Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
Biomed Pharmacother ; 171: 116082, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38242036

RESUMO

To date, the complex pathological interactions between renal and cardiovascular systems represent a real global epidemic in both developed and developing countries. In this context, renovascular hypertension (RVH) remains among the most prevalent, but also potentially reversible, risk factor for numerous reno-cardiac diseases in humans and pets. Here, we investigated the anti-inflammatory and reno-cardiac protective effects of a polyphenol-rich fraction of bergamot (BPF) in an experimental model of hypertension induced by unilateral renal artery ligation. Adult male Wistar rats underwent unilateral renal artery ligation and treatment with deoxycorticosterone acetate (DOCA) (20 mg/kg, s.c.), twice a week for a period of 4 weeks, and 1% sodium chloride (NaCl) water (n = 10). A subgroup of hypertensive rats received BPF (100 mg/kg/day for 28 consecutive days, n = 10) by gavage. Another group of animals was treated with a sub-cutaneous injection of vehicle (that served as control, n = 8). Unilateral renal artery ligation followed by treatment with DOCA and 1% NaCl water resulted in a significant increase in mean arterial blood pressure (MAP; p< 0.05. vs CTRL) which strongly increased the resistive index (RI; p<0.05 vs CTRL) of contralateral renal artery flow and kidney volume after 4 weeks (p<0.001 vs CTRL). Renal dysfunction also led to a dysfunction of cardiac tissue strain associated with overt dyssynchrony in cardiac wall motion when compared to CTRL group, as shown by the increased time-to-peak (T2P; p<0.05) and the decreased whole peak capacity (Pk; p<0.01) in displacement and strain rate (p<0.05, respectively) in longitudinal motion. Consequently, the hearts of RAL DOCA-Salt rats showed a larger time delay between the fastest and the lowest region (Maximum Opposite Wall Delay-MOWD) when compared to CTRL group (p<0.05 in displacement and p <0.01 in strain rate). Furthermore, a significant increase in the levels of the circulating pro-inflammatory cytokines and chemokines (p< 0.05 for IL-12(40), p< 0.01 for GM-CSF, KC, IL-13, and TNF- α) and in the NGAL expression of the ligated kidney (p< 0.001) was observed compared to CTRL group. Interestingly, this pathological condition is prevented by BPF treatment. In particular, BPF treatment prevents the increase of blood pressure in RAL DOCA-Salt rats (p< 0.05) and exerts a protective effect on the volume of the contralateral kidney (p <0.01). Moreover, BPF ameliorates cardiac tissue strain dysfunction by increasing Pk in displacement (p <0.01) and reducing the T2P in strain rate motion (p<0.05). These latter effects significantly improve MOWD (p <0.05) preventing the overt dyssynchrony in cardiac wall motion. Finally, the reno-cardiac protective effect of BPF was associated with a significant reduction in serum level of some pro-inflammatory cytokines and chemokines (p<0.05 for KC and IL-12(40), p<0.01 for GM-CSF, IL-13, and TNF- α) restoring physiological levels of renal neutrophil gelatinase-associated lipocalin (NGAL, p<0.05) protein of the tethered kidney. In conclusion, the present results show, for the first time, that BPF promotes an efficient renovascular protection preventing the progression of inflammation and reno-cardiac damage. Overall, these data point to a potential clinical and veterinary role of dietary supplementation with the polyphenol-rich fraction of citrus bergamot in counteracting hypertension-induced reno-cardiac syndrome.


Assuntos
Acetato de Desoxicorticosterona , Hipertensão , Humanos , Ratos , Masculino , Animais , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Acetato de Desoxicorticosterona/farmacologia , Lipocalina-2/metabolismo , Artéria Renal/metabolismo , Cloreto de Sódio , Interleucina-13/metabolismo , Ratos Wistar , Rim , Hipertensão/tratamento farmacológico , Pressão Sanguínea , Citocinas/metabolismo , Quimiocinas/metabolismo , Interleucina-12/metabolismo , Polifenóis/farmacologia , Água/farmacologia
2.
Life Sci ; 267: 118920, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33352171

RESUMO

This study investigates the role of ranolazine in contrast-associated acute kidney injury (CA-AKI) and potential mechanisms. For in vivo studies, mouse models of CA-AKI and control mice were treated with ranolazine or vehicle. Blood urea nitrogen (BUN) and serum creatinine were detected by spectrophotometry. Anti-T-cell immunoglobulin and mucin domain 1 (TIM 1) and anti-lipocalin 2 antibody (LCN2) were detected by immunofluorescence. Hemodynamic parameters were detected via invasive blood pressure measurement and renal artery color doppler ultrasound, capillary density was measured by CD31 immunofluorescence, vascular permeability assay was performed by Evans blue dye. The expressions of oxidative stress and apoptotic markers were measured and analyzed by immunofluorescence and western blotting. For in vitro studies, intracellular calcium concentration of HUVECs was measured with Fluo 3-AM under confocal microscopy. Results show that compared with control mice, serum BUN, creatinine, TIM 1 and LCN2 levels were elevated in CA-AKI mice, but this effect was alleviated by ranolazine-pretreatment. Safe doses of ranolazine (less than 64 mg/kg) had no significant effect on overall blood pressure, but substantially improved renal perfusion, reduced contrast-induced microcirculation disturbance, improved renal capillary density and attenuated renal vascular permeability in ranolazine-pretreated CA-AKI mice. Mechanistically, ranolazine markedly down-regulated oxidative stress and apoptosis markers compared to CA-AKI mice. Intracellularly, ranolazine attenuated calcium overload in HUVECs. These results indicate that ranolazine alleviates CA-AKI through modulation of calcium independent oxidative stress and apoptosis.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Meios de Contraste/efeitos adversos , Ranolazina/farmacologia , Injúria Renal Aguda/metabolismo , Animais , Apoptose/efeitos dos fármacos , Nitrogênio da Ureia Sanguínea , Cálcio/metabolismo , Creatinina/análise , Creatinina/sangue , Modelos Animais de Doenças , Receptor Celular 1 do Vírus da Hepatite A/análise , Rim/citologia , Rim/metabolismo , Lipocalina-2/análise , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Ranolazina/metabolismo , Artéria Renal/metabolismo
3.
FASEB J ; 34(12): 16307-16318, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33089923

RESUMO

Postischemic acute kidney injury (AKI) is a common clinical complication and often fatal, with no effective treatment available. Little is known about the role of leukocytes trapped in renal vessels during ischemia-reperfusion injury (IRI) in the postischemic AKI. We designed a new animal model in rats with preforming renal artery lavage prior to IRI to investigate the effect of diminishing the residual circulating leukocytes on kidney damage and inflammation. Moreover, the functional changes of macrophages in hypoxia reoxygenation condition were also analyzed. We found pre-ischemic renal lavage significantly decreased the serum creatinine and blood urea nitrogen levels, and downregulated the mRNA and protein expressions in kidneys and urinary secretion of kidney injury molecule-1 of rats after IRI. The renal pathological damage caused by IRI was also ameliorated by pre-ischemic renal lavage, as evidenced by fewer cast formation, diminished morphological signs of AKI in the tissue at 24 hours after IRI. Pre-ischemic renal lavage reduced the numbers of infiltrating CD68+ macrophages and MPO+ neutrophils. The mRNA expression of pro-inflammatory mediator in IRI kidneys and the levels of pro-inflammatory cytokines in circulatory system and urine were also reduced due to pre-ischemic lavage. Compared with nontreated rats with IRI, pre-ischemic renal lavage significantly reduced the phosphorylation levels of ERK and p65 subunit of NF-κB in the kidney after IRI. In addition, we found hypoxia/reoxygenation could promote the expression of pro-inflammatory mediators and inhibit the expression of anti-inflammatory factors by regulating ERK/NF-κB signaling pathway. Thus, pre-ischemic renal lavage could clearly reduce the renal damage after IRI by attenuating inflammation, and macrophages trapped in renal vessels during IRI could be important pathogenic factors driving tissue injury.


Assuntos
Injúria Renal Aguda/patologia , Inflamação/patologia , Rim/patologia , Traumatismo por Reperfusão/patologia , Injúria Renal Aguda/metabolismo , Animais , Nitrogênio da Ureia Sanguínea , Linhagem Celular , Creatinina/metabolismo , Inflamação/metabolismo , Rim/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , NF-kappa B/metabolismo , Neutrófilos/metabolismo , Neutrófilos/patologia , Células RAW 264.7 , Ratos , Ratos Sprague-Dawley , Artéria Renal/metabolismo , Artéria Renal/patologia , Traumatismo por Reperfusão/metabolismo , Transdução de Sinais/fisiologia
4.
Life Sci ; 256: 117860, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32534037

RESUMO

Optimal tissue oxygenation is essential for its normal function. Suboptimal oxygenation or ischemia contributes to increased mortalities during various pathological conditions such as stroke, acute kidney injury (AKI), cardiac failure. Despite the rapid progression of renal tissue injury, the mechanism underlying renal ischemia/reperfusion injury (IRI) remains highly unclear. Experimental in vitro and in vivo models epitomizing the fundamental process is critical to the research of the pathogenesis of IRI and the development of plausible therapeutics. In this review, we describe the in vitro and in vivo models of IRI, ranges from proximal tubular cell lines to surgery-based animal models like clamping of both renal pedicles (bilateral IRI), clamping of one renal pedicle (unilateral IRI), clamping of one/or both renal arteries/or vein, or unilateral IRI with contralateral nephrectomy (uIRIx). Also, advanced technologies like three-dimensional kidney organoids, kidney-on-a-chip are explained. This review provides thoughtful information for establishing reliable and pertinent models for studying IRI-associated acute renal pathologies.


Assuntos
Nefropatias/fisiopatologia , Rim/fisiopatologia , Traumatismo por Reperfusão/fisiopatologia , Injúria Renal Aguda/fisiopatologia , Animais , Modelos Animais de Doenças , Progressão da Doença , Humanos , Rim/irrigação sanguínea , Oxigênio/metabolismo , Artéria Renal/metabolismo , Reprodutibilidade dos Testes
5.
Biochem Pharmacol ; 180: 114121, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32592722

RESUMO

Systemic arterial hypertension is a public health problem associated with an increased risk of cardiovascular disease. Matrix metalloproteinases (MMP) are endopeptidases that participate in hypertension-induced cardiovascular remodeling, which may be activated by oxidative stress. Angiotensin II (Ang II), a potent hypertrophic and vasoconstrictor peptide, increases oxidative stress, MMP-2 activity and tumor necrosis factor (TNF-α) expression. In vitro studies have shown that TNF-α is essential for Ang II-induced MMP-2 expression. Thus, this study evaluated whetherTNF-α inhibition decreases the development of hypertension-induced vascular remodeling via reduction of MMP-2 activity and reactive oxygen species (ROS) formation. Two distinct pharmacological approaches were used in the present study: Pentoxifylline (PTX), a non-selective inhibitor of phosphodiesterases that exerts anti- inflammatory effects via inhibition of TNF-α, and Etanercept (ETN), a selective TNF-α inhibitor. 2-kidney and 1-Clip (2K1C). 2-kidney and 1-Clip (2K1C) and Sham rats were treated with Vehicle, PTX (50 mg/Kg and 100 mg/kg daily) or ETN (0.3 mg/Kg and 1 mg/kg; three times per week). Systolic blood pressure (SBP) was measured weekly by tail cuff plethysmography. Plasma TNF-α and IL-1ß levels were evaluated by enzyme-linked immunosorbent assay (ELISA) technique. The vascular hypertrophy was examined in the aorta sections stained with hematoxylin/eosin. ROS in aortas was evaluated by dihydroethidium and chemiluminescence lucigenin assay. Aortic MMP-2 levels and activity were evaluated by gel zymography and in situ zymography, respectively. The 2K1C animals showed a progressive increase in SBP levels and was accompanied by significant vascular hypertrophy (p < 0.05 vs Sham). Treatment with PTX at higher doses decreased SBP and vascular remodeling in 2K1C animals (p < 0.05 vs 2K1C vehicle). Although the highest dose of ETN treatment did not reduce blood pressure, the vascular hypertrophy was significantly attenuated in 2K1C animals treated with ETN1 (p < 0.05). The increased cytokine levels and ROS formation were reversed by the highest doses of both PTX and ETN. The increase in MMP-2 levels and activity in 2K1C animals were reduced by PTX100 and ETN1 treatments (p < 0.05 vs vehicle 2K1C). Lower doses of PTX and ETN did not affect any of the evaluated parameters in this study, except for a small reduction in TNF-α levels. The findings of the present study suggest that PTX and ETN treatment exerts immunomodulatory effects, blunted excessive ROS formation, and decreased renovascular hypertension-induced MMP-2 up-regulation, leading to improvement ofvascular remodeling typically found in 2K1C hypertension. Therefore, strategies using anti-hypertensive drugs in combination with TNF alpha inhibitors could be an attractive therapeutic approach to tackle hypertension and its associated vascular remodeling.


Assuntos
Anti-Hipertensivos/farmacologia , Etanercepte/farmacologia , Metaloproteinase 2 da Matriz/metabolismo , Pentoxifilina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Remodelação Vascular/efeitos dos fármacos , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Aorta/patologia , Pressão Sanguínea/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Hipertensão , Hipertrofia , Masculino , Ratos Wistar , Artéria Renal/efeitos dos fármacos , Artéria Renal/metabolismo , Artéria Renal/patologia
6.
BMC Cardiovasc Disord ; 20(1): 176, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32295540

RESUMO

BACKGROUND: Renal denervation (RDN) targeting the sympathetic nerves in the renal arterial adventitia as a treatment of resistant hypertension can cause endothelial injury and vascular wall injury. This study aims to evaluate the risk of atherosclerosis induced by RDN in renal arteries. METHODS: A total of 15 minipigs were randomly assigned to 3 groups: (1) control group, (2) sham group, and (3) RDN group (n = 5 per group). All pigs were fed a high-fat diet (HFD) for 6 months after appropriate treatment. The degree of intimal thickening of renal artery and the conversion of endothelin 1 (ET-1) receptors were evaluated by histological staining. Western blot was used to assess the expression of nitric oxide (NO) synthesis signaling pathway, ET-1 and its receptors, NADPH oxidase 2 (NOX2) and 4-hydroxynonenal (4-HNE) proteins, and the activation of NF-kappa B (NF-κB). RESULTS: The histological staining results suggested that compared to the sham treatment, RDN led to significant intimal thickening and significantly promoted the production of endothelin B receptor (ETBR) in vascular smooth muscle cells (VSMCs). Western blotting analysis indicated that RDN significantly suppressed the expression of AMPK/Akt/eNOS signaling pathway proteins, and decreased the production of NO, and increased the expression of endothelin system proteins including endothelin-1 (ET-1), endothelin converting enzyme 1 (ECE1), endothelin A receptor (ETAR) and ETBR; and upregulated the expression of NOX2 and 4-HNE proteins and enhanced the activation of NF-kappa B (NF-κB) when compared with the sham treatment (all p < 0.05). There were no significant differences between the control and sham groups (all p > 0.05). CONCLUSIONS: RDN aggravated endothelial endocrine dysfunction and intimal thickening, and increased the risk of atherosclerosis in renal arteries of HFD-fed pigs.


Assuntos
Aterosclerose/etiologia , Dieta Hiperlipídica , Células Endoteliais/metabolismo , Neointima , Obesidade/metabolismo , Artéria Renal/inervação , Artéria Renal/metabolismo , Simpatectomia/efeitos adversos , Proteínas Quinases Ativadas por AMP/metabolismo , Aldeídos/metabolismo , Animais , Aterosclerose/metabolismo , Aterosclerose/patologia , Modelos Animais de Doenças , Células Endoteliais/patologia , Masculino , NADPH Oxidase 2/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Obesidade/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Endotelina/metabolismo , Artéria Renal/patologia , Transdução de Sinais , Suínos , Porco Miniatura
7.
Am J Hypertens ; 33(8): 765-774, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32179886

RESUMO

BACKGROUND: Mitochondria modulate endothelial cell (EC) function, but may be damaged during renal disease. We hypothesized that the ischemic and metabolic constituents of swine renovascular disease (RVD) induce mitochondrial damage and impair the function of renal artery ECs. METHODS: Pigs were studied after 16 weeks of metabolic syndrome (MetS), renal artery stenosis (RAS), or MetS + RAS, and Lean pigs served as control (n = 6 each). Mitochondrial morphology, homeostasis, and function were measured in isolated primary stenotic-kidney artery ECs. EC functions were assessed in vitro, whereas vasoreactivity of renal artery segments was characterized in organ baths. RESULTS: Lean + RAS and MetS + RAS ECs showed increased mitochondrial area and decreased matrix density. Mitochondrial biogenesis was impaired in MetS and MetS + RAS compared with their respective controls. Mitochondrial membrane potential similarly decreased in MetS, Lean + RAS, and MetS + RAS groups, whereas production of reactive oxygen species increased in MetS vs. Lean, but further increased in both RAS groups. EC tube formation was impaired in MetS, RAS, and MetS + RAS vs. Lean, but EC proliferation and endothelial-dependent relaxation of renal artery segments were blunted in MetS vs. Lean, but further attenuated in Lean + RAS and MetS + RAS. CONCLUSIONS: MetS and RAS damage mitochondria in pig renal artery ECs, which may impair EC function. Coexisting MetS and RAS did not aggravate EC mitochondrial damage in the short time of our in vivo studies, suggesting that mitochondrial injury is associated with impaired renal artery EC function.


Assuntos
Células Endoteliais/metabolismo , Endotélio Vascular/fisiopatologia , Hipertensão Renovascular/metabolismo , Mitocôndrias/metabolismo , Artéria Renal/metabolismo , Vasodilatação/fisiologia , Animais , Modelos Animais de Doenças , Células Endoteliais/patologia , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Feminino , Hipertensão Renovascular/patologia , Hipertensão Renovascular/fisiopatologia , Potencial da Membrana Mitocondrial/fisiologia , Síndrome Metabólica/metabolismo , Síndrome Metabólica/patologia , Mitocôndrias/patologia , Óxido Nítrico Sintase Tipo III/metabolismo , Distribuição Aleatória , Espécies Reativas de Oxigênio/metabolismo , Artéria Renal/patologia , Artéria Renal/fisiopatologia , Obstrução da Artéria Renal/metabolismo , Obstrução da Artéria Renal/patologia , Sus scrofa , Suínos , Fator A de Crescimento do Endotélio Vascular/metabolismo
8.
Redox Biol ; 28: 101330, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31563085

RESUMO

Oxidative stress-associated endothelial dysfunction is a key pathogenic factor underlying the microvascular complications of metabolic disease. NADPH oxidase (Nox) is a major source of oxidative stress in diabetic nephropathy and chronic kidney disease, despite Nox4 and Nox2 have been identified as relevant sources of vasodilator endothelial H2O2.The present study was sought to investigate the role of Nox enzymes in renal vascular oxidative stress and endothelial dysfunction in a rat model of genetic obesity. Endothelial function was assessed in intrarenal arteries of obese Zucker rats (OZR) and their counterparts lean Zucker rats (LZR) mounted in microvascular myographs, and superoxide (O2.-) and H2O2 production were measured. Impaired endothelium-dependent relaxations to acetylcholine (ACh) were associated to augmented O2.- generation, but neither ROS scavengers nor the Nox inhibitor apocynin significantly improved these relaxant responses in renal arteries of OZR. Whereas NO contribution to endothelial relaxations was blunted, catalase-sensitive non-NO non-prostanoid relaxations were enhanced in obese rats. Interestingly, NADPH-dependent O2.- production was augmented while NADPH-dependent H2O2 generation was reduced, and cytosolic and mitochondrial SOD were up-regulated in kidney of obese rats. Nox4 was down-regulated in renal arteries and Nox4-dependent H2O2 generation and endothelial relaxation were reduced in OZR. Up-regulation of both Nox2 and Nox1 was associated with augmented O2.- production but reduced H2O2 generation and blunted endothelial Nox2-derived H2O2-mediated in obese rats. Moreover, increased Nox1-derived O2.- contributed to renal endothelial dysfunction in OZR. In summary, the current data support a main role for Nox1-derived O2.- in kidney vascular oxidative stress and renal endothelial dysfunction in obesity, while reduced endothelial Nox4 expression associated to decreased H2O2 generation and H2O2-mediated vasodilatation might hinder Nox4 protective renal effects thus contributing to kidney injury. This suggests that effective therapies to counteract oxidative stress and prevent microvascular complications must identify the specific Nox subunits involved in metabolic disease.


Assuntos
Endotélio Vascular/metabolismo , NADPH Oxidase 1/genética , NADPH Oxidase 2/genética , NADPH Oxidase 4/genética , Obesidade/etiologia , Obesidade/metabolismo , Estresse Oxidativo , Animais , Antioxidantes/metabolismo , Suscetibilidade a Doenças , Peróxido de Hidrogênio/metabolismo , Imuno-Histoquímica , Rim/metabolismo , Rim/patologia , Masculino , Metabolômica , Modelos Biológicos , NADPH Oxidase 1/metabolismo , NADPH Oxidase 2/metabolismo , NADPH Oxidase 4/metabolismo , Obesidade/patologia , Ratos , Espécies Reativas de Oxigênio/metabolismo , Artéria Renal/metabolismo , Artéria Renal/fisiopatologia , Superóxidos/metabolismo
9.
Am J Physiol Heart Circ Physiol ; 317(5): H1157-H1165, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31625777

RESUMO

Hydrogen sulfide (H2S) dilates isolated arteries, and knockout of the H2S-synthesizing enzyme cystathionine γ-lyase (CSE) increases blood pressure. However, the contributions of endogenously produced H2S to blood flow regulation in specific vascular beds are unknown. Published studies in isolated arteries show that CSE production of H2S influences vascular tone more in small mesenteric arteries than in renal arteries or the aorta. Therefore, the goal of this study was to evaluate H2S regulation of blood pressure, vascular resistance, and regional blood flows using chronically instrumented rats. We hypothesized that during whole animal CSE inhibition, vascular resistance would increase more in the mesenteric than the renal circulation. Under anesthesia, CSE inhibition [ß-cyanoalanine (BCA), 30 mg/kg bolus + 5 mg·kg-1·min-1 for 20 min iv) rapidly increased mean arterial pressure (MAP) more than saline administration (%Δ: saline -1.4 ± 0.75 vs. BCA 7.1 ± 1.69, P < 0.05) but did not change resistance (MAP/flow) in either the mesenteric or renal circulation. In conscious rats, BCA infusion similarly increased MAP (%Δ: saline -0.8 ± 1.18 vs. BCA 8.2 ± 2.6, P < 0.05, n = 7) and significantly increased mesenteric resistance (saline 0.9 ± 3.1 vs. BCA 15.6 ± 6.5, P < 0.05, n = 12). The H2S donor Na2S (50 mg/kg) decreased blood pressure and mesenteric resistance ,but the fall in resistance was not significant. Inhibiting CSE for multiple days with dl-proparglycine (PAG, 50 mg·kg-1·min-1 iv bolus for 5 days) significantly increased vascular resistance in both mesenteric (ratio of day 1: saline 0.86 ± 0.033 vs. PAG 1.79 ± 0.38) and renal circulations (ratio of day 1: saline 1.26 ± 0.22 vs. 1.98 ± 0.14 PAG). These results support our hypothesis that CSE-derived H2S is an important regulator of blood pressure and vascular resistance in both mesenteric and renal circulations. Furthermore, inhalation anesthesia diminishes the effect of CSE inhibition on vascular tone.NEW & NOTEWORTHY These results suggest that CSE-derived H2S has a prominent role in regulating blood pressure and blood flow under physiological conditions, which may have been underestimated in prior studies in anesthetized subjects. Therefore, enhancing substrate availability or enzyme activity or dosing with H2S donors could be a novel therapeutic approach to treat cardiovascular diseases.


Assuntos
Sulfeto de Hidrogênio/metabolismo , Artérias Mesentéricas/metabolismo , Artéria Renal/metabolismo , Circulação Renal , Circulação Esplâncnica , Alanina/análogos & derivados , Alanina/farmacologia , Animais , Pressão Arterial , Velocidade do Fluxo Sanguíneo , Cistationina gama-Liase/antagonistas & inibidores , Cistationina gama-Liase/metabolismo , Inibidores Enzimáticos/farmacologia , Masculino , Artérias Mesentéricas/efeitos dos fármacos , Ratos Sprague-Dawley , Artéria Renal/efeitos dos fármacos , Circulação Renal/efeitos dos fármacos , Circulação Esplâncnica/efeitos dos fármacos , Sulfetos/farmacologia , Resistência Vascular
10.
Biomed Pharmacother ; 112: 108666, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30784936

RESUMO

OBJECTIVE: This work aimed to investigate whether G protein-coupled estrogen receptor (GPER) can improve the renal interlobular artery vascular function by increasing the NO content, thereby protecting against renal ischemia-reperfusion (IR) injury. METHODS: This study classified ovariectomised (OVX) female Sprague-Dawley rats into OVX, OVX + IR, OVX + IR + G1 (the GPER agonist G1), OVX + IR + G1+G15 (GPER blocker) and OVX + IR + G1+L-NAME (eNOS blocker) groups. Enzyme-linked immunosorbent assay was performed to detect the estrogen levels in the body and eliminate interference from endogenous estrogens. Terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labelling (TUNEL) and HE staining, renal function test and Paller scoring were performed to identify the successful model and detect the degree of renal and renal interlobular arteries injury. The in vitro microvascular pressure diameter measurement technique was used to detect the contraction and diastolic activities of the renal interlobular arteries in each group. Immunofluorescence technique was used to observe the localisation and expression levels of GPER and eNOS in renal interlobular arteries. The GPER and eNOS protein expression levels in each group were detected by Western blot. The NO content in the serum of each group was detected by the nitrate reductase method. RESULT: After OVX, the estrogen level in the body decreased significantly (P < 0.01), and TUNEL staining showed a significant increase in the degree of renal tubular epithelial cell apoptosis in the IR group. Serum creatinine (SCr) and blood urea nitrogen (BUN) levels were significantly increased in the IR group (P < 0.01), and the Paller score showed significantly increased kidney damage. When performing drug treatment, the G1 intervention group significantly decreased serum BUN and SCr levels after IR injury (P < 0.01). The Paller score showed significantly decreased the degree of renal injury (P < 0.01). After IR, the renal interlobular artery contraction rate and systolic velocity of blood vessels were significantly decreased (P < 0.01). The G1 intervention group significantly restored contraction rate and systolic velocity of blood vessels (P < 0.01), and G15 and L-NAME partially reversed this effect (P < 0.01). Immunofluorescence technique showed that GPER was expressed in renal interlobular artery smooth muscle and endothelial cells. After IR injury, the GPER protein expression increased, and the eNOS protein expression decreased significantly (P < 0.01). Western blot showed that after IR injury, the GPER protein expression increased, and the eNOS protein expression decreased significantly. After G1 intervention, the GPER content did not change, and the eNOS content increased significantly (P < 0.01). After ischemia and reperfusion, the serum NO content decreased significantly, but it increased after G1 intervention. G15 and L-NAME reversed the effects of G1 to varying degrees (both at P < 0.01). CONCLUSION: GPER may improve the renal interlobular artery vascular function by increasing the NO content, thereby protecting against renal IR injury.


Assuntos
Rim/metabolismo , Receptores de Estrogênio/metabolismo , Artéria Renal/metabolismo , Traumatismo por Reperfusão/metabolismo , Vasoconstrição/fisiologia , Vasodilatação/fisiologia , Animais , Feminino , Rim/irrigação sanguínea , Rim/patologia , Ovariectomia/efeitos adversos , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/metabolismo , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/prevenção & controle
11.
Am J Physiol Renal Physiol ; 315(6): F1670-F1682, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30280597

RESUMO

Mouse adipocytes have been reported to release aldosterone and reduce endothelium-dependent relaxation. It is unknown whether perivascular adipose tissue (PVAT) releases aldosterone in humans. The present experiments were designed to test the hypothesis that human PVAT releases aldosterone and induces endothelial dysfunction. Vascular reactivity was assessed in human internal mammary and renal segmental arteries obtained at surgery. The arteries were prepared with/without PVAT, and changes in isometric tension were measured in response to the vasoconstrictor thromboxane prostanoid receptor agonist U46619 and the endothelium-dependent vasodilator acetylcholine. The effects of exogenous aldosterone and of mineralocorticoid receptor (MR) antagonist eplerenone were determined. Aldosterone concentrations were measured by ELISA in conditioned media incubated with human adipose tissue with/without angiotensin II stimulation. Presence of aldosterone synthase and MR mRNA was examined in perirenal, abdominal, and mammary PVAT by PCR. U46619 -induced tension and acetylcholine-induced relaxation were unaffected by exogenous and endogenous aldosterone (addition of aldosterone and MR blocker) in mammary and renal segmental arteries, both in the presence and absence of PVAT. Aldosterone release from incubated perivascular fat was not detectable. Aldosterone synthase expression was not consistently observed in human adipose tissues in contrast to that of MR. Thus, exogenous aldosterone does not affect vascular reactivity and endothelial function in ex vivo human arterial segments, and the tested human adipose tissues have no capacity to synthesize/release aldosterone. In perspective, physiologically relevant effects of aldosterone on vascular function in humans are caused by systemic aldosterone originating from the adrenal gland.


Assuntos
Tecido Adiposo/metabolismo , Aldosterona/metabolismo , Artéria Torácica Interna/metabolismo , Comunicação Parácrina , Artéria Renal/metabolismo , Vasoconstrição , Idoso , Meios de Cultivo Condicionados/metabolismo , Feminino , Humanos , Masculino , Artéria Torácica Interna/cirurgia , Pessoa de Meia-Idade , Artéria Renal/cirurgia , Via Secretória , Transdução de Sinais , Técnicas de Cultura de Tecidos
12.
Am J Hypertens ; 31(12): 1307-1316, 2018 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-30107490

RESUMO

BACKGROUND: The collateral circulation is important in maintenance of blood supply to the ischemic kidney distal to renal artery stenosis (RAS). Obesity metabolic syndrome (MetS) preserves renal blood flow (RBF) in the stenotic kidney, but whether this is related to an increase of collateral vessel growth is unknown. We hypothesized that MetS increased collateral circulation around the renal artery. METHODS: Twenty-one domestic pigs were randomly divided into unilateral RAS fed an atherogenic (high-fat/high-fructose, MetS-RAS) or standard diet, or controls (n = 7 each). RBF, glomerular filtration rate (GFR), and the peristenotic collateral circulation were assessed after 10 weeks using multidetector computed tomography (CT) and the intrarenal microcirculation by micro-CT. Vascular endothelial growth factor (VEGF) expression was studied in the renal artery wall, kidney, and perirenal fat. Renal fibrosis and stiffness were examined by trichrome and magnetic resonance elastography. RESULTS: Compared with controls, RBF and GFR were decreased in RAS, but not in MetS-RAS. MetS-RAS formed peristenotic collaterals to the same extent as RAS pigs but induced greater intrarenal microvascular loss, fibrosis, stiffness, and inflammation. MetS-RAS also attenuated VEGF expression in the renal tissue compared with RAS, despite increased expression in the perirenal fat. CONCLUSIONS: MetS does not interfere with collateral vessel formation in the stenotic kidney, possibly because decreased renal arterial VEGF expression offsets its upregulation in perirenal fat, arguing against a major contribution of the collateral circulation to preserve renal function in MetS-RAS. Furthermore, preserved renal function does not protect the poststenotic kidney from parenchymal injury.


Assuntos
Circulação Colateral , Rim/irrigação sanguínea , Síndrome Metabólica/fisiopatologia , Microcirculação , Obstrução da Artéria Renal/fisiopatologia , Artéria Renal/fisiopatologia , Circulação Renal , Animais , Velocidade do Fluxo Sanguíneo , Modelos Animais de Doenças , Rim/patologia , Síndrome Metabólica/complicações , Síndrome Metabólica/metabolismo , Artéria Renal/metabolismo , Obstrução da Artéria Renal/complicações , Obstrução da Artéria Renal/metabolismo , Obstrução da Artéria Renal/patologia , Sus scrofa , Fator A de Crescimento do Endotélio Vascular/metabolismo
13.
J Trauma Acute Care Surg ; 85(4): 725-733, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30086070

RESUMO

BACKGROUND: Hemorrhagic shock-induced changes in vascular reactivity appear organ-specific. In the present study, we examined the hypothesis that vascular reactivity induced by septic shock similarly displays organ-specific differences and is regulated by inducible nitric oxide synthase (iNOS) and endothelin-1 (ET-1). METHODS: Endotoxic shock was induced in rabbits by administration of lipopolysaccharide (LPS) (1 mg/kg), and organ specificity of vascular reactivity of superior mesenteric artery (SMA), celiac artery (CA), and left renal artery (LRA) as well as the potential involvement of iNOS and ET-1 examined. RESULTS: Vascular reactivity of SMA, CA, and LRA was increased at the early stages and decreased at the late stages after LPS administration. Superior mesenteric artery showed the greatest decrease in vascular reactivity in response to norepinephrine (NE) (34.9%) and acetylcholine (Ach; 32.3%), followed by LRA (NE, 33.7%; Ach, 30.5%) and CA (NE, 16.2%), whereas the relaxation reactivity of CA in response to Ach was increased to 159%. The mRNA and protein levels of iNOS and ET-1 in SMA, CA, and LRA were not affected at the early stages of endotoxic shock after LPS administration but significantly increased at the late stages. Expression levels were higher in SMA than CA and LRA and negatively correlated with the decrease in vascular reactivity. The iNOS and ET-1 inhibitors, aminoguanidine (20 mg/kg) and PD-142893 (0.02 mg/kg), respectively, induced significant improvements in vascular reactivity and organ perfusion and stabilized the hemodynamic parameters in rabbits subjected to endotoxic shock. CONCLUSION: Changes in vascular reactivity during endotoxic shock are organ-specific. Differential expression patterns of iNOS and ET-1 in different blood vessels contribute to the organ specificity of vascular reactivity. LEVEL OF EVIDENCE: Therapeutic study, level II.


Assuntos
Endotelina-1/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Choque Séptico/fisiopatologia , Vasoconstrição , Vasodilatação , Acetilcolina/farmacologia , Animais , Artéria Celíaca/metabolismo , Modelos Animais de Doenças , Antagonistas do Receptor de Endotelina A/farmacologia , Endotelina-1/antagonistas & inibidores , Endotelina-1/genética , Inibidores Enzimáticos/farmacologia , Feminino , Guanidinas/farmacologia , Ácido Láctico/sangue , Lipopolissacarídeos , Masculino , Artéria Mesentérica Superior/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Norepinefrina/farmacologia , Oligopeptídeos/farmacologia , RNA Mensageiro/metabolismo , Coelhos , Artéria Renal/metabolismo , Choque Séptico/induzido quimicamente , Choque Séptico/metabolismo , Vasoconstrição/efeitos dos fármacos , Vasoconstritores/farmacologia , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia
14.
Vascul Pharmacol ; 102: 11-20, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28552746

RESUMO

AIM: Endothelial dysfunction accompanied by an increase in oxidative stress is a key event leading to hypertension. As dietary nitrite has been reported to exert antihypertensive effect, the present study investigated whether chronic oral administration of sodium nitrite improves vascular function in conduit and resistance arteries of hypertensive animals with elevated oxidative stress. METHODS: Sodium nitrite (50mg/L) was given to angiotensin II-infused hypertensive C57BL/6J (eight to ten weeks old) mice for two weeks in the drinking water. Arterial systolic blood pressure was measured using the tail-cuff method. Vascular responsiveness of isolated aortae and renal arteries was studied in wire myographs. The level of nitrite in the plasma and the cyclic guanosine monophosphate (cGMP) content in the arterial wall were determined using commercially available kits. The production of reactive oxygen species (ROS) and the presence of proteins (nitrotyrosine, NOx-2 and NOx-4) involved in ROS generation were evaluated with dihydroethidium (DHE) fluorescence and by Western blotting, respectively. RESULTS: Chronic administration of sodium nitrite for two weeks to mice with angiotensin II-induced hypertension decreased systolic arterial blood pressure, reversed endothelial dysfunction, increased plasma nitrite level as well as vascular cGMP content. In addition, sodium nitrite treatment also decreased the elevated nitrotyrosine and NOx-4 protein level in angiotensin II-infused hypertensive mice. CONCLUSIONS: The present study demonstrates that chronic treatment of hypertensive mice with sodium nitrite improves impaired endothelium function in conduit and resistance vessels in addition to its antihypertensive effect, partly through inhibition of ROS production.


Assuntos
Angiotensina II , Anti-Hipertensivos/administração & dosagem , Antioxidantes/administração & dosagem , Aorta Torácica/efeitos dos fármacos , Pressão Arterial/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Hipertensão/prevenção & controle , Estresse Oxidativo/efeitos dos fármacos , Artéria Renal/efeitos dos fármacos , Nitrito de Sódio/administração & dosagem , Administração Oral , Animais , Aorta Torácica/metabolismo , Aorta Torácica/fisiopatologia , GMP Cíclico/metabolismo , Modelos Animais de Doenças , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiopatologia , Hipertensão/induzido quimicamente , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , NADPH Oxidase 2/metabolismo , NADPH Oxidase 4/metabolismo , Óxido Nítrico/metabolismo , Artéria Renal/metabolismo , Artéria Renal/fisiopatologia , Tirosina/análogos & derivados , Tirosina/metabolismo , Vasodilatação/efeitos dos fármacos
15.
Nutr Metab Cardiovasc Dis ; 27(10): 930-937, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28958692

RESUMO

BACKGROUND AND AIMS: The aim of this study was to analyze the effects of early overnutrition (EON) on the expression of the renin angiotensin aldosterone system (RAAS) components in renal cortex, renal arteries and renal perivascular adipose tissue (PVAT), as well as the vascular response of renal arteries to Angiotensin II (Ang II). METHODS AND RESULTS: On birth day litters were adjusted to twelve (L12-control) or three (L3-overfed) pups per mother. Half of the animals were sacrificed at weaning (21 days old) and the other half at 5 months of age. Ang II-induced vasoconstriction of renal artery segments increased in young overfed rats and decreased in adult overfed rats. EON decreased the gene expression of angiotensinogen (Agt), Ang II receptors AT1 and AT2 and eNOS in renal arteries of young rats, while it increased the mRNA levels of AT-2 and ET-1 in adult rats. In renal PVAT EON up-regulated the gene expression of COX-2 and TNF-α in young rats and the mRNA levels of renin receptor both in young and in adult rats. On the contrary, Ang II receptors mRNA levels were downregulated at both ages. Renal cortex of overfed rats showed increased gene expression of Agt in adult rats and of AT1 in young rats. However the mRNA levels of AT1 were decreased in the renal cortex of overfed adult rats. CONCLUSION: EON is associated with alterations in the vascular response of renal arteries to Ang II and changes in the gene expression of RAAS components in renal tissue.


Assuntos
Angiotensina II/farmacologia , Rim/irrigação sanguínea , Hipernutrição/metabolismo , Artéria Renal/efeitos dos fármacos , Sistema Renina-Angiotensina/efeitos dos fármacos , Vasoconstrição/efeitos dos fármacos , Vasoconstritores/farmacologia , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Tecido Adiposo/fisiopatologia , Fatores Etários , Fenômenos Fisiológicos da Nutrição Animal , Animais , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Estado Nutricional , Hipernutrição/genética , Hipernutrição/fisiopatologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Receptor Tipo 1 de Angiotensina/genética , Receptor Tipo 1 de Angiotensina/metabolismo , Receptor Tipo 2 de Angiotensina/genética , Receptor Tipo 2 de Angiotensina/metabolismo , Artéria Renal/metabolismo , Artéria Renal/fisiopatologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
16.
Eur J Pharmacol ; 811: 38-47, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28576404

RESUMO

Accumulating evidence from clinical and experimental studies indicates that the incretin glucagon-like peptide-1 (GLP-1) elicits blood-pressure lowering effects via its diuretic, natriuretic and vasodilatory properties. The present study investigated whether acute infusion of GLP-1 induces diuresis and natriuresis in spontaneously hypertensive rats (SHRs). Additionally, we examined whether GLP-1 influences the vascular reactivity of the renal arteries of normotensive and hypertensive rats and elucidated the underlying mechanisms. We found that the increase in urinary output and urinary sodium excretion in response to systemic infusion of GLP-1 for 30min in SHRs was much less pronounced than in normotensive rats. The diuretic and natriuretic actions of GLP-1 in normotensive rats were accompanied by increases in GFR and RBF and a reduction in RVR through activation of the cAMP signaling pathway. However, no changes in renal hemodynamics were observed in SHRs. Similarly, GLP-1 induced an endothelium-independent relaxation effect in the renal arteries of normotensive rats, whereas the renal vasculature of SHRs was unresponsive to this vasodilator. The absence of a GLP-1-induced renal artery vasodilator effect in SHRs was associated with lower expression of the GLP-1 receptor, blunted GLP-1-induced increases in cAMP production and higher activity and expression of the GLP-1 inactivating enzyme dipeptidyl peptidase IV relative to the renal arteries of normotensive rats. Collectively, these results demonstrate that the renal acute responses to GLP-1 are attenuated in SHRs. Thus, chronic treatment with incretin-based agents may rely upon the upregulation of GLP-1/GLP-1 receptor signaling in the kidneys of hypertensive patients and experimental models.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Hipertensão/fisiopatologia , Natriurese/efeitos dos fármacos , Artéria Renal/efeitos dos fármacos , Animais , AMP Cíclico/metabolismo , Hipertensão/genética , Hipertensão/metabolismo , Hipertensão/patologia , Masculino , Ratos , Artéria Renal/metabolismo , Artéria Renal/fisiopatologia , Transdução de Sinais/efeitos dos fármacos
17.
BMJ Open ; 7(4): e012584, 2017 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-28400456

RESUMO

INTRODUCTION: Diabetes mellitus is a well-defined risk factor for peripheral artery disease (PAD), but protects against the development and growth of abdominal aortic aneurysm (AAA). Diabetes mellitus is associated with arterial stiffening and peripheral arterial media sclerosis. Advanced glycation end-products (AGEs) are increased in diabetes mellitus and cardiovascular disease. AGEs are known to form cross-links between proteins and are associated with arterial stiffness. Whether AGEs contribute to the protective effects of diabetes mellitus in AAA is unknown. Therefore, the ARTERY (Advanced glycation end-pRoducts in patients with peripheral arTery disEase and abdominal aoRtic aneurYsm) study is designed to evaluate the role of AGEs in the diverging effects of diabetes mellitus on AAA and PAD. METHODS AND ANALYSIS: This cross-sectional multicentre study will compare the amount, type and location of AGEs in the arterial wall in a total of 120 patients with AAA or PAD with and without diabetes mellitus (n=30 per subgroup). Also, local and systemic vascular parameters, including pulse wave velocity, will be measured to evaluate the association between arterial stiffness and AGEs. Finally, AGEs will be measured in serum, urine, and assessed in skin with skin autofluorescence using the AGE Reader. ETHICS AND DISSEMINATION: This study is approved by the Medical Ethics committees of University Medical Center Groningen, Martini Hospital and Medisch Spectrum Twente, the Netherlands. Study results will be disseminated through peer-reviewed journals and scientific events. TRIAL REGISTRATION NUMBER: trialregister.nl NTR 5363.


Assuntos
Aneurisma da Aorta Abdominal/metabolismo , Diabetes Mellitus/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Doença Arterial Periférica/metabolismo , Artéria Renal/metabolismo , Aneurisma da Aorta Abdominal/epidemiologia , Aneurisma da Aorta Abdominal/cirurgia , Artérias/metabolismo , Estudos de Casos e Controles , Estudos Transversais , Diabetes Mellitus/epidemiologia , Endarterectomia , Humanos , Países Baixos , Doença Arterial Periférica/epidemiologia , Doença Arterial Periférica/cirurgia , Rigidez Vascular , Procedimentos Cirúrgicos Vasculares
18.
Life Sci ; 174: 68-76, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28263803

RESUMO

AIMS: To investigate the roles of cyclooxygenases (COX) and their metabolites in C57/BL6 mice with 5/6 nephrectomy, an animal model of chronic renal failure. MAIN METHODS: C57/BL6 mice were grouped into sham-operated (2K), one kidney removal (1K) and 5/6 nephrectomy groups (5/6Nx). Renal resistive index was measured by ultrasonography. Blood, aortae, renal arteries and renal cortex were collected for measurement of kidney function, assessment of vascular responsiveness, Western blotting, immuohistochemistry and enzyme-linked immunosorbent assays. KEY FINDINGS: After four weeks, acetylcholine-induced relaxations were blunted in renal arteries of 1K and 5/6Nx mice; indomethacin, a non-selective COX inhibitor, improved the response in 5/6Nx, but not in 1K renal arteries. In 5/6Nx renal arteries, but not in 1K preparations, the protein presence of endothelial nitric oxide synthase (eNOS) was decreased, while that of COX-2 and its products [prostacyclin and thromboxane A2] were increased. The renal resistive index was lower in 5/6Nx mice, suggesting a lower resistance in the renal microvasculature. In the renal cortex of 5/6Nx mice, eNOS protein presence was increased; while the presence of COX-2 was not detectable. The prostaglandin E2 level was lower in the 5/6Nx cortex than in the other two groups. SIGNIFICANCE: The early stage of renal mass removal is associated with increased renal arterial constriction and reduced microvascular resistance. The former is due to downregulation of eNOS and upregulation of COX-2, leading to an increased production of prostacyclin and thromboxane A2. A reduced production of PGE2 in the renal cortex is important for maintaining normal renal function.


Assuntos
Aorta Torácica/patologia , Dinoprostona/farmacologia , Endotélio Vascular/patologia , Ocitócicos/farmacologia , Artéria Renal/patologia , Animais , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/metabolismo , Western Blotting , Modelos Animais de Doenças , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Ensaio de Imunoadsorção Enzimática , Técnicas Imunoenzimáticas , Testes de Função Renal , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Artéria Renal/efeitos dos fármacos , Artéria Renal/metabolismo
19.
Peptides ; 90: 10-16, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28192151

RESUMO

Angiotensin-(1-7) [Ang-(1-7)] exhibits blood pressure lowering actions, inhibits cell growth, and reduces tissue inflammation and fibrosis which may functionally antagonize an activated Ang II-AT1 receptor axis. Since the vascular actions of Ang-(1-7) and the associated receptor/signaling pathways vary in different vascular beds, the current study established the vasorelaxant properties of the heptapeptide in the renal artery of male Wistar male rats. Ang-(1-7) produced an endothelium-dependent vasodilator relaxation of isolated renal artery segments pre-contracted by a sub-maximal concentration of phenylephrine (PE) (3×10-7M). Ang-(1-7) induced vasodilation of the rat renal artery with an ED50 of 3±1nM and a maximal response of 42±5% (N=10). The two antagonists (10-5M each) for the AT7/Mas receptor (MasR) [D-Pro7]-Ang-(1-7) and [D-Ala7]-Ang-(1-7) significantly reduced the maximal response to 12±1% and 18±3%, respectively. Surprisingly, the AT2R receptor antagonist PD123319, the AT1R antagonist losartan and B2R antagonist HOE140 (10-6M each) also significantly reduced Ang-(1-7)-induced relaxation to 12±2%, 22±3% and 14±7%, respectively. Removal of the endothelium or addition of the soluble guanylate cyclase (sGC) inhibitor ODQ (10-5M) essentially abolished the vasorelaxant response to Ang-(1-7) (10±4% and 10±2%, P <0.05). Finally, the NOS inhibitor LNAME (10-4M) reduced the response to 13±2% (p<0.05), but the cyclooxygenase inhibitor indomethacin failed to block the Ang-(1-7) response. We conclude that Ang-(1-7) exhibits potent vasorelaxant actions in the isolated renal artery that are dependent on an intact endothelium and the apparent stimulation of a NO-sGC pathway. Moreover, Ang-(1-7)-dependent vasorelaxation was sensitive to antagonists against the AT7/Mas, AT1, AT2 and B2 receptor subtypes.


Assuntos
Angiotensina I/metabolismo , Fragmentos de Peptídeos/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Receptores da Bradicinina/metabolismo , Artéria Renal/metabolismo , Angiotensina I/administração & dosagem , Antagonistas de Receptores de Angiotensina/administração & dosagem , Animais , Pressão Sanguínea/efeitos dos fármacos , Antagonistas dos Receptores da Bradicinina/administração & dosagem , Guanilato Ciclase/metabolismo , Humanos , Imidazóis/administração & dosagem , Losartan/administração & dosagem , NG-Nitroarginina Metil Éster/administração & dosagem , Óxido Nítrico/metabolismo , Fragmentos de Peptídeos/administração & dosagem , Fenilefrina/administração & dosagem , Proto-Oncogene Mas , Piridinas/administração & dosagem , Ratos , Artéria Renal/efeitos dos fármacos , Artéria Renal/patologia , Transdução de Sinais/efeitos dos fármacos , Vasodilatação/genética
20.
Arterioscler Thromb Vasc Biol ; 36(12): 2404-2411, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27789473

RESUMO

OBJECTIVE: To establish the role of Kv7 channels in EPAC (exchange protein directly activated by cAMP)-dependent relaxations of the rat vasculature and to investigate whether this contributes to ß-adrenoceptor-mediated vasorelaxations. APPROACH AND RESULTS: Isolated rat renal and mesenteric arteries (RA and MA, respectively) were used for isometric tension recording to study the relaxant effects of a specific EPAC activator and the ß-adrenoceptor agonist isoproterenol in the presence of potassium channel inhibitors and cell signaling modulators. Isolated myocytes were used in proximity ligation assay studies to detect localization of signaling intermediaries with Kv7.4 before and after cell stimulation. Our studies showed that the EPAC activator (8-pCPT-2Me-cAMP-AM) produced relaxations and enhanced currents of MA and RA that were sensitive to linopirdine (Kv7 inhibitor). Linopirdine also inhibited isoproterenol-mediated relaxations in both RA and MA. In the MA, isoproterenol relaxations were sensitive to EPAC inhibition, but not protein kinase A inhibition. In contrast, isoproterenol relaxations in RA were attenuated by protein kinase A but not by EPAC inhibition. Proximity ligation assay showed a localization of Kv7.4 with A-kinase anchoring protein in both vessels in the basal state, which increased only in the RA with isoproterenol stimulation. In the MA, but not the RA, a localization of Kv7.4 with both Rap1a and Rap2 (downstream of EPAC) increased with isoproterenol stimulation. CONCLUSIONS: EPAC-dependent vasorelaxations occur in part via activation of Kv7 channels. This contributes to the isoproterenol-mediated relaxation in mesenteric, but not renal, arteries.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/metabolismo , Canais de Potássio KCNQ/metabolismo , Artérias Mesentéricas/metabolismo , Artéria Renal/metabolismo , Vasodilatação , Proteínas de Ancoragem à Quinase A/metabolismo , Agonistas Adrenérgicos beta/farmacologia , Animais , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Relação Dose-Resposta a Droga , Fatores de Troca do Nucleotídeo Guanina/agonistas , Fatores de Troca do Nucleotídeo Guanina/antagonistas & inibidores , Células HEK293 , Humanos , Técnicas In Vitro , Canais de Potássio KCNQ/agonistas , Canais de Potássio KCNQ/antagonistas & inibidores , Canais de Potássio KCNQ/genética , Masculino , Potenciais da Membrana , Artérias Mesentéricas/efeitos dos fármacos , Bloqueadores dos Canais de Potássio/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Ratos Wistar , Artéria Renal/efeitos dos fármacos , Transdução de Sinais , Transfecção , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia , Proteínas rap1 de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA