Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Int J Mol Sci ; 25(12)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38928118

RESUMO

ß C-S lyases (ß-CSLs; EC 4.4.1.8) are enzymes catalyzing the dissociation of ß carbon-sulfur bonds of cysteine S-conjugates to produce odorant metabolites with a free thiol group. These enzymes are increasingly studied for their role in flavor generation in a variety of food products, whether these processes occur directly in plants, by microbial ß-CSLs during fermentation, or in the mouth under the action of the oral microbiota. Microbial ß-CSLs react with sulfur aroma precursors present in beverages, vegetables, fruits, or aromatic herbs like hop but also potentially with some precursors formed through Maillard reactions in cooked foods such as meat or coffee. ß-CSLs from microorganisms like yeasts and lactic acid bacteria have been studied for their role in the release of polyfunctional thiols in wine and beer during fermentation. In addition, ß-CSLs from microorganisms of the human oral cavity were shown to metabolize similar precursors and to produce aroma in the mouth with an impact on retro-olfaction. This review summarizes the current knowledge on ß-CSLs involved in flavor generation with a focus on enzymes from microbial species present either in the fermentative processes or in the oral cavity. This paper highlights the importance of this enzyme family in the food continuum, from production to consumption, and offers new perspectives concerning the utilization of ß-CSLs as a flavor enhancer.


Assuntos
Fermentação , Aromatizantes , Humanos , Aromatizantes/metabolismo , Liases de Carbono-Enxofre/metabolismo , Bactérias/enzimologia , Bactérias/metabolismo , Paladar
2.
Food Chem ; 455: 139932, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38843719

RESUMO

White tea stored for various times have different flavors. However, the mechanism of flavor conversion remains elusive. Flavonoids and amino acids are two typical flavor components in tea. Herein, the contents of 46 flavonoids and 40 amino acids were measured in white tea (Shoumei) stored for 1, 3, 5 and 7 years, respectively. L-tryptophan, L-ornithine and L-theanine contribute to the refreshing taste of Shoumei 1 and 3. Quercetin, rutin and hesperidin contribute to aging charm and grain aroma of Shoumei 5 and 7. 306 bacterial OTUs and 268 fungal OTUs core microbiota existed in all samples. Interestingly, white teas contained higher richness of fungi than bacteria. The correlation analysis showed that the cooperation with bacteria and fungi may result in the flavonoids and amino acids composition changes in white teas during storage. Overall, this study provides new insights into flavor conversion of white tea during storage.


Assuntos
Aminoácidos , Bactérias , Camellia sinensis , Flavonoides , Armazenamento de Alimentos , Fungos , Chá , Aminoácidos/análise , Aminoácidos/metabolismo , Chá/química , Chá/microbiologia , Bactérias/metabolismo , Bactérias/isolamento & purificação , Bactérias/classificação , Flavonoides/análise , Fungos/metabolismo , Camellia sinensis/química , Camellia sinensis/microbiologia , Paladar , Aromatizantes/química , Aromatizantes/metabolismo , Aromatizantes/análise , Microbiota
3.
Sci Rep ; 14(1): 12254, 2024 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806593

RESUMO

Migration of nib Cd to the testa during fermentation can be achieved with high temperatures (> 45 °C) and low nib pH values (< 5.0) using spontaneous fermentation. However, this low pH can lead to low flavor quality. This study used three controlled temperature fermentation treatments on three cacao genotypes (CCN 51, ICS 95, and TCS 01) to test its effects on the nib pH, the migration of nib Cd to the testa, and the liquor flavor quality. All treatments were effective in reducing the total nib Cd concentration. Nevertheless, the treatment with the higher mean temperature (44.25 °C) and acidification (pH 4.66) reached the highest mean nib Cd reductions throughout fermentation, a 1.37 factor in TCS 01, promoting the development of fine-flavor cocoa sensorial notes. In unfermented beans, the Cd concentration of nibs was higher than that of the testa, and the Cd migration proceeded down the total concentration gradient. However, Cd migration was observed against the concentration gradient (testa Cd > nib Cd) from the fourth day. Cd migration could increase by extensive fermentation until the sixth day in high temperatures and probably by the adsorbent capacity of the testa. Genotype-by-treatment interactions were present for the nib Cd reduction, and a universal percentage of decrease of Cd for each genotype with fermentation cannot be expected. Selecting genotypes with highly adsorbent testa combined with controlled temperatures would help reduce the Cd concentration in the cacao raw material, improving its safety and quality.


Assuntos
Cacau , Cádmio , Fermentação , Cacau/metabolismo , Concentração de Íons de Hidrogênio , Cádmio/metabolismo , Paladar , Temperatura Alta , Aromatizantes/metabolismo , Temperatura
4.
Food Chem ; 453: 139691, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-38781904

RESUMO

Yeast extract is increasingly becoming an attractive source for unraveling novel umami peptides that are healthier and more nutritious than traditional seasonings. In the present study, a strategy for screening novel umami peptides was established using mass spectrometry-based peptidomics combined with molecular interaction modeling, emphasizing on smaller peptides than previously reported. Four representative novel umami peptides of FE, YDQ, FQEY, and SPFSQ from yeast extract (Saccharomyces cerevisiae) were identified and validated by sensory evaluation, with thresholds determined as 0.234 ± 0.045, 0.576 ± 0.175, 0.327 ± 0.057 and 0.456 ± 0.070 mmol/L, respectively. Hydrogen and ionic bonds were the main characteristic interactions between the umami peptides and the well-recognized receptor T1R1/T1R3, in which Asp 110, Thr 112, Arg 114, Arg 240, Lys 342, and Glu 264 were the key sites in ligand-receptor recognition. Our study provides accurate sequences of umami peptides and molecular interaction mechanism for the umami effect.


Assuntos
Peptídeos , Saccharomyces cerevisiae , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Peptídeos/química , Humanos , Paladar , Modelos Moleculares , Aromatizantes/química , Aromatizantes/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Masculino , Proteômica , Feminino , Sequência de Aminoácidos
5.
Food Chem ; 453: 139664, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-38761739

RESUMO

Salt is important for food flavor, but excessive sodium intake leads to adverse health consequences. Thus, salty and saltiness-enhancing peptides are developed for sodium-reduction products. This review elucidates saltiness perception process and analyses correlation between the peptide structure and saltiness-enhancing ability. These peptides interact with taste receptors to produce saltiness perception, including ENaC, TRPV1, and TMC4. This review also outlines preparation, isolation, purification, characterization, screening, and assessment techniques of these peptides and discusses their potential applications. These peptides are from various sources and produced through enzymatic hydrolysis, microbial fermentation, or Millard reaction and then separated, purified, identified, and screened. Sensory evaluation, electronic tongue, bioelectronic tongue, and cell and animal models are the primary saltiness assessment approaches. These peptides can be used in sodium-reduction food products to produce "clean label" items, and the peptides with biological activity can also serve as functional ingredients, making them very promising for food industry.


Assuntos
Peptídeos , Paladar , Peptídeos/química , Humanos , Animais , Aromatizantes/química , Aromatizantes/metabolismo , Cloreto de Sódio na Dieta/análise , Cloreto de Sódio na Dieta/metabolismo
6.
Food Chem ; 449: 139281, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38608608

RESUMO

In this study, metabolomics and proteomics were performed to investigate the fluctuations of non-volatile compounds and proteins in tea leaves from three tea cultivars with varying colours during withering. A total of 2798 compounds were detected, exhibiting considerable variations in amino acids, phenylpropanoids, and flavonoids. The ZH1 cultivar displayed increased levels of amino acids but decreased levels of polyphenols, which might be associated with the up-regulation of enzymes responsible for protein degradation and subsequent amino acid production, as well as the down-regulation of enzymes involved in phenylpropanoid and flavonoid biosynthesis. The FUD and ZH1 cultivars had elevated levels of flavanols and flavanol-O-glycosides, which were regulated by the upregulation of FLS. The ZJ and ZH1 cultivars displayed elevated levels of theaflavin and peroxidase. This work presents a novel investigation into the alterations of metabolites and proteins between tea cultivars during withering, and helps with the tea cultivar selection and manufacturing development.


Assuntos
Camellia sinensis , Aromatizantes , Metabolômica , Folhas de Planta , Proteínas de Plantas , Folhas de Planta/química , Folhas de Planta/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Camellia sinensis/química , Camellia sinensis/metabolismo , Camellia sinensis/genética , Camellia sinensis/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Aromatizantes/química , Aromatizantes/metabolismo , Proteômica , Polifenóis/metabolismo , Polifenóis/química , Polifenóis/análise , Cor , Chá/química , Flavonoides/análise , Flavonoides/metabolismo , Flavonoides/química , Multiômica
7.
J Agric Food Chem ; 72(18): 10558-10569, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38668637

RESUMO

As a traditional Thai condiment, Pla-ra is used to add flavor and richness to dishes. Nine treatment combinations of Pla-ra formulations created from 3 types of fish (Mor fish, Kradee fish, and Mor + Kradee fish) and 4 different carbohydrate sources (none, rice bran, roasted rice, and rice bran─roasted rice mixture) were studied through a 12 month fermentation period (1, 3, 5, 7, 8, 9, 10, 11, and 12 months). 16S rRNA Next Generation Sequencing (NGS) and LC-MS/MS techniques were used to analyze the microbial diversity and identify taste-enhancing peptides. Descriptive sensory analysis was performed on the extracts of the 108 Pla-ra samples mixed in a model broth. Koku perception and saltiness-enhancing attributes were clearly perceived and dominant in all samples, even though glutamyl peptides, including γ-Glu-Val-Gly, were found at subthreshold levels. The samples from mixed fish and Mor fish fermented with roasted ground rice and rice bran for 12 months had the most typical Pla-ra odors and tastes and had high taste-enhancing activities. NGS analysis revealed the presence of bacteria containing a large number of protease and aminopeptidase genes in the samples. Bacillus spp., Gallicola spp., and Proteiniclasticum spp. correlated well with the generation of glutamyl and arginyl peptides and typical odors in the samples. These results confirmed the typical sensory quality of Pla-ra depended on protein sources, carbohydrate sources, and bacteria communities. Further optimization of the microbial composition found could lead to the development of starter cultures to control and promote flavor development in fermented fish products.


Assuntos
Fermentação , Peixes , Aromatizantes , Microbiota , Peptídeos , Paladar , Animais , Feminino , Humanos , Masculino , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Condimentos/análise , Condimentos/microbiologia , Alimentos Fermentados/análise , Alimentos Fermentados/microbiologia , Produtos Pesqueiros/análise , Produtos Pesqueiros/microbiologia , Peixes/microbiologia , Aromatizantes/química , Aromatizantes/metabolismo , Odorantes/análise , Oryza/química , Oryza/microbiologia , Oryza/metabolismo , Peptídeos/metabolismo , RNA Ribossômico 16S/genética , População do Sudeste Asiático , Tailândia , Adulto Jovem
8.
Food Chem ; 448: 139085, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38518444

RESUMO

The effects and underlying molecular mechanisms of binary probiotics (Lactiplantibacillus plantarum subsp. plantarum CGMCC 1.5953 and Lacticaseibacillus casei CGMCC 1.5956) on the quality of wolfberry fermented beverages (WFB) were investigated. The results indicated that binary probiotics increased the number of probiotics, anthocyanin (89.92 ± 1.64 mg/L), polyphenol content (283.04 ± 3.81 µg/mL), and odor score (24.19) in WFB. Metabolomics found that they could enhance signal exchange (cyclic AMP) between binary probiotics and improve the utilization of citrulline, d-proline, d-glucose, and d-galactose through galactose metabolism and amino acid biosynthesis pathway to promote probiotics growth. Furthermore, HS-SPME-GC-MS and GS-IMS revealed that the improvement in flavor was mainly due to an increase in the content of the aromatic flavor substances 3-heptanol, glutaraldehyde, and 2-heptanone, and a decrease in the content of the off-flavor substances methyl isobutyl ketone-D and 2-undecanone. This is strategically important for the development of WFB with high probiotic content and unique flavor.


Assuntos
Antocianinas , Fermentação , Odorantes , Polifenóis , Probióticos , Polifenóis/metabolismo , Polifenóis/análise , Polifenóis/química , Odorantes/análise , Antocianinas/análise , Antocianinas/metabolismo , Probióticos/metabolismo , Probióticos/análise , Probióticos/química , Aromatizantes/metabolismo , Aromatizantes/química
9.
Food Chem ; 448: 138999, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38522302

RESUMO

Umami peptides originating from fermented sea bass impart a distinctive flavor to food. Nevertheless, large-scale and rapid screening for umami peptides using conventional techniques is challenging because of problems such as prolonged duration and complicated operation. Therefore, we aimed to screen fermented sea bass using peptidomics and machine learning approaches. The taste presentation mechanism of umami peptides was assessed by molecular docking of T1R1/T1R3. Seventy umami peptides identified in fermented sea bass predominantly originated from 28 precursor proteins, including troponin, myosin, motor protein, and creatine kinase. Six umami peptides with the lowest energies formed stable complexes by binding to T1R3. SER170, SER147, GLN389, and HIS145 are critical binding sites for T1R1/T1R3. Four dominant interacting surface forces were identified: aromatic interactions, hydrogen bonding, hydrophilic bonds, and solvent-accessible surfaces. Our study unveils a method to screen umami peptides efficiently, providing a basis for further exploration of their flavor in fermented sea bass.


Assuntos
Bass , Aprendizado de Máquina , Peptídeos , Paladar , Bass/metabolismo , Animais , Peptídeos/química , Fermentação , Simulação de Acoplamento Molecular , Proteínas de Peixes/química , Proteínas de Peixes/metabolismo , Aromatizantes/química , Aromatizantes/metabolismo , Humanos , Proteômica
10.
Braz. j. biol ; 83: e250550, 2023. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1345536

RESUMO

Abstract Vanillin is the major component which is responsible for flavor and aroma of vanilla extract and is produced by 3 ways: natural extraction from vanilla plant, chemical synthesis and from microbial transformation. Current research was aimed to study bacterial production of vanillin from native natural sources including sewage and soil from industrial areas. The main objective was vanillin bio-production by isolating bacteria from these native sources. Also to adapt methodologies to improve vanillin production by optimized fermentation media and growth conditions. 47 soil and 13 sewage samples were collected from different industrial regions of Lahore, Gujranwala, Faisalabad and Kasur. 67.7% bacterial isolates produced vanillin and 32.3% were non-producers. From these 279 producers, 4 bacterial isolates selected as significant producers were; A3, A4, A7 and A10. These isolates were identified by ribotyping as A3 Pseudomonas fluorescence (KF408302), A4 Enterococcus faecium (KT356807), A7 Alcaligenes faecalis (MW422815) and A10 Bacillus subtilis (KT962919). Vanillin producers were further tested for improved production of vanillin and were grown in different fermentation media under optimized growth conditions for enhanced production of vanillin. The fermentation media (FM) were; clove oil based, rice bran waste (residues oil) based, wheat bran based and modified isoeugenol based. In FM5, FM21, FM22, FM23, FM24, FM30, FM31, FM32, FM34, FM35, FM36, and FM37, the selected 4 bacterial strains produced significant amounts of vanillin. A10 B. subtilis produced maximum amount of vanillin. This strain produced 17.3 g/L vanillin in FM36. Cost of this fermentation medium 36 was 131.5 rupees/L. This fermentation medium was modified isoeugenol based medium with 1% of isoeugenol and 2.5 g/L soybean meal. ech gene was amplified in A3 P. fluorescence using ech specific primers. As vanillin use as flavor has increased tremendously, the bioproduction of vanillin must be focused.


Resumo A vanilina é o principal componente responsável pelo sabor e aroma do extrato de baunilha e é produzida de três formas: extração natural da planta da baunilha, síntese química e transformação microbiana. A pesquisa atual teve como objetivo estudar a produção bacteriana de vanilina a partir de fontes naturais nativas, incluindo esgoto e solo de áreas industriais. O objetivo principal era a bioprodução de vanilina por meio do isolamento de bactérias dessas fontes nativas. Também para adaptar metodologias para melhorar a produção de vanilina por meio de fermentação otimizada e condições de crescimento. Foram coletadas 47 amostras de solo e 13 de esgoto de diferentes regiões industriais de Lahore, Gujranwala, Faisalabad e Kasur; 67,7% dos isolados bacterianos produziram vanilina e 32,3% eram não produtores. Desses 279 produtores, 4 isolados bacterianos selecionados como produtores significativos foram: A3, A4, A7 e A10. Esses isolados foram identificados por ribotipagem como fluorescência A3 Pseudomonas (KF408302), A4 Enterococcus faecium (KT356807), A7 Alcaligenes faecalis (MW422815) e A10 Bacillus subtilis (KT962919). Os produtores de vanilina foram posteriormente testados para produção aprimorada de vanilina e foram cultivados em diferentes meios de fermentação sob condições de crescimento otimizadas para produção aprimorada de vanilina. Os meios de fermentação (FM) foram: à base de óleo de cravo, à base de resíduos de farelo de arroz (resíduos de óleo), à base de farelo de trigo e à base de isoeugenol modificado. Em FM5, FM21, FM22, FM23, FM24, FM30, FM31, FM32, FM34, FM35, FM36 e FM37, as 4 cepas bacterianas selecionadas produziram quantidades significativas de vanilina. A10 B. subtilis produziu quantidade máxima de vanilina. Essa cepa produziu 17,3 g / L de vanilina em FM36. O custo desse meio de fermentação 36 foi de 131,5 rúpias / L. Esse meio de fermentação foi um meio à base de isoeugenol modificado com 1% de isoeugenol e 2,5 g / L de farelo de soja. O gene ech foi amplificado em A3 P. fluorescence usando primers específicos para ech. Como o uso da vanilina como sabor aumentou tremendamente, a bioprodução da vanilina deve ser focada.


Assuntos
Benzaldeídos/metabolismo , Aromatizantes/metabolismo , Bacillus subtilis/metabolismo , Microbiologia Industrial , Pseudomonas fluorescens/metabolismo , Enterococcus faecium/metabolismo , Meios de Cultura , Alcaligenes faecalis/metabolismo , Fermentação
11.
Appl Microbiol Biotechnol ; 106(13-16): 4929-4944, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35851416

RESUMO

There is a growing appreciation for the role that yeast play in biotransformation of flavour compounds during beverage fermentations. This is particularly the case for brewing due to the continued popularity of aromatic beers produced via the dry-hopping process. Here, we review the current literature pertaining to biotransformation reactions mediated by fermentative yeasts. These reactions are diverse and include the liberation of thiols from cysteine or glutathione-bound adducts, as well as the release of glycosidically bound terpene alcohols. These changes serve generally to increase the fruit and floral aromas in beverages. This is particularly the case for the thiol compounds released via yeast ß-lyase activity due to their low flavour thresholds. The role of yeast ß-glucosidases in increasing terpene alcohols is less clear, at least with respect to fermentation of brewer's wort. Yeast acetyl transferase and acetate esterase also have an impact on the quality and perceptibility of flavour compounds. Isomerization and reduction reactions, e.g. the conversion of geraniol (rose) to ß-citronellol (citrus), also have potential to alter significantly flavour profiles. A greater understanding of biotransformation reactions is expected to not only facilitate greater control of beverage flavour profiles, but also to allow for more efficient exploitation of raw materials and thereby greater process sustainability. KEY POINTS: • Yeast can alter and boost grape- and hop-derived flavour compounds in wine and beer • ß-lyase activity can release fruit-flavoured thiols with low flavour thresholds • Floral and citrus-flavoured terpene alcohols can be released or interconverted.


Assuntos
Liases , Saccharomyces cerevisiae , Álcoois/metabolismo , Cerveja , Biotransformação , Fermentação , Aromatizantes/metabolismo , Frutas/metabolismo , Liases/metabolismo , Saccharomyces cerevisiae/metabolismo , Compostos de Sulfidrila/metabolismo , Terpenos/metabolismo , Leveduras/metabolismo
12.
Food Microbiol ; 105: 104012, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35473973

RESUMO

Specialty coffee can be developed by the application of explicit microorganisms or starters to obtain desired fermentation. In the present study, natural fermentation (NF) of Arabica coffee was carried out spontaneously, the other set was inoculated with Pichia kudriavzevii (Y) starter culture (isolated, identified and mass cultured). The effect of microbial fermentation, metagenomics, production of functional metabolites, volatiles and their sensorial aspects were studied. The bioprocess illustrated cohesive interface of coffee nutrients and microbial communities like Mycobacterium, Acinetobacter, Gordonia, etc., in NF, Lactobacillus and Leuconostoc were prevailing in Y. The Pichia and Rhodotorula dominated in both the groups. The bioactivity of bacteria and fungi induced complex changes in physicochemical features like pH (4.2-5.2), Brix° (9.5-3.0), and metabolic transition in sugar (3.0-0.7%), alcohol (1.4-2.7%), organic acids modulating flavour precursors and organoleptics in the final brew. In the roasted bean, Y exhibited higher sugar (42%), protein (25%), polyphenol (3.5%), CGA (2.5%), caffeine (17.2%), and trigonelline (2.8%) than NF. The volatile profile exhibited increased flavour molecules like furans, ketones, and pyrazines in Y, besides lactone complexes. The organoleptics in Y were highlighted with honey, malt and berry notes. P. kudriavzevii coffee fermentation could be beneficial in specialty coffee production and enhancement of distinct characteristic flavours.


Assuntos
Café , Pichia , Café/química , Fermentação , Aromatizantes/metabolismo , Pichia/metabolismo , Açúcares
13.
Food Funct ; 13(6): 3621-3631, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35262138

RESUMO

Mast cells (MCs) are the main effector cells in the onset of high-affinity receptor for IgE (FcεRI)-mediated allergic diseases. The aim of this study was to test whether dihydrocoumarin (DHC), a food flavoring agent derived from Melilotus officinalis, can block IgE-induced MC activation effects and to examine the potential molecular mechanisms by which DHC affects MC activation. Rat basophilic leukemia cells (RBLs) and mouse bone marrow-derived mast cells (BMMCs) were sensitized with anti-dinitrophenol (DNP) immunoglobulin (Ig)E antibodies, stimulated with DNP-human serum albumin antigen, and treated with DHC. Western blot analyses were performed to detect the expression of signaling proteins. Murine IgE-mediated passive cutaneous anaphylaxis (PCA) and ovalbumin (OVA)-induced active systemic anaphylaxis (ASA) models were used to examine DHC effects on allergic reactions in vivo. DHC inhibited MC degranulation, as evidenced by reduced ß-hexosaminidase activity and histamine levels, and reduced morphological changes associated with MC activation, namely cellular elongation and F-actin reorganization. DHC inhibited the activation of MAPK, NF-κB, and AP-1 pathways in IgE-activated MCs. Additionally, DHC could attenuate IgE/Ag-induced allergic reactions (dye extravasation and ear thickening) in PCA as well as OVA challenge-induced reactions in ASA mice (body temperature, serum histamine and IL-4 secretion changes). In conclusion, DHC suppressed MC activation. DHC may represent a new MC-suppressing treatment strategy for the treatment of IgE-mediated allergic diseases.


Assuntos
Anafilaxia , Mastócitos , Anafilaxia/tratamento farmacológico , Animais , Degranulação Celular , Aromatizantes/metabolismo , Imunoglobulina E/metabolismo , Inflamação/metabolismo , Camundongos , Anafilaxia Cutânea Passiva , Ratos
14.
Chem Res Toxicol ; 35(2): 283-292, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-35044764

RESUMO

Despite the increasing popularity of e-cigarettes, their long-term health effects remain unknown. In animal models, exposure to e-cigarette has been reported to result in pulmonary and cardiovascular injury, and in humans, the acute use of e-cigarettes increases heart rate and blood pressure and induces endothelial dysfunction. In both animal models and humans, cardiovascular dysfunction associated with e-cigarettes has been linked to reactive aldehydes such as formaldehyde and acrolein generated in e-cigarette aerosols. These aldehydes are known products of heating and degradation of vegetable glycerin (VG) present in e-liquids. Here, we report that in mice, acute exposure to a mixture of propylene glycol:vegetable glycerin (PG:VG) or to e-cigarette-derived aerosols significantly increased the urinary excretion of acrolein and glycidol metabolites─3-hydroxypropylmercapturic acid (3HPMA) and 2,3-dihydroxypropylmercapturic acid (23HPMA)─as measured by UPLC-MS/MS. In humans, the use of e-cigarettes led to an increase in the urinary levels of 23HPMA but not 3HPMA. Acute exposure of mice to aerosols derived from PG:13C3-VG significantly increased the 13C3 enrichment of both urinary metabolites 13C3-3HPMA and 13C3-23HPMA. Our stable isotope tracing experiments provide further evidence that thermal decomposition of vegetable glycerin in the e-cigarette solvent leads to generation of acrolein and glycidol. This suggests that the adverse health effects of e-cigarettes may be attributable in part to these reactive compounds formed through the process of aerosolizing nicotine. Our findings also support the notion that 23HPMA, but not 3HPMA, may be a relatively specific biomarker of e-cigarette use.


Assuntos
Acroleína/química , Sistemas Eletrônicos de Liberação de Nicotina , Compostos de Epóxi/química , Aromatizantes/química , Propanóis/química , Acroleína/metabolismo , Acroleína/urina , Aerossóis/química , Animais , Biomarcadores , Cromatografia Líquida de Alta Pressão , Compostos de Epóxi/metabolismo , Compostos de Epóxi/urina , Aromatizantes/metabolismo , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Propanóis/metabolismo , Propanóis/urina , Solventes , Vaping
15.
J Sci Food Agric ; 102(3): 1047-1055, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34312869

RESUMO

BACKGROUND: Ultrafiltration of green honeybush (Cyclopia genistoides) extract results in a by-product (retentate). Application of further separation processes for recovery of polyphenols would entail creation of additional waste. Repurposing the retentate as a food flavour ingredient provides an alternative valorization approach. RESULTS: The retentate, suspended in water (270 g L-1 ), was heat-treated at 80 °C for 2, 4, 8 and 16 h, and at 90 °C for 2, 4, 6 and 8 h to change its sensory profile. The heat-treated retentate, diluted to beverage strength (2.15 g L-1 ), had prominent 'grape/Muscat-like' and 'marmalade/citrus' aroma and flavour notes. Overall, heating for ≤ 4 h increased the intensities of positive flavour and aroma notes, while reducing those of 'green/grass', 'hay' and bitterness, whereafter further heating only had a slight effect on the aroma profile at 80 °C (P < 0.05), but not at 90 °C (P ≥ 0.05). The heat treatments, 80 °C/4 h and 90 °C/4 h, were subsequently applied to different batches of retentate (n = 10) to accommodate the effect of natural product variation. Heating at 90 °C produced higher intensities of positive aroma attributes (P < 0.05), but was more detrimental to the phenolic stability, compared to 80 °C. CONCLUSION: After heat treatment, the phenolic content of C. genistoides retentate, reconstituted to beverage strength, still fell within the range of a typical 'fermented' (oxidized) honeybush leaf tea infusion. The change in phenolic composition will not diminish the benefit of an improved sensory profile for the retentate by-product through heating. © 2021 Society of Chemical Industry.


Assuntos
Cyclopia (Planta)/química , Aromatizantes/isolamento & purificação , Manipulação de Alimentos/métodos , Extratos Vegetais/isolamento & purificação , Bebidas/análise , Cyclopia (Planta)/metabolismo , Aromatizantes/química , Aromatizantes/metabolismo , Manipulação de Alimentos/instrumentação , Temperatura Alta , Odorantes , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Polifenóis/química , Polifenóis/isolamento & purificação , Paladar , Ultrafiltração
16.
Molecules ; 26(21)2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34771147

RESUMO

This study aimed to compare the effect of hot roller (HR) drying and hot air (HA) drying on the sensory evaluation, chemical quality, antioxidant activity, and metabolic profile of Yihong Congou black tea processed from E'cha NO1. The Yihong Congou black tea dried with HA obtained higher sensory scores and better chemical qualities such as the hue of tea brew color (a and b), content of theaflavins, thearubigins, water extract, free amino acids, tea polyphenol, and the ratio of polyphenol to amino acids as well as higher antioxidant capacities compared to that dried with HR. The HA drying tea increased the contents of volatile compounds that had positive correlation with sweet and flowery flavor, while the HR drying tea increased the contents of volatile compounds related to fruity flavor. Moreover, non-targeted metabolomics data indicated that the levels of most free amino acids significantly increased, while the levels of most soluble sugars reduced in the HA drying method compared to the HR drying method. The metabolic analysis was also consistent with the above results and revealed that D-ribose and gallic acid were the main characteristic metabolites of HA drying. Our results could provide a technical reference and theoretical guide to processing a high quality of Yihong Congou black tea.


Assuntos
Aminoácidos/metabolismo , Aromatizantes/metabolismo , Metabolômica , Polifenóis/metabolismo , Chá/metabolismo , Temperatura , Aminoácidos/química , Aromatizantes/química , Conservação de Alimentos , Polifenóis/química , Chá/química
17.
Food Chem Toxicol ; 153: 112290, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34023459

RESUMO

One of the most widely used flavour enhancers in the food industry is monosodium glutamate (MSG). MSG consumption has been on an upward trend, worrying in terms of potential toxic effects. This review is focused on the long-term toxicity of MSG and the experimental evidence that supports it. The article's primary purpose was to survey recently published data regarding the consumption of MSG within safe limits. The administered doses in animal models are very varied and have given rise to controversy. Also, the paper comprises pathways to lower MSG toxicity and highlight other underexploited biological effects, as anti-cancer potential. The administration of MSG, combined with various compounds, has been shown benefit against toxic effects. Several recent studies have identified a possible mechanism that recommends MSG and some derivatives as potential anti-cancer agents. New anti-cancer compounds based on the glutamic acid structure must be studied and further exploited. International regulations require harmonization of safe doses of MSG based on current scientific studies. Replacing MSG with other umami flavour enhancers may be a safer alternative for human health in the future. The biological consequences of MSG consumption or therapeutical administration have not been fully deciphered yet.


Assuntos
Antineoplásicos/toxicidade , Aromatizantes/toxicidade , Neurotransmissores/toxicidade , Glutamato de Sódio/toxicidade , Animais , Antineoplásicos/metabolismo , Antineoplásicos/uso terapêutico , Antioxidantes/farmacologia , Aromatizantes/metabolismo , Glutamatos/uso terapêutico , Glutamina/metabolismo , Humanos , Neurotransmissores/fisiologia , Estresse Oxidativo/efeitos dos fármacos , Glutamato de Sódio/metabolismo
18.
Respir Res ; 22(1): 151, 2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34006276

RESUMO

The electronic cigarette (e-cigarette), for many considered as a safe alternative to conventional cigarettes, has revolutionised the tobacco industry in the last decades. In e-cigarettes, tobacco combustion is replaced by e-liquid heating, leading some manufacturers to propose that e-cigarettes have less harmful respiratory effects than tobacco consumption. Other innovative features such as the adjustment of nicotine content and the choice of pleasant flavours have won over many users. Nevertheless, the safety of e-cigarette consumption and its potential as a smoking cessation method remain controversial due to limited evidence. Moreover, it has been reported that the heating process itself can lead to the formation of new decomposition compounds of questionable toxicity. Numerous in vivo and in vitro studies have been performed to better understand the impact of these new inhalable compounds on human health. Results of toxicological analyses suggest that e-cigarettes can be safer than conventional cigarettes, although harmful effects from short-term e-cigarette use have been described. Worryingly, the potential long-term effects of e-cigarette consumption have been scarcely investigated. In this review, we take stock of the main findings in this field and their consequences for human health including coronavirus disease 2019 (COVID-19).


Assuntos
COVID-19/epidemiologia , Sistemas Eletrônicos de Liberação de Nicotina , Aromatizantes/efeitos adversos , Nível de Saúde , Vaping/efeitos adversos , Vaping/epidemiologia , COVID-19/metabolismo , Aromatizantes/metabolismo , Humanos , Vaping/metabolismo
19.
PLoS One ; 16(2): e0243871, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33556063

RESUMO

Cornelian cherry (Cornus mas L.) fruits are a valuable source of bioactive compounds that are responsible for the perception of bitter taste of chocolate products. The aim of the study was to validate the inhibitory effect of Cornus mas on the TAS2R3 and TAS2R13 bitter taste receptors and to assess the effect of masking the bitter taste of dark chocolate with the help of the sensory panel. Dark chocolate was prepared with an addition of 5% of freeze-dried cornelian cherry fruits and 108 CFU/g of Bacillus coagulans probiotic strains. Effect on the TAS2R receptors was evaluated in specially transfected HEK293T cells, and the inhibition ratio was measured using the calcium release test. Moreover, the total polyphenol content, antioxidant activity and simulated intestinal in vitro digestion were determined for the samples. The tested chocolate products were rich in chlorogenic, caffeic and sinapic acids. The addition of cornelian cherry positively affected the antioxidant activity. The phytochemicals of Cornus mas decreased the TAS2R13 activity by 132% after a 2-minute interaction and, % at the same time, inhibited the TAS2R3 activity by 11.5. Meanwhile, chocolate with the addition of fruit was less bitter according to the sensory panel.


Assuntos
Chocolate , Cornus/metabolismo , Aromatizantes/metabolismo , Probióticos , Receptores Acoplados a Proteínas G/metabolismo , Bacillus coagulans/citologia , Chocolate/análise , Cornus/química , Suplementos Nutricionais/análise , Aromatizantes/química , Liofilização , Frutas/química , Frutas/metabolismo , Células HEK293 , Humanos , Compostos Fitoquímicos/química , Compostos Fitoquímicos/metabolismo , Probióticos/análise , Paladar , Percepção Gustatória
20.
J Agric Food Chem ; 69(4): 1413-1429, 2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33481572

RESUMO

Terpenes and their derivatives are important biomarkers of grape quality as they contribute to the flavor and aroma of grapes. However, the molecular basis of terpene biosynthesis throughout the grapevine phenological developmental cycle remains elusive. Our current study investigates the free and bound terpene biosynthesis of berries at different phenological stages from preveraison to harvest. Detailed gene expression (transcriptomics) analysis, terpenoid volatile production by gas chromatography-mass spectrometry (GC-MS), and in planta transient expression were employed. Our results show that concentrations of most individual terpenes at different stages are distinctive and increase from preveraison to the veraison stage followed by a decrease from veraison to maturity. The combined transcriptomic analysis and terpene profiling revealed that 22 genes belonging to the MEP pathway and multiple classes of transcription factor family members including bHLH and several hormone biosynthesis- or signaling-related genes likely participate in the regulation of terpenoid biosynthesis according to their specific expression patterns in berries. Quantitative real-time polymerase chain expression analysis of 8 key differentially expressed genes in MEP pathways and further 12 randomly selected genes was performed during 8 sampling stages and validated the RNA-seq-derived expression profiles. To further confirm the function of a subset of the differentially expressed genes, we investigated the effects of combined overexpression of 1-deoxy-d-xylulose-5-phosphate synthase (VvDXS1-LOC100249323), 1-deoxy-d-xylulose-5-phosphate reductoisomerase (VvDXR-LOC100248516), and terpene synthase (VvTPS56-LOC100266449) on the production of terpenes by transient overexpression in Nicotiana benthamiana leaves. The overall developmental patterns of total terpenes and gene expression profiles will help guide the functional analyses of further candidate genes important for terpene biosynthesis of grape as well as identifying the master transcriptional and hormonal regulators of this pathway in the future.


Assuntos
Alquil e Aril Transferases/metabolismo , Eritritol/análogos & derivados , Aromatizantes/metabolismo , Frutas/química , Frutas/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Fosfatos Açúcares/metabolismo , Terpenos/metabolismo , Vitis/genética , Alquil e Aril Transferases/genética , Eritritol/metabolismo , Aromatizantes/química , Frutas/genética , Frutas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Terpenos/química , Vitis/química , Vitis/crescimento & desenvolvimento , Vitis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA