Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.578
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Mol Nutr Food Res ; 68(8): e2400087, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38581346

RESUMO

SCOPE: Dietary isothiocyanate (ITC) exposure from cruciferous vegetable (CV) intake may improve non-muscle invasive bladder cancer (NMIBC) prognosis. This study aims to investigate whether genetic variations in key ITC-metabolizing/functioning genes modify the associations between dietary ITC exposure and NMIBC prognosis outcomes. METHODS AND RESULTS: In the Bladder Cancer Epidemiology, Wellness, and Lifestyle Study (Be-Well Study), a prospective cohort of 1472 incident NMIBC patients, dietary ITC exposure is assessed by self-reported CV intake and measured in plasma ITC-albumin adducts. Using Cox proportional hazards regression models, stratified by single nucleotide polymorphisms (SNPs) in nine key ITC-metabolizing/functioning genes, it is calculate hazard ratios (HRs) and 95% confidence intervals (CIs) for recurrence and progression. The rs15561 in N-acetyltransferase 1 (NAT1) is alter the association between CV intake and progression risk. Multiple SNPs in nuclear factor E2-related factor 2 (NRF2) and nuclear factor kappa B (NFκB) are modify the associations between plasma ITC-albumin adduct level and progression risk (pint < 0.05). No significant association is observed with recurrence risk. Overall, >80% study participants are present with at least one protective genotype per gene, showing an average 65% reduction in progression risk with high dietary ITC exposure. CONCLUSION: Despite that genetic variations in ITC-metabolizing/functioning genes may modify the effect of dietary ITCs on NMIBC prognosis, dietary recommendation of CV consumption may help improve NMIBC survivorship.


Assuntos
Dieta , Isotiocianatos , Polimorfismo de Nucleotídeo Único , Neoplasias da Bexiga Urinária , Humanos , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , Masculino , Feminino , Isotiocianatos/farmacologia , Isotiocianatos/administração & dosagem , Pessoa de Meia-Idade , Prognóstico , Idoso , Estudos Prospectivos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Arilamina N-Acetiltransferase/genética , Neoplasias não Músculo Invasivas da Bexiga
2.
Anal Chem ; 96(18): 7005-7013, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38657082

RESUMO

Hydrogen sulfide (H2S), a critical gas signaling molecule, and N-acetyltransferase 2 (NAT2), a key enzyme in drug metabolism, are both known active biomarkers for liver function. However, the interactions and effects of H2S and NAT2 in living cells or lesion sites remain unknown due to the lack of imaging tools to achieve simultaneous detection of these two substances, making it challenging to implement real-time imaging and precise tracking. Herein, we report an activity-based two-photon fluorescent probe, TPSP-1, for the cascade detection of H2S and NAT2 in living liver cells. Continuous conversion from TPSP-1 to TPSP-3 was achieved in liver cells and tissues. Significantly, leveraging the outstanding optical properties of this two-photon fluorescent probe, TPSP-1, has been effectively used to identify pathological tissue samples directly from clinical liver cancer patients. This work provides us with this novel sensing and two-photon imaging probe, which can be used as a powerful tool to study the physiological functions of H2S and NAT2 and will help facilitate rapid and accurate diagnosis and therapeutic evaluation of hepatocellular carcinoma.


Assuntos
Arilamina N-Acetiltransferase , Carcinoma Hepatocelular , Corantes Fluorescentes , Sulfeto de Hidrogênio , Neoplasias Hepáticas , Fótons , Sulfeto de Hidrogênio/análise , Sulfeto de Hidrogênio/metabolismo , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Humanos , Arilamina N-Acetiltransferase/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/patologia , Animais , Camundongos , Células Hep G2 , Imagem Óptica
3.
Gene ; 907: 148252, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38350514

RESUMO

Epidemiological studies have shown the association of genetic variants with risks of occupational and environmentally induced cancers, including bladder (BC). The current review summarizes the effects of variants in genes encoding phase I and II enzymes in well-designed studies to highlight their contribution to BC susceptibility and prognosis. Polymorphisms in genes codifying drug-metabolizing proteins are of particular interest because of their involvement in the metabolism of exogenous genotoxic compounds, such as tobacco and agrochemicals. The prognosis between muscle-invasive and non-muscle-invasive diseases is very different, and it is difficult to predict which will progress worse. Web of Science, PubMed, and Medline were searched to identify studies published between January 1, 2010, and February 2023. We included 73 eligible studies, more than 300 polymorphisms, and 46 genes/loci. The most studied candidate genes/loci of phase I metabolism were CYP1B1, CYP1A1, CYP1A2, CYP3A4, CYP2D6, CYP2A6, CYP3E1, and ALDH2, and those in phase II were GSTM1, GSTT1, NAT2, GSTP1, GSTA1, GSTO1, and UGT1A1. We used the 46 genes to construct a network of proteins and to evaluate their biological functions based on the Reactome and KEGG databases. Lastly, we assessed their expression in different tissues, including normal bladder and BC samples. The drug-metabolizing pathway plays a relevant role in BC, and our review discusses a list of genes that could provide clues for further exploration of susceptibility and prognostic biomarkers.


Assuntos
Arilamina N-Acetiltransferase , Neoplasias da Bexiga Urinária , Humanos , Glutationa Transferase/genética , Polimorfismo Genético , Citocromo P-450 CYP1A1/genética , Neoplasias da Bexiga Urinária/genética , Citocromo P-450 CYP2D6/genética , Predisposição Genética para Doença , Genótipo , Estudos de Casos e Controles , Fatores de Risco , Arilamina N-Acetiltransferase/genética , Aldeído-Desidrogenase Mitocondrial/genética
4.
Pharmacol Rev ; 76(2): 300-320, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351074

RESUMO

In humans, there are two arylamine N-acetyltransferase genes that encode functional enzymes (NAT1 and NAT2) as well as one pseudogene, all of which are located together on chromosome 8. Although they were first identified by their role in the acetylation of drugs and other xenobiotics, recent studies have shown strong associations for both enzymes in a variety of diseases, including cancer, cardiovascular disease, and diabetes. There is growing evidence that this association may be causal. Consistently, NAT1 and NAT2 are shown to be required for healthy mitochondria. This review discusses the current literature on the role of both NAT1 and NAT2 in mitochondrial bioenergetics. It will attempt to relate our understanding of the evolution of the two genes with biologic function and then present evidence that several major metabolic diseases are influenced by NAT1 and NAT2. Finally, it will discuss current and future approaches to inhibit or enhance NAT1 and NAT2 activity/expression using small-molecule drugs. SIGNIFICANCE STATEMENT: The arylamine N-acetyltransferases (NATs) NAT1 and NAT2 share common features in their associations with mitochondrial bioenergetics. This review discusses mitochondrial function as it relates to health and disease, and the importance of NAT in mitochondrial function and dysfunction. It also compares NAT1 and NAT2 to highlight their functional similarities and differences. Both NAT1 and NAT2 are potential drug targets for diseases where mitochondrial dysfunction is a hallmark of onset and progression.


Assuntos
Arilamina N-Acetiltransferase , Doenças Metabólicas , Doenças Mitocondriais , Humanos , Arilamina N-Acetiltransferase/genética , Arilamina N-Acetiltransferase/metabolismo , Acetiltransferases/genética , Acetiltransferases/metabolismo , Especificidade por Substrato , Doenças Metabólicas/tratamento farmacológico , Doenças Mitocondriais/tratamento farmacológico
5.
Int J Cancer ; 154(2): 210-216, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37728483

RESUMO

Tobacco smoking is the most important risk factor for bladder cancer. Previous studies have identified the N-acetyltransferase (NAT2) gene in association with bladder cancer risk. The NAT2 gene encodes an enzyme that metabolizes aromatic amines, carcinogens commonly found in tobacco smoke. In our study, we evaluated potential interactions of tobacco smoking with NAT2 genotypes and polygenic risk score (PRS) for bladder cancer, using data from the UK Biobank, a large prospective cohort study. We used Cox proportional hazards models to measure the strength of the association. The PRS was derived using genetic risk variants identified by genome-wide association studies for bladder cancer. With an average of 10.1 years of follow-up of 390 678 eligible participants of European descent, 769 incident bladder cancer cases were identified. Current smokers with a PRS in the highest tertile had a higher risk of developing bladder cancer (HR: 6.45, 95% CI: 4.51-9.24) than current smokers with a PRS in the lowest tertile (HR: 2.41, 95% CI: 1.52-3.84; P for additive interaction = <.001). A similar interaction was found for genetically predicted metabolizing NAT2 phenotype and tobacco smoking where current smokers with the slow NAT2 phenotype had an increased risk of developing bladder cancer (HR: 5.70, 95% CI: 2.64-12.30) than current smokers with the fast NAT2 phenotype (HR: 3.61, 95% CI: 1.14-11.37; P for additive interaction = .100). Our study provides support for considering both genetic and lifestyle risk factors in developing prevention measures for bladder cancer.


Assuntos
Arilamina N-Acetiltransferase , Neoplasias da Bexiga Urinária , Humanos , Arilamina N-Acetiltransferase/genética , Arilamina N-Acetiltransferase/metabolismo , Estudos de Casos e Controles , Estudo de Associação Genômica Ampla , Genótipo , Estudos Prospectivos , Fatores de Risco , Fumar/efeitos adversos , Fumar/genética , Fumar Tabaco/efeitos adversos , Fumar Tabaco/genética , Neoplasias da Bexiga Urinária/etiologia , Neoplasias da Bexiga Urinária/genética
6.
Medicine (Baltimore) ; 102(50): e36536, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38115320

RESUMO

The incidence of hepatocellular carcinoma (HCC) has been increasing in recent years. With the development of various detection technologies, machine learning is an effective method to screen disease characteristic genes. In this study, weighted gene co-expression network analysis (WGCNA) and machine learning are combined to find potential biomarkers of liver cancer, which provides a new idea for future prediction, prevention, and personalized treatment. In this study, the "limma" software package was used. P < .05 and log2 |fold-change| > 1 is the standard screening differential genes, and then the module genes obtained by WGCNA analysis are crossed to obtain the key module genes. Gene Ontology and Kyoto Gene and Genome Encyclopedia analysis was performed on key module genes, and 3 machine learning methods including lasso, support vector machine-recursive feature elimination, and RandomForest were used to screen feature genes. Finally, the validation set was used to verify the feature genes, the GeneMANIA (http://www.genemania.org) database was used to perform protein-protein interaction networks analysis on the feature genes, and the SPIED3 database was used to find potential small molecule drugs. In this study, 187 genes associated with HCC were screened by using the "limma" software package and WGCNA. After that, 6 feature genes (AADAT, APOF, GPC3, LPA, MASP1, and NAT2) were selected by RandomForest, Absolute Shrinkage and Selection Operator, and support vector machine-recursive feature elimination machine learning algorithms. These genes are also significantly different on the external dataset and follow the same trend as the training set. Finally, our findings may provide new insights into targets for diagnosis, prevention, and treatment of HCC. AADAT, APOF, GPC3, LPA, MASP1, and NAT2 may be potential genes for the prediction, prevention, and treatment of liver cancer in the future.


Assuntos
Arilamina N-Acetiltransferase , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Algoritmos , Biomarcadores , Aprendizado de Máquina , Glipicanas
7.
Int J Occup Med Environ Health ; 36(6): 812-824, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38099560

RESUMO

OBJECTIVES: Head and neck cancer (HNC) is one of the most common cancers. Most exogenous HNC is head and neck squamous cell carcinomas. Scientists are striving to develop diagnostic tests that will allow the prognosis of HNC. The aim of the study was to determine the risk of HNC. The research concerned changes caused by polymorphisms in genes encoding proteins responsible for the metabolism of xenobiotics. MATERIAL AND METHODS: In group of 280 patients with HNC, the occurrence of polymorphic variants in NAT1(rs72554606), NAT2(rs1799930), CYP1A(rs1799814), CYP2D(rs3892097) were studied with TaqMan technique. The control group consisted of 260 cancer free people. The TNM scale was analyzed. Gene interactions of genotyped polymorphisms were investigated. The effects of smoking and alcohol consumption on HNC were assessed. RESULTS: The results indicated an increased risk of HNC in NAT1 polymorphisms in the GC genotype (OR = 1.772, 95% CI: 1.184-2.651, p = 0.005) and NAT2 polymorphism in the GA genotype (OR = 1.506, 95% CI: 1.023-2.216, p = 0.037). The protective phenomenon in the CYP1A polymorphism the GT genotype (OR = 0.587, 95% CI: 0.381-0.903, p = 0.015) and the TT genotype (OR = 0.268, 95% CI: 0.159-0.452, p = 0.001). The coexistence of GA-GC polymorphisms (OR = 2.687, 95% CI: 1.387-5.205, p = 0.003) in NAT2-NAT1 genes increases the risk of HNC. Risk-reducing effect in the polymorphism GG-GT (OR = 0.340, 95% CI: 0.149-0.800, p = 0.011), GG-TT (OR = 0.077, 95% CI: 0.028-0.215, p < 0.0001), GA-TT (OR = 0.250, 95% CI: 0.100-0.622, p = 0.002), AA-GT (OR = 0.276, 95% CI: 0.112-0.676, p = 0.002) in NAT2-CYP1A genes. In the CYP2D-CYP1A genes in the polymorphisms CT-CC (OR = 0.338, 95% CI: 0.132-0.870, p = 0.020), TT-GG (OR = 0.100, 95% CI: 0.027-0.359, p = 0.001), TT-GC (OR = 0.190, 95% CI: 0.072-0.502, p = 0.0004), TT-CC (OR = 0.305, 95% CI: 0.107-0.868, p = 0.024). Correlation was noted between cigarette smoking and HNC (OR = 7.297, 95% CI: 4.989-10.674, p < 0.0001) and consuming alcohol (OR = 1.572, 95% CI: 1.003-2.464, p = 0.047). CONCLUSIONS: The CYP1A polymorphism shows a protective association with HNC. On the other hand, NAT2, NAT1 polymorphism influence the susceptibility to developing HNC. The coexistence of the NAT2-NAT1 genotypes increases the risk of HNC. In contrast, NAT1-CYP1A and CYP1A-CYP2D reduce this risk. Smoking and alcohol consumption increase the incidence of HNC. Int J Occup Med Environ Health. 2023;36(6):812-24.


Assuntos
Arilamina N-Acetiltransferase , Neoplasias de Cabeça e Pescoço , Humanos , Arilamina N-Acetiltransferase/genética , Arilamina N-Acetiltransferase/metabolismo , Incidência , Polônia/epidemiologia , Fumar/epidemiologia , Fatores de Risco , Polimorfismo Genético , Genótipo , Neoplasias de Cabeça e Pescoço/epidemiologia , Neoplasias de Cabeça e Pescoço/genética , Sistema Enzimático do Citocromo P-450/genética , Predisposição Genética para Doença , Estudos de Casos e Controles
8.
BMC Pulm Med ; 23(1): 471, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38001469

RESUMO

BACKGROUND: The Center for Personalized Precision Medicine of Tuberculosis (cPMTb) was constructed to develop personalized pharmacotherapeutic systems for tuberculosis (TB). This study aimed to introduce the cPMTb cohort and compare the distinct characteristics of patients with TB, non-tuberculosis mycobacterium (NTM) infection, or latent TB infection (LTBI). We also determined the prevalence and specific traits of polymorphisms in N-acetyltransferase-2 (NAT2) and solute carrier organic anion transporter family member 1B1 (SLCO1B1) phenotypes using this prospective multinational cohort. METHODS: Until August 2021, 964, 167, and 95 patients with TB, NTM infection, and LTBI, respectively, were included. Clinical, laboratory, and radiographic data were collected. NAT2 and SLCO1B1 phenotypes were classified by genomic DNA analysis. RESULTS: Patients with TB were older, had lower body mass index (BMI), higher diabetes rate, and higher male proportion than patients with LTBI. Patients with NTM infection were older, had lower BMI, lower diabetes rate, higher previous TB history, and higher female proportion than patients with TB. Patients with TB had the lowest albumin levels, and the prevalence of the rapid, intermediate, and slow/ultra-slow acetylator phenotypes were 39.2%, 48.1%, and 12.7%, respectively. The prevalence of rapid, intermediate, and slow/ultra-slow acetylator phenotypes were 42.0%, 44.6%, and 13.3% for NTM infection, and 42.5%, 48.3%, and 9.1% for LTBI, respectively, which did not differ significantly from TB. The prevalence of the normal, intermediate, and lower transporter SLCO1B1 phenotypes in TB, NTM, and LTBI did not differ significantly; 74.9%, 22.7%, and 2.4% in TB; 72.0%, 26.1%, and 1.9% in NTM; and 80.7%, 19.3%, and 0% in LTBI, respectively. CONCLUSIONS: Understanding disease characteristics and identifying pharmacokinetic traits are fundamental steps in optimizing treatment. Further longitudinal data are required for personalized precision medicine. TRIAL REGISTRATION: This study registered ClinicalTrials.gov NO. NCT05280886.


Assuntos
Arilamina N-Acetiltransferase , Diabetes Mellitus , Tuberculose Latente , Mycobacterium tuberculosis , Tuberculose , Humanos , Masculino , Feminino , Tuberculose Latente/epidemiologia , Medicina de Precisão , Estudos Prospectivos , Risco Ajustado , Tuberculose/tratamento farmacológico , Micobactérias não Tuberculosas , Mycobacterium tuberculosis/genética , Transportador 1 de Ânion Orgânico Específico do Fígado/genética , Arilamina N-Acetiltransferase/genética
9.
G3 (Bethesda) ; 13(12)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37738679

RESUMO

Heterocyclic aromatic amines (HAAs) are potent carcinogenic agents found in charred meats and cigarette smoke. However, few eukaryotic resistance genes have been identified. We used Saccharomyces cerevisiae (budding yeast) to identify genes that confer resistance to 2-amino-3-methylimidazo[4,5-f] quinoline (IQ). CYP1A2 and NAT2 activate IQ to become a mutagenic nitrenium compound. Deletion libraries expressing human CYP1A2 and NAT2 or no human genes were exposed to either 400 or 800 µM IQ for 5 or 10 generations. DNA barcodes were sequenced using the Illumina HiSeq 2500 platform and statistical significance was determined for exactly matched barcodes. We identified 424 ORFs, including 337 genes of known function, in duplicate screens of the "humanized" collection for IQ resistance; resistance was further validated for a select group of 51 genes by growth curves, competitive growth, or trypan blue assays. Screens of the library not expressing human genes identified 143 ORFs conferring resistance to IQ per se. Ribosomal protein and protein modification genes were identified as IQ resistance genes in both the original and "humanized" libraries, while nitrogen metabolism, DNA repair, and growth control genes were also prominent in the "humanized" library. Protein complexes identified included the casein kinase 2 (CK2) and histone chaperone (HIR) complex. Among DNA Repair and checkpoint genes, we identified those that function in postreplication repair (RAD18, UBC13, REV7), base excision repair (NTG1), and checkpoint signaling (CHK1, PSY2). These studies underscore the role of ribosomal protein genes in conferring IQ resistance, and illuminate DNA repair pathways for conferring resistance to activated IQ.


Assuntos
Arilamina N-Acetiltransferase , Neoplasias do Colo , Quinolinas , Humanos , Citocromo P-450 CYP1A2/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ensaios de Triagem em Larga Escala , Detecção Precoce de Câncer , Mutagênicos , Quinolinas/farmacologia , Quinolinas/metabolismo , Proteínas Ribossômicas , Arilamina N-Acetiltransferase/genética , Proteínas de Ligação a DNA , Ubiquitina-Proteína Ligases , DNA Polimerase Dirigida por DNA
10.
Acta Biochim Pol ; 70(3): 503-507, 2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37715989

RESUMO

INTRODUCTION: Acute myeloid leukemia (AML) is a clinically defined heterogeneous disease whose pathophysiology is currently unknown. The association of NAT2 acetylation profiles with human cancer risks, particularly with AML, was investigated in molecular epidemiological studies. Additionally, the NAT2 gene was carried out with acute lymphoid leukemia and other cancers. AIM: In this case-control study, C481T (rs1799929) and G857A (rs1799931) polymorphism studies were investigated in diagnosed AML patients in the Saudi population. METHODS: This case-control study included 100 AML patients and 100 control subjects recruited in Saudi Arabia. The C481T and G857A polymorphisms were genotyped using specific primers and restriction enzymes. Statistical analysis was performed on the AML patients and controls using chi-square tests, genotyping, and allele frequencies (odds ratios, 95% of confidence intervals, and P-values). RESULTS: Hardy Weinberg Equilibrium was determined to be both within and outside of the G857A and C481T polymorphisms. The allele and genotyping frequencies in AML and control subjects were analyzed, and the results corroborated the unfavorable connection with C481T (CC vs CT+TT; OR-1.12; (95% CIs: 0.64-1.96); P=0.67 and T vs C; OR-0.89; (95% CIs: 0.59-1.35) and P=0.60) and G857A polymorphisms (GG vs GA+AA; OR-1.50; (95% CIs: 0.83-2.71); P=0.17 and A vs G; OR-0.71; (95%CIs: 0.43-1.19) and P=0.19) in the NAT2 gene. CONCLUSION: The study results revealed a negative correlation as well as a protective factor for AML with the C481T and G857A polymorphisms in the NAT2 gene.


Assuntos
Arilamina N-Acetiltransferase , Leucemia Mieloide Aguda , Humanos , Estudos de Casos e Controles , Alelos , Frequência do Gene , Polimorfismo Genético , Leucemia Mieloide Aguda/genética , Arilamina N-Acetiltransferase/genética
11.
Arch Toxicol ; 97(10): 2697-2705, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37592049

RESUMO

Human N-acetyltransferase 2 (NAT2) is subject to genetic polymorphism in human populations. In addition to the reference NAT2*4 allele, two genetic variant alleles (NAT2*5B and NAT2*7B) are common in Europe and Asia, respectively. NAT2*5B possesses a signature rs1801280 T341C (I114T) single-nucleotide polymorphism (SNP), whereas NAT2*7B possesses a signature rs1799931 G857A (G286E) SNP. NAT2 alleles possessing the T341C (I114T) or G857A (G286E) SNP were recombinant expressed in yeast and tested for capacity to catalyze the O-acetylation of the N-hydroxy metabolites of heterocyclic amines (HCAs). The T341C (I114T) SNP reduced the O-acetylation of N-hydroxy-2-amino-3-methylimidazo [4,5-f] quinoline (N-OH-IQ), N-hydroxy-2-amino-3,8-dimethylimidazo [4,5-f] quinoxaline (N-OH-MeIQx) and N-hydroxy- 2-amino-1-methyl-6-phenylimidazo[4,5-b] pyridine (N-OH-PhIP), whereas the G857A (G286E) SNP reduced the O-acetylation of N-OH-IQ and N-OH-MeIQx but not N-OH-PhIP. The G857A (G286E) SNP significantly (p < 0.05) reduced apparent Km toward N-OH-PhIP but did not significantly (p > 0.05) affect apparent Vmax. Cultures of DNA repair-deficient Chinese hamster ovary (CHO) cells transfected with human CYP1A2 and NAT2*4, NAT2*5B or NAT2*7B alleles were incubated with various concentrations of IQ, MeIQx or PhIP and double-stranded DNA damage and reactive oxygen species (ROS) were measured. Transfection with human CYP1A2 did not significantly (p > 0.05) increase HCA-induced DNA damage and ROS over un-transfected cells. Additional transfection with NAT2*4, NAT2*5B or NAT2*7B allele increased both DNA damage and ROS. The magnitude of the increases was both NAT2 allele- and substrate-dependent showing the same pattern as observed for the O-acetylation of the N-hydroxylated HCAs suggesting that both are mediated via NAT2-catalyzed O-acetylation. The results document the role of NAT2 and its genetic polymorphism on the O-acetylation and genotoxicity of HCAs.


Assuntos
Arilamina N-Acetiltransferase , Citocromo P-450 CYP1A2 , Animais , Cricetinae , Humanos , Células CHO , Espécies Reativas de Oxigênio , Cricetulus , Polimorfismo de Nucleotídeo Único , Dano ao DNA , Acetiltransferases , Aminas/toxicidade , Carcinógenos/toxicidade , Arilamina N-Acetiltransferase/genética
12.
Acta Biochim Pol ; 70(3): 575-582, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37595067

RESUMO

Smoking is a main risk factor for bladder cancer (BC). NAT2 is a drug-metabolizing enzyme that catalyses the detoxification of many xenobiotics and carcinogens. Single nucleotide polymorphism (SNP) in NAT2 results in different acetylation phenotypes (fast, intermediate or slow). Certain NAT2 SNPs were associated with BC and/or modified the association of BC with smoking. However, limited evidence is available among BC patients or smokers from Jordan. This study aimed to discover novel SNPs in NAT2 and to assess the association with BC. This was a case-control study among 120 BC patients and 120 controls. Amplification of a 446 bp fragment of NAT2 encoding the N-catalytic domain was conducted using a polymerase chain reaction. Gene sequencing was done using Sanger-based technology. A total of 40 SNPs were detected. Two variants were significantly associated with BC (p<0.05); namely a novel c.87G>A and the reported c.341T>C. Regarding c.87G>A, genotype distribution was significantly associated with BC and subgroup analysis confirmed that this was significant in both smokers (p=0.007) and non-smokers (p=0.001). Regression subgroup analysis suggested GA as a risk factor among smokers (AOR= 2.356). The frequencies of TC and CC genotypes of c.341T>C were significantly higher in BC (p<0.05). This was statistically significant among smokers only (p=0.044), upon subgroup analysis. Multivariate analysis showed that subjects with TC genotype are 6.15 more likely to develop BC and regression subgroup analysis revealed TC as a risk factor among smokers (AOR=5.47). This is the first study from Jordan to report the association of smoking and two NAT2 variants with BC. The data supports the use of GA and TC genotypes of the novel c.87G>A and the reported c.341T>C SNPs, respectively as potential biomarkers of BC, particularly among smokers. Future investigations with a larger population are required to support our findings.


Assuntos
Arilamina N-Acetiltransferase , Neoplasias da Bexiga Urinária , Humanos , Estudos de Casos e Controles , Neoplasias da Bexiga Urinária/genética , Bexiga Urinária , Fatores de Risco , Genótipo , Arilamina N-Acetiltransferase/genética
13.
PLoS One ; 18(7): e0289014, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37478088

RESUMO

Acute myeloid leukemia (AML) is a malignancy of the myeloid cells due to the clonal and malignant proliferation of blast cells. The etiology of AML is complex and involves environmental and genetic factors. Such genetic aberrations include FLT3, DNMT3, IDH1, IDH2, NAT2, and WT. In this study, we analyzed the relationship between five, not previously studied in any Arab population, single nucleotide polymorphisms (SNPs) and the risk and overall survival of AML in Jordanian patients. The SNPs are NAT2 (rs1799930 and rs1799931), IDH1 (rs121913500), and IDH2 (rs121913502 and rs1057519736). A total number of 30 AML patients and 225 healthy controls were included in this study. Females comprised 50% (n = 15) and 65.3% (n = 147) of patients and controls, respectively. For AML patients (case group) Genomic DNA was extracted from formalin-fixed paraffin-embedded tissues and from peripheral blood samples for the control subjects group. Genotyping of the genetic polymorphisms was conducted using a sequencing protocol. Our study indicates that NAT2 rs1799930 SNP had a statistically significant difference in genotype frequency between cases and controls (p = 0.023) while IDH mutations did not correlate with the risk and survival of AML in the Jordanian population. These results were also similar in the TCGA-LAML cohorts with the notable exception of the rare NAT2 mutation. A larger cohort study is needed to further investigate our results.


Assuntos
Arilamina N-Acetiltransferase , Leucemia Mieloide Aguda , Feminino , Humanos , Masculino , Árabes/genética , Arilamina N-Acetiltransferase/genética , Estudos de Casos e Controles , Isocitrato Desidrogenase/genética , Leucemia Mieloide Aguda/patologia , Mutação , Nucleofosmina , Polimorfismo de Nucleotídeo Único , Prognóstico
14.
Pharmacogenet Genomics ; 33(6): 136-137, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37306342

RESUMO

A novel haplotype in N -acetyltransferase 2 ( NAT2 ) composed of seven non-coding variants (rs1495741, rs4921913, rs4921914, rs4921915, rs146812806, rs35246381, and rs35570672) has been linked to dyslipidemia by multiple, independent genome-wide association studies. The haplotype is located approximately 14 kb downstream of NAT2-coding region (ch8:18,272,377-18,272,881; GRCh38/hg38) and represents a non-coding, intergenic haplotype. Interestingly, the same dyslipidemia NAT2 haplotype is also linked to urinary bladder cancer risk. Dyslipidemia risk alleles are associated with rapid acetylator phenotype, whereas bladder cancer risk alleles are associated with slow acetylator, suggesting that the level of systemic NAT2 activity modifies the risk of these pathologies. We speculate that rs1495741 (and its associated haplotype) belongs to a distal regulatory element of human NAT2 gene (e.g., enhancer or silencer), and the genetic variation at the newly discovered haplotype results in a differential level of NAT2 gene expression. Understanding how this NAT2 haplotype contributes to not only urinary bladder cancer but also to dyslipidemia will ultimately help devise strategies to identify and protect susceptible individuals.


Assuntos
Arilamina N-Acetiltransferase , Dislipidemias , Neoplasias da Bexiga Urinária , Humanos , Acetilação , Acetiltransferases/genética , Acetiltransferases/metabolismo , Arilamina N-Acetiltransferase/genética , Arilamina N-Acetiltransferase/metabolismo , Estudo de Associação Genômica Ampla , Genótipo , Haplótipos , Neoplasias da Bexiga Urinária/genética , Dislipidemias/genética
15.
Arch Toxicol ; 97(6): 1773-1781, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37142755

RESUMO

4,4'-Methylenebis(2-chloroaniline) or MOCA is an aromatic amine used primarily in polyurethane and rubber industry. MOCA has been linked to hepatomas in animal studies while limited epidemiologic studies reported the association of exposure to MOCA and urinary bladder and breast cancer. We investigated MOCA-induced genotoxicity and oxidative stress in DNA repair-deficient Chinese hamster ovary (CHO) cells stably transfected with human metabolizing enzymes CYP1A2 and N-acetyltransferase 2 (NAT2) variants as well as in rapid, intermediate, and slow NAT2 acetylator cryopreserved human hepatocytes. N-acetylation of MOCA was highest in UV5/1A2/NAT2*4 followed by UV5/1A2/NAT2*7B and UV5/1A2/NAT2*5B CHO cells. Human hepatocytes showed a NAT2 genotype-dependent response with highest N-acetylation in rapid acetylators followed by intermediate and slow acetylators. MOCA induced higher levels of mutagenesis and DNA damage in UV5/1A2/NAT2*7B compared to UV5/1A2/NAT2*4 and UV5/1A2/NAT2*5B cells (p < 0.0001). MOCA also induced higher levels of oxidative stress in UV5/1A2/NAT2*7B cells. MOCA caused concentration-dependent increase in DNA damage in cryopreserved human hepatocytes (linear trend p < 0.001) which was NAT2 genotype dependent i.e., highest in rapid acetylators, lower in intermediate acetylators, and lowest in slow acetylators (p < 0.0001). Our findings show that N-acetylation and genotoxicity of MOCA is NAT2 genotype dependent and suggest that individuals possessing NAT2*7B are at higher risk to MOCA-induced mutagenicity. DNA damage, and oxidative stress. They confirm significant differences in genotoxicity between the NAT2*5B and NAT2*7B alleles, both of which are associated with slow acetylator phenotype.


Assuntos
Arilamina N-Acetiltransferase , Metilenobis (cloroanilina) , Cricetinae , Animais , Humanos , Cricetulus , Células CHO , Arilamina N-Acetiltransferase/genética , Arilamina N-Acetiltransferase/metabolismo , Dano ao DNA , Acetiltransferases/genética , Genótipo , Estresse Oxidativo , Polimorfismo Genético , Acetilação
16.
Eur Urol ; 84(1): 127-137, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37210288

RESUMO

BACKGROUND: Genomic regions identified by genome-wide association studies (GWAS) for bladder cancer risk provide new insights into etiology. OBJECTIVE: To identify new susceptibility variants for bladder cancer in a meta-analysis of new and existing genome-wide genotype data. DESIGN, SETTING, AND PARTICIPANTS: Data from 32 studies that includes 13,790 bladder cancer cases and 343,502 controls of European ancestry were used for meta-analysis. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSES: Log-additive associations of genetic variants were assessed using logistic regression models. A fixed-effects model was used for meta-analysis of the results. Stratified analyses were conducted to evaluate effect modification by sex and smoking status. A polygenic risk score (PRS) was generated on the basis of known and novel susceptibility variants and tested for interaction with smoking. RESULTS AND LIMITATIONS: Multiple novel bladder cancer susceptibility loci (6p.22.3, 7q36.3, 8q21.13, 9p21.3, 10q22.1, 19q13.33) as well as improved signals in three known regions (4p16.3, 5p15.33, 11p15.5) were identified, bringing the number of independent markers at genome-wide significance (p < 5 × 10-8) to 24. The 4p16.3 (FGFR3/TACC3) locus was associated with a stronger risk for women than for men (p-interaction = 0.002). Bladder cancer risk was increased by interactions between smoking status and genetic variants at 8p22 (NAT2; multiplicative p value for interaction [pM-I] = 0.004), 8q21.13 (PAG1; pM-I = 0.01), and 9p21.3 (LOC107987026/MTAP/CDKN2A; pM-I = 0.02). The PRS based on the 24 independent GWAS markers (odds ratio per standard deviation increase 1.49, 95% confidence interval 1.44-1.53), which also showed comparable results in two prospective cohorts (UK Biobank, PLCO trial), revealed an approximately fourfold difference in the lifetime risk of bladder cancer according to the PRS (e.g., 1st vs 10th decile) for both smokers and nonsmokers. CONCLUSIONS: We report novel loci associated with risk of bladder cancer that provide clues to its biological underpinnings. Using 24 independent markers, we constructed a PRS to stratify lifetime risk. The PRS combined with smoking history, and other established risk factors, has the potential to inform future screening efforts for bladder cancer. PATIENT SUMMARY: We identified new genetic markers that provide biological insights into the genetic causes of bladder cancer. These genetic risk factors combined with lifestyle risk factors, such as smoking, may inform future preventive and screening strategies for bladder cancer.


Assuntos
Arilamina N-Acetiltransferase , Neoplasias da Bexiga Urinária , Masculino , Humanos , Feminino , Estudo de Associação Genômica Ampla , Estudos Prospectivos , Fatores de Risco , Genótipo , Neoplasias da Bexiga Urinária/genética , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Proteínas Associadas aos Microtúbulos , Proteínas de Membrana , Proteínas Adaptadoras de Transdução de Sinal
17.
Arch Toxicol ; 97(6): 1765-1772, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37097310

RESUMO

Benzidine undergoes N-acetylation and following CYP1A2-catalyzed N-hydroxylation undergoes O-acetylation catalyzed by N-acetyltransferase 1 (NAT1). Benzidine exposure is associated with urinary bladder cancer but the effect of NAT1 genetic polymorphism on individual risk remains unclear. We used Chinese hamster ovary (CHO) cells transfected with human CYP1A2 and NAT1*4 allele (reference) or NAT1*14B (variant) to investigate the effects of dose and NAT1 polymorphism on benzidine metabolism and genotoxicity. Rates of benzidine N-acetylation in vitro were higher in CHO cells transfected with NAT1*4 compared to NAT1*14B. CHO cells transfected with NAT1*14B exhibited greater N-acetylation rates in situ than cells transfected with NAT1*4 at low doses of benzidine expected with environmental exposures but not at higher doses. NAT1*14B exhibited over tenfold lower apparent KM which resulted in higher intrinsic clearance for benzidine N-acetylation compared to CHO cells transfected with NAT1*4. Benzidine-induced hypoxanthine phosphoribosyl transferase (HPRT) mutations were higher in CHO cells transfected with NAT1*14B than with NAT1*4 (p < 0.001). Benzidine caused concentration-dependent increase in γ-H2AX signal (indicative of DNA double-strand breaks) in CHO cells transfected with NAT1*4 or NAT1*14B. CHO cells transfected with NAT1*14B exhibited significantly higher level of DNA damage than with NAT1*4 (p < 0.0001). Benzidine-induced ROS did not differ significantly (p > 0.05) between CHO cells transfected with NAT1*4 or NAT1*14B except at 50 µM. Levels of benzidine-induced DNA damage and reactive oxygen species (ROS) showed strong dose-dependent correlation. Our findings support human studies associating NAT1*14B with increased incidence or severity of urinary bladder cancer in workers exposed to benzidine.


Assuntos
Arilamina N-Acetiltransferase , Neoplasias da Bexiga Urinária , Cricetinae , Animais , Humanos , Citocromo P-450 CYP1A2/metabolismo , Cricetulus , Células CHO , Espécies Reativas de Oxigênio , Arilamina N-Acetiltransferase/genética , Arilamina N-Acetiltransferase/metabolismo , Dano ao DNA , Polimorfismo Genético , Benzidinas/toxicidade , Acetilação
18.
In Vivo ; 37(3): 1129-1144, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37103073

RESUMO

BACKGROUND/AIM: Arylamine N-acetyltransferase 1 and 2 (NAT1 and NAT2) are drug-metabolizing enzymes that play a key role in the development of acute lymphoblastic leukemia (ALL). MATERIALS AND METHODS: This study evaluated NAT1 and NAT2 mRNA and protein expression and their enzymatic activity in peripheral blood mononuclear cells (PBMC) from patients with ALL (n=20) and healthy children (n=19) and explored the mechanisms that regulate these enzymes in ALL such as microRNAs (miR-1290, miR-26b) and SNPs. RESULTS: PBMC from patients with ALL showed a decrease in NAT1 mRNA and protein expression. In addition, NAT1 enzymatic activity was decreased in patients with ALL. There was no influence of SNP 559 C>T or 560 G>A on low NAT1 activity. The lower expression of NAT1 might be related to the loss of acetylated histone H3K14 in the NAT1 gene promoter in patients with ALL and the higher relative expression of miR-1290 in the plasma of patients with relapsed ALL compared with healthy controls. There were significantly fewer CD3+/NAT1+ double-positive cells in patients who relapsed compared with control subjects. Based on a t-distributed stochastic neighbor embedding algorithm, CD19+ cells that reappeared in patients with relapse showed low NAT1 expression. In contrast, for NAT2, there were no significant results. CONCLUSION: The expression and function of NAT1 and miR-1290 levels could be involved in modulating immune cells altered in ALL.


Assuntos
Arilamina N-Acetiltransferase , MicroRNAs , Leucemia-Linfoma Linfoblástico de Células Precursoras , Criança , Humanos , Leucócitos Mononucleares/metabolismo , Projetos Piloto , Arilamina N-Acetiltransferase/genética , Arilamina N-Acetiltransferase/metabolismo , MicroRNAs/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , RNA Mensageiro
19.
PLoS One ; 18(4): e0283726, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37023111

RESUMO

Arylamine N-acetyltransferase 2 has been related to drug side effects and cancer susceptibility; its protein structure and acetylation capacity results from the polymorphism's arrays on the NAT2 gene. Absorption, distribution, metabolism, and excretion, cornerstones of the pharmacological effects, have shown diversity patterns across populations, ethnic groups, and even interethnic variation. Although the 1000 Genomes Project database has portrayed the global diversity of the NAT2 polymorphisms, several populations and ethnicities remain underrepresented, limiting the comprehensive picture of its variation. The NAT2 clinical entails require a detailed landscape of its striking diversity. This systematic review spans the genetic and acetylation patterns from 164 articles from October 1992 to October 2020. Descriptive studies and controls from observational studies expanded the NAT2 diversity landscape. Our study included 243 different populations and 101 ethnic minorities, and, for the first time, we presented the global patterns in the Middle Eastern populations. Europeans, including its derived populations, and East Asians have been the most studied genetic backgrounds. Contrary to the popular perception, Africans, Latinos and Native Americans have been significantly represented in recent years. NAT2*4, *5B, and *6A were the most frequent haplotypes globally. Nonetheless, the distribution of *5B and *7B were less and more frequent in Asians, respectively. Regarding the acetylator status, East Asians and Native Americans harboured the highest frequencies of the fast phenotype, followed by South Europeans. Central Asia, the Middle East, and West European populations were the major carriers of the slow acetylator status. The detailed panorama presented herein, expands the knowledge about the diversity patterns to genetic and acetylation levels. These data could help clarify the controversial findings between acetylator states and the susceptibility to diseases and reinforce the utility of NAT2 in precision medicine.


Assuntos
Arilamina N-Acetiltransferase , Arilamina N-Acetiltransferase/genética , Arilamina N-Acetiltransferase/metabolismo , Acetilação , Polimorfismo Genético , Haplótipos , Fenótipo , Genótipo
20.
Front Immunol ; 14: 1119315, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36926335

RESUMO

Background: The dysfunction of immune system and inflammation contribute to the Parkinson's disease (PD) pathogenesis. Cytokines, oxidative stress, neurotoxin and metabolism associated enzymes participate in neuroinflammation in PD and the genes involved in them have been reported to be associated with the risk of PD. In our study, we performed a quantitative and causal analysis of the relationship between inflammatory genes and PD risk. Methods: Standard process was performed for quantitative analysis. Allele model (AM) was used as primary outcome analysis and dominant model (DM) and recessive model (RM) were applied to do the secondary analysis. Then, for those genes significantly associated with the risk of PD, we used the published GWAS summary statistics for Mendelian Randomization (MR) to test the causal analysis between them. Results: We included 36 variants in 18 genes for final pooled analysis. As a result, IL-6 rs1800795, TNF-α rs1799964, PON1 rs854560, CYP2D6 rs3892097, HLA-DRB rs660895, BST1 rs11931532, CCDC62 rs12817488 polymorphisms were associated with the risk of PD statistically with the ORs ranged from 0.66 to 3.19 while variants in IL-1α, IL-1ß, IL-10, MnSOD, NFE2L2, CYP2E1, NOS1, NAT2, ABCB1, HFE and MTHFR were not related to the risk of PD. Besides, we observed that increasing ADP-ribosyl cyclase (coded by BST1) had causal effect on higher PD risk (OR[95%CI] =1.16[1.10-1.22]) while PON1(coded by PON1) shown probably protective effect on PD risk (OR[95%CI] =0.81[0.66-0.99]). Conclusion: Several polymorphisms from inflammatory genes of IL-6, TNF-α, PON1, CYP2D6, HLA-DRB, BST1, CCDC62 were statistically associated with the susceptibility of PD, and with evidence of causal relationships for ADP-ribosyl cyclase and PON1 on PD risk, which may help understand the mechanisms and pathways underlying PD pathogenesis.


Assuntos
Arilamina N-Acetiltransferase , Doença de Parkinson , Humanos , Predisposição Genética para Doença , Doença de Parkinson/genética , Citocromo P-450 CYP2D6 , Fator de Necrose Tumoral alfa/genética , ADP-Ribosil Ciclase , Interleucina-6/genética , Arildialquilfosfatase/genética , Arilamina N-Acetiltransferase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA