds. We demonstrated that blocking endogenous melatonin biosynthesis by knocking out SNAT1 and/or COMT significantly increased oil and anthocyanin content of mature seeds. In contrast, enhancement of melatonin signaling by exogenous application of melatonin led to a significant decrease in levels of seed oil and anthocyanins. Further gene expression analysis through RNA sequencing and reverse-transcription quantitative PCR demonstrated that the expression of a series of important genes involved in fatty acid and anthocyanin accumulation was significantly altered in snat1-1 comt-1 developing seeds during seed maturation. We also discovered that SNAT1 and COMT significantly regulated the accumulation of both mucilage and proanthocyanidins in mature seeds. These results not only help us understand the function of melatonin and provide valuable insights into the complicated regulatory network controlling oil and anthocyanin accumulation in seeds, but also divulge promising gene targets for improvement of both oil and flavonoids in seeds of oil-producing crops and plants.


Assuntos
Antocianinas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arilalquilamina N-Acetiltransferase/genética , Melatonina/biossíntese , Metiltransferases/genética , Sementes/metabolismo , Antocianinas/genética , Arilalquilamina N-Acetiltransferase/metabolismo , Regulação da Expressão Gênica de Plantas , Melatonina/genética , Metiltransferases/metabolismo , Óleos de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Sementes/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo
12.
Sci Rep ; 10(1): 4799, 2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-32179854

RESUMO

Daily oscillation of the immune system follows the central biological clock outputs control such as melatonin produced by the pineal gland. Despite the literature showing that melatonin is also synthesized by macrophages and T lymphocytes, no information is available regarding the temporal profile of the melatonergic system of immune cells and organs in steady-state. Here, the expression of the enzymes arylalkylamine-N-acetyltransferase (AA-NAT), its phosphorylated form (P-AA-NAT) and acetylserotonin-O-methyltransferase (ASMT) were evaluated in phagocytes and T cells of the bone marrow (BM) and spleen. We also determined how the melatonergic system of these cells is modulated by LPS and the cytokine IL-10. The expression of the melatonergic enzymes showed daily rhythms in BM and spleen cells. Melatonin rhythm in the BM, but not in the spleen, follows P-AA-NAT daily variation. In BM cells, LPS and IL10 induced an increase in melatonin levels associated with the increased expressions of P-AA-NAT and ASMT. In spleen cells, LPS induced an increase in the expression of P-AA-NAT but not of melatonin. Conversely, IL10 induced a significant increase in melatonin production associated with increased AA-NAT/P-AA-NAT expressions. In conclusion, BM and spleen cells present different profiles of circadian production of local melatonin and responses to immune signals.


Assuntos
Células da Medula Óssea/imunologia , Ritmo Circadiano/fisiologia , Interleucina-10/farmacologia , Lipopolissacarídeos/farmacologia , Melatonina/biossíntese , Baço/citologia , Baço/imunologia , Acetilserotonina O-Metiltransferasa/genética , Acetilserotonina O-Metiltransferasa/metabolismo , Animais , Arilalquilamina N-Acetiltransferase/genética , Arilalquilamina N-Acetiltransferase/metabolismo , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Células Cultivadas , Expressão Gênica/efeitos dos fármacos , Masculino , Fagócitos/imunologia , Fagócitos/metabolismo , Ratos Wistar , Baço/efeitos dos fármacos , Baço/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo
13.
J Pineal Res ; 68(3): e12636, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32043640

RESUMO

Environmental pollution in the form of particulate matter <2.5 µm (PM2.5 ) is a major risk factor for diseases such as lung cancer, chronic respiratory infections, and major cardiovascular diseases. Our goal was to show that PM2.5 eliciting a proinflammatory response activates the immune-pineal axis, reducing the pineal synthesis and increasing the extrapineal synthesis of melatonin. Herein, we report that the exposure of rats to polluted air for 6 hours reduced nocturnal plasma melatonin levels and increased lung melatonin levels. Melatonin synthesis in the lung reduced lipid peroxidation and increased PM2.5 engulfment and cell viability by activating high-affinity melatonin receptors. Diesel exhaust particles (DEPs) promoted the synthesis of melatonin in a cultured cell line (RAW 264.7 cells) and rat alveolar macrophages via the expression of the gene encoding for AANAT through a mechanism dependent on activation of the NFκB pathway. Expression of the genes encoding AANAT, MT1, and MT2 was negatively correlated with cellular necroptosis, as disclosed by analysis of Gene Expression Omnibus (GEO) microarray data from the human alveolar macrophages of nonsmoking subjects. The enrichment score for antioxidant genes obtained from lung gene expression data (GTEx) was significantly correlated with the levels of AANAT and MT1 but not the MT2 melatonin receptor. Collectively, these data provide a systemic and mechanistic rationale for coordination of the pineal and extrapineal synthesis of melatonin by a standard damage-associated stimulus, which activates the immune-pineal axis and provides a new framework for understanding the effects of air pollution on lung diseases.


Assuntos
Pulmão/metabolismo , Macrófagos Alveolares/metabolismo , Melatonina/metabolismo , Material Particulado/efeitos adversos , Glândula Pineal/metabolismo , Receptores de Melatonina/metabolismo , Poluição do Ar/efeitos adversos , Animais , Arilalquilamina N-Acetiltransferase/metabolismo , Humanos , Ratos
14.
ACS Chem Biol ; 15(2): 513-523, 2020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-31967772

RESUMO

The growing issue of insecticide resistance has meant the identification of novel insecticide targets has never been more important. Arylalkylamine N-acyltransferases (AANATs) have been suggested as a potential new target. These promiscuous enzymes are involved in the N-acylation of biogenic amines to form N-acylamides. In insects, this process is a key step in melanism, hardening of the cuticle, removal of biogenic amines, and in the biosynthesis of fatty acid amides. The unique nature of each AANAT isoform characterized indicates each organism accommodates an assembly of discrete AANATs relatively exclusive to that organism. This implies a high potential for selectivity in insecticide design, while also maintaining polypharmacology. Presented here is a thorough kinetic and structural analysis of AANAT found in one of the most common secondary pests of all plant commodities in the world, Tribolium castaneum. The enzyme, named TcAANAT0, catalyzes the formation of short-chain N-acylarylalkylamines, with short-chain acyl-CoAs (C2-C10), benzoyl-CoA, and succinyl-CoA functioning in the role of acyl donor. Recombinant TcAANAT0 was expressed and purified from E. coli and was used to investigate the kinetic and chemical mechanism of catalysis. The kinetic mechanism is an ordered sequential mechanism with the acyl-CoA binding first. pH-rate profiles and site-directed mutagenesis studies identified amino acids critical to catalysis, providing insights about the chemical mechanism of TcAANAT0. A crystal structure was obtained for TcAANAT0 bound to acetyl-CoA, revealing valuable information about its active site. This combination of kinetic analysis and crystallography alongside mutagenesis and sequence analysis shines light on some approaches possible for targeting TcAANAT0 and other AANATs for novel insecticide design.


Assuntos
Arilalquilamina N-Acetiltransferase/química , Proteínas de Insetos/química , Tribolium/enzimologia , Acetilcoenzima A/metabolismo , Animais , Arilalquilamina N-Acetiltransferase/genética , Arilalquilamina N-Acetiltransferase/metabolismo , Catálise , Domínio Catalítico , Cristalografia por Raios X , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Cinética , Mutagênese Sítio-Dirigida , Mutação , Fenetilaminas/metabolismo , Ligação Proteica , Triptaminas/metabolismo
15.
J Pineal Res ; 68(1): e12616, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31609018

RESUMO

Homeobox genes generally encode transcription factors involved in regulating developmental processes. In the pineal gland, a brain structure devoted to nocturnal melatonin synthesis, a number of homeobox genes are also expressed postnatally; among these is the LIM homeobox 4 gene (Lhx4). We here report that Lhx4 is specifically expressed in the postnatal pineal gland of rats and humans. Circadian analyses revealed a fourfold rhythm in Lhx4 expression in the rat pineal gland, with rhythmic expression detectable from postnatal day 10. Pineal Lhx4 expression was confirmed to be positively driven by adrenergic signaling, as evidenced by in vivo modulation of Lhx4 expression by pharmacological (isoprenaline injection) and surgical (superior cervical ganglionectomy) interventions. In cultured pinealocytes, Lhx4 expression was upregulated by cyclic AMP, a second messenger of norepinephrine. By use of RNAscope technology, Lhx4 transcripts were found to be exclusively localized in melatonin-synthesizing pinealocytes. This prompted us to investigate the possible role of Lhx4 in regulation of melatonin-producing enzymes. By use of siRNA technology, we knocked down Lhx4 by 95% in cultured pinealocytes; this caused a reduction in transcripts encoding the melatonin-producing enzyme arylalkylamine N-acetyl transferase (Aanat). Screening the transcriptome of siRNA-treated pinealocytes by RNAseq revealed a significant impact of Lhx4 on the phototransduction pathway and on transcripts involved in development of the nervous system and photoreceptors. These data suggest that rhythmic expression of Lhx4 in the pineal gland is controlled via an adrenergic-cyclic AMP mechanism and that Lhx4 acts to promote nocturnal melatonin synthesis.


Assuntos
Proteínas com Homeodomínio LIM , Melatonina/metabolismo , Glândula Pineal , Fatores de Transcrição , Transcriptoma/genética , Adulto , Animais , Arilalquilamina N-Acetiltransferase/genética , Arilalquilamina N-Acetiltransferase/metabolismo , Ritmo Circadiano/genética , AMP Cíclico/metabolismo , Feminino , Humanos , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/metabolismo , Masculino , Melatonina/genética , Pessoa de Meia-Idade , Norepinefrina/metabolismo , Glândula Pineal/química , Glândula Pineal/citologia , Glândula Pineal/crescimento & desenvolvimento , Glândula Pineal/metabolismo , RNA Interferente Pequeno/genética , Ratos , Ratos Sprague-Dawley , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Adulto Jovem
16.
Sci Rep ; 9(1): 10810, 2019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31346212

RESUMO

Circadian rhythm in all living organisms is disturbed continuously by artificial light sources and artificial lighting has become a hazard for public health. Circadian rhythm of melatonin maintains high levels of melatonin during the night and low levels during the day. N-acetyltransferase (arylalkylamine N-acetyltransferase, AANAT) is one of the four enzymes required for melatonin synthesis and mtnr1ba is a melatonin receptor-encoding mRNA that is expressed widely in the embryonic brain. Pax7 has important roles during neural crest development and especially xanthophore pigmentation. Due to its diurnal nature, zebrafish provide a special opportunity for research on circadian rhythms that are regulated by melatonin. Here in this study, we showed that when compared with the white light control group, white LED light exposure resulted in loss of yellow pigmentation, decreased body length and locomotor activity, oxidant-antioxidant imbalance and decreased expressions of aanat2, mtnr1ba, and pax7 in zebrafish embryos. Histological analysis of this group revealed disorganization of the spaces among photoreceptor cells, decreased total retinal thickness and photoreceptor cell layer thickness compared with the control group. Artificial lighting pollution has the potential to become an important risk factor for different diseases including cancer especially for industrialized countries, therefore, more studies should be performed and necessary regulations should be made regarding this risk factor.


Assuntos
Ritmo Circadiano/efeitos da radiação , Desenvolvimento Embrionário/efeitos da radiação , Luz , Atividade Motora/efeitos da radiação , Pigmentação/efeitos da radiação , Animais , Arilalquilamina N-Acetiltransferase/metabolismo , Comportamento Animal/fisiologia , Comportamento Animal/efeitos da radiação , Tamanho Corporal/fisiologia , Tamanho Corporal/efeitos da radiação , Ritmo Circadiano/fisiologia , Desenvolvimento Embrionário/fisiologia , Melatonina/biossíntese , Atividade Motora/fisiologia , Fator de Transcrição PAX2/metabolismo , Fotoperíodo , Pigmentação/fisiologia , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
17.
Biochim Biophys Acta Mol Basis Dis ; 1865(6): 1525-1539, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30890428

RESUMO

Melatonin, a neuroendocrine hormone synthesized by the pineal gland and cholangiocytes, decreases biliary hyperplasia and liver fibrosis during cholestasis-induced biliary injury via melatonin-dependent autocrine signaling through increased biliary arylalkylamine N-acetyltransferase (AANAT) expression and melatonin secretion, downregulation of miR-200b and specific circadian clock genes. Melatonin synthesis is decreased by pinealectomy (PINX) or chronic exposure to light. We evaluated the effect of PINX or prolonged light exposure on melatonin-dependent modulation of biliary damage/ductular reaction/liver fibrosis. Studies were performed in male rats with/without BDL for 1 week with 12:12 h dark/light cycles, continuous light or after 1 week of PINX. The expression of AANAT and melatonin levels in serum and cholangiocyte supernatant were increased in BDL rats, while decreased in BDL rats following PINX or continuous light exposure. BDL-induced increase in serum chemistry, ductular reaction, liver fibrosis, inflammation, angiogenesis and ROS generation were significantly enhanced by PINX or light exposure. Concomitant with enhanced liver fibrosis, we observed increased biliary senescence and enhanced clock genes and miR-200b expression in total liver and cholangiocytes. In vitro, the expression of AANAT, clock genes and miR-200b was increased in PSC human cholangiocyte cell lines (hPSCL). The proliferation and activation of HHStecs (human hepatic stellate cell lines) were increased after stimulating with BDL cholangiocyte supernatant and further enhanced when stimulated with BDL rats following PINX or continuous light exposure cholangiocyte supernatant via intracellular ROS generation. Conclusion: Melatonin plays an important role in the protection of liver against cholestasis-induced damage and ductular reaction.


Assuntos
Arilalquilamina N-Acetiltransferase/genética , Proteínas CLOCK/genética , Colestase/genética , Cirrose Hepática/genética , Melatonina/biossíntese , MicroRNAs/genética , Animais , Arilalquilamina N-Acetiltransferase/metabolismo , Ductos Biliares Intra-Hepáticos/metabolismo , Ductos Biliares Intra-Hepáticos/patologia , Ductos Biliares Intra-Hepáticos/cirurgia , Proteínas CLOCK/metabolismo , Linhagem Celular , Proliferação de Células/efeitos da radiação , Colestase/metabolismo , Colestase/patologia , Células Epiteliais/metabolismo , Células Epiteliais/efeitos da radiação , Regulação da Expressão Gênica , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/efeitos da radiação , Humanos , Células de Kupffer/metabolismo , Células de Kupffer/efeitos da radiação , Luz , Fígado/metabolismo , Fígado/patologia , Fígado/cirurgia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Masculino , MicroRNAs/metabolismo , Glândula Pineal/metabolismo , Glândula Pineal/efeitos da radiação , Glândula Pineal/cirurgia , Pinealectomia/métodos , Cultura Primária de Células , Ratos , Ratos Endogâmicos F344 , Transdução de Sinais
18.
Molecules ; 23(2)2018 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-29382152

RESUMO

Inflammatory bowel diseases, particularly ulcerative colitis (UC) and lymphocytic colitis (LC), affect many people. The role of melatonin in the pathogenesis of UC is precisely determined, whereas in LC it remains unknown. The aim of this study was to compare the expression of the melatonin-synthesizing enzymes tryptophan hydroxylase (TPH1), arylalkylamine-N-acetyltransferase (AANAT), and N-acetylserotonin methyltransferase (ASMT) in the colonic mucosa and urinary excretion of 6-sulfatoxymelatonin in patients with ulcerative and lymphocytic colitis. The study included 30 healthy subjects (group C), 30 patients with severe ulcerative colitis (group UC), and 30 patients with lymphocytic colitis (group LC). The diagnosis was based on endoscopic, histological, and laboratory examinations. Biopsy specimens were collected from right, transverse, and left parts of the colon. The levels of mRNA expression, TPH1, AANAT, and ASMT were estimated in the colonic mucosa with RT-PCR. The urine concentration of aMT6s was determined by the photometric method. The expression of TPH1, AANAT, and ASMT in colonic mucosa in UC and LC patients was significantly higher than in healthy subjects. Significant differences were found in the urinary aMT6s excretion: group C-13.4 ± 4.8 µg/24 h, group UC-7.8 ± 2.6 µg/24 h (p < 0.01), group LC-19.2 ± 6.1 µg/24 h (p < 0.01). Moreover, a negative correlation was found between fecal calprotectin and MT6s-in patients with UC - r = -0.888 and with LC - r = -0.658. These results indicate that patients with UC and those with LC may display high levels of melatonin-synthesizing enzymes in their colonic mucosa, which could possibly be related to increased melatonin synthesis as an adaptive antioxidant activity.


Assuntos
Acetilserotonina O-Metiltransferasa/metabolismo , Arilalquilamina N-Acetiltransferase/metabolismo , Colite Linfocítica/metabolismo , Colite Ulcerativa/metabolismo , Mucosa Intestinal/metabolismo , Melatonina/metabolismo , Triptofano Hidroxilase/metabolismo , Adulto , Biópsia , Colite Linfocítica/patologia , Colite Ulcerativa/patologia , Feminino , Humanos , Mucosa Intestinal/patologia , Masculino , Pessoa de Meia-Idade
19.
Molecules ; 22(10)2017 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-29065548

RESUMO

Cadmium is a well-known elicitor of melatonin synthesis in plants, including rice. However, the mechanisms by which cadmium induces melatonin induction remain elusive. To investigate whether cadmium influences physical integrities in subcellular organelles, we treated tobacco leaves with either CdCl2 or AlCl3 and monitored the structures of subcellular organelles-such as chloroplasts, mitochondria, and the endoplasmic reticulum (ER)-using confocal microscopic analysis. Unlike AlCl3 treatment, CdCl2 (0.5 mM) treatment significantly disrupted chloroplasts, mitochondria, and ER. In theory, the disruption of chloroplasts enabled chloroplast-expressed serotonin N-acetyltransferase (SNAT) to encounter serotonin in the cytoplasm, leading to the synthesis of N-acetylserotonin followed by melatonin synthesis. In fact, the disruption of chloroplasts by cadmium, not by aluminum, gave rise to a huge induction of melatonin in rice leaves, which suggests that cadmium-treated chloroplast disruption plays an important role in inducing melatonin in plants by removing physical barriers, such as chloroplast double membranes, allowing SNAT to gain access to the serotonin substrate enriched in the cytoplasm.


Assuntos
Cádmio/farmacologia , Cloroplastos/metabolismo , Citoplasma/metabolismo , Retículo Endoplasmático/metabolismo , Melatonina/metabolismo , Mitocôndrias/metabolismo , Nicotiana/metabolismo , Oryza/metabolismo , Arilalquilamina N-Acetiltransferase/metabolismo , Cloroplastos/efeitos dos fármacos , Citoplasma/efeitos dos fármacos , Retículo Endoplasmático/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Oryza/efeitos dos fármacos , Oryza/crescimento & desenvolvimento , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Nicotiana/efeitos dos fármacos , Nicotiana/crescimento & desenvolvimento
20.
J Pineal Res ; 63(4)2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28793366

RESUMO

In plants, melatonin production is induced by stimuli such as cold and drought, and cadmium (Cd) is the best elicitor of melatonin production in rice. However, the mechanism by which Cd induces melatonin synthesis in plants remains unknown. We challenged rice seedlings with Cd under different light conditions and found that continuous light produced the highest levels of melatonin, while continuous dark failed to induce melatonin production. Transcriptional and translational induction of tryptophan decarboxylase contributed to the light induction of melatonin during Cd treatment, whereas the protein level of light-induced caffeic acid O-methyltransferase (COMT) was decreased by Cd treatment. In analogy, COMT enzyme activity was inhibited in vitro by Cd in a dose-dependent manner. Notably, the Cd-induced melatonin synthesis was significantly impaired by treatment with either an H2 O2 production inhibitor (DPI) or an NO scavenger (cPTIO). The combination of both inhibitors almost completely abolished Cd-induced melatonin synthesis, suggesting an absolute requirement for H2 O2 and NO. However, neither serotonin nor N-acetylserotonin (NAS) was induced by H2 O2 alone. In contrast, NO significantly induced serotonin production but not NAS or melatonin production. This indicated that serotonin did not enter chloroplasts, where serotonin N-acetyltransferase (SNAT) is constitutively expressed. This suggests that chloroplastidic SNAT expression prevents increased melatonin production after exposure to stress, ultimately leading to the maintenance of a steady-state melatonin level inside cells.


Assuntos
Descarboxilases de Aminoácido-L-Aromático/metabolismo , Melatonina/biossíntese , Metiltransferases/metabolismo , Oryza/metabolismo , Arilalquilamina N-Acetiltransferase/metabolismo , Cádmio/farmacologia , Peróxido de Hidrogênio , Luz , Óxido Nítrico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA