Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 15(8)2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39202442

RESUMO

Embryonic diapause is a common evolutionary adaptation observed across a wide range of organisms. Artemia is one of the classic animal models for diapause research. The current studies of Artemia diapause mainly focus on the induction and maintenance of the embryonic diapause, with little research on the molecular regulatory mechanism of Artemia embryonic reactivation. The first 5 h after embryonic diapause breaking has been proved to be most important for embryonic reactivation in Artemia. In this work, two high-throughput sequencing methods, ATAC-seq and RNA-seq, were integrated to study the signal regulation process in embryonic reactivation of Artemia at 5 h after diapause breaking. Through the GO and KEGG enrichment analysis of the high-throughput datasets, it was showed that after 5 h of diapause breaking, the metabolism and regulation of Artemia cyst were quite active. Several signal transduction pathways were identified in the embryonic reactivation process, such as G-protein-coupled receptor (GPCR) signaling pathway, cell surface receptor signaling pathway, hormone-mediated signaling pathway, Wnt, Notch, mTOR signaling pathways, etc. It indicates that embryonic reactivation is a complex process regulated by multiple signaling pathways. With the further protein structure analysis and RT-qPCR verification, 11 GPCR genes were identified, in which 5 genes function in the embryonic reactivation stage and the other 6 genes contribute to the diapause stage. The results of this work reveal the signal transduction pathways and GPCRs involved in the embryonic reactivation process of Artemia cysts. These findings offer significant clues for in-depth research on the signal regulatory mechanisms of the embryonic reactivation process and valuable insights into the mechanism of animal embryonic diapause.


Assuntos
Artemia , Diapausa , Transdução de Sinais , Animais , Artemia/genética , Artemia/embriologia , Transdução de Sinais/genética , Diapausa/genética , Regulação da Expressão Gênica no Desenvolvimento , RNA-Seq/métodos , Embrião não Mamífero/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Desenvolvimento Embrionário/genética
2.
Biochem J ; 476(12): 1753-1769, 2019 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-31189566

RESUMO

To cope with harsh environments, the Artemia shrimp produces gastrula embryos in diapause, a state of obligate dormancy, having cellular quiescence and suppressed metabolism. The mechanism behind these cellular events remains largely unknown. Here, we study the regulation of cell quiescence using diapause embryos of Artemia We found that Artemia DEK (Ar-DEK), a nuclear factor protein, was down-regulated in the quiescent cells of diapause embryos and enriched in the activated cells of post-diapause embryos. Knockdown of Ar-DEK induced the production of diapause embryos whereas the control Artemia released free-swimming nuaplii. Our results indicate that Ar-DEK correlated with the termination of cellular quiescence via the increase in euchromatin and decrease in heterochromatin. The phenomena of quiescence have many implications beyond shrimp ecology. In cancer cells, for example, knockdown of DEK also induced a short period of cellular quiescence and increased resistance to environmental stress in MCF-7 and MKN45 cancer cell lines. Analysis of RNA sequences in Artemia and in MCF-7 revealed that the Wnt and AURKA signaling pathways were all down-regulated and the p53 signaling pathway was up-regulated upon inhibition of DEK expression. Our results provide insight into the functions of Ar-DEK in the activation of cellular quiescence during diapause formation in Artemia.


Assuntos
Artemia/embriologia , Proteínas de Artrópodes/biossíntese , Diapausa/fisiologia , Embrião não Mamífero/enzimologia , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Receptores da Família Eph/biossíntese , Via de Sinalização Wnt/fisiologia , Animais , Artemia/genética , Proteínas de Artrópodes/genética , Aurora Quinase A/genética , Aurora Quinase A/metabolismo , Humanos , Células MCF-7 , Receptores da Família Eph/genética
3.
Cell Stress Chaperones ; 24(2): 385-392, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30701477

RESUMO

The crustacean, Artemia franciscana, displays a complex life history in which embryos either arrest development and undertake diapause as cysts or they develop into swimming nauplii. Diapause entry is preceded during embryogenesis by the synthesis of specific molecular chaperones, namely the small heat shock proteins p26, ArHsp21, and ArHsp22, and the ferritin homolog, artemin. Maximal synthesis of diapause-specific molecular chaperones is dependent on the transcription factor, heat shock factor 1 (Hsf1), found in similar amounts in cysts and nauplii newly released from females. This investigation was performed to determine why, if cysts and nauplii contain comparable amounts of Hsf1, only cyst-destined embryos synthesize diapause-specific molecular chaperones. Quantification by qPCR and immunoprobing of Western blots, respectively, demonstrated that hsf1 mRNA and Hsf1 peaked by day 2 post-fertilization in embryos that were developing into cysts and then declined. hsf1 mRNA and Hsf1 were present in nauplii-destined embryos on day 2 post-fertilization, but in much smaller amounts than in cyst-destined embryos, and they increased in quantity until release of nauplii from females. Immunofluorescent staining revealed that the amount of Hsf1 in nuclei was greatest on day 4 post-fertilization in cyst-destined embryos but could not be detected in nuclei of nauplius-destined embryos at this time. The differences in quantity and location of Hsf1 explain why embryos fated to become cysts and eventually enter diapause synthesize p26, ArHsp21, ArHsp22, and artemin, whereas nauplius-destined embryos do not produce these molecular chaperones.


Assuntos
Artemia/embriologia , Proteínas de Artrópodes/metabolismo , Diapausa , Embrião não Mamífero/metabolismo , Fatores de Transcrição de Choque Térmico/metabolismo , Animais , Artemia/metabolismo , Proteínas de Artrópodes/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Transcrição de Choque Térmico/genética , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Oocistos/crescimento & desenvolvimento , Oocistos/metabolismo
4.
J Biol Chem ; 294(16): 6598-6611, 2019 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-30765604

RESUMO

Cellular quiescence, a reversible state in which growth, proliferation, and other cellular activities are arrested, is important for self-renewal, differentiation, development, regeneration, and stress resistance. However, the physiological mechanisms underlying cellular quiescence remain largely unknown. In the present study, we used embryos of the crustacean Artemia in the diapause stage, in which these embryos remain quiescent for prolonged periods, as a model to explore the relationship between cell-membrane potential (Vmem) and quiescence. We found that Vmem is hyperpolarized and that the intracellular chloride concentration is high in diapause embryos, whereas Vmem is depolarized and intracellular chloride concentration is reduced in postdiapause embryos and during further embryonic development. We identified and characterized the chloride ion channel protein cystic fibrosis transmembrane conductance regulator (CFTR) of Artemia (Ar-CFTR) and found that its expression is silenced in quiescent cells of Artemia diapause embryos but remains constant in all other embryonic stages. Ar-CFTR knockdown and GlyH-101-mediated chemical inhibition of Ar-CFTR produced diapause embryos having a high Vmem and intracellular chloride concentration, whereas control Artemia embryos released free-swimming nauplius larvae. Transcriptome analysis of embryos at different developmental stages revealed that proliferation, differentiation, and metabolism are suppressed in diapause embryos and restored in postdiapause embryos. Combined with RNA sequencing (RNA-Seq) of GlyH-101-treated MCF-7 breast cancer cells, these analyses revealed that CFTR inhibition down-regulates the Wnt and Aurora Kinase A (AURKA) signaling pathways and up-regulates the p53 signaling pathway. Our findings provide insight into CFTR-mediated regulation of cellular quiescence and Vmem in the Artemia model.


Assuntos
Artemia/embriologia , Membrana Celular/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Diapausa/fisiologia , Embrião não Mamífero/embriologia , Animais , Artemia/genética , Proteínas de Artrópodes/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Humanos , Células MCF-7
5.
PLoS One ; 13(7): e0200153, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29979776

RESUMO

Embryos of the crustacean, Artemia franciscana, may undergo oviparous development, forming encysted embryos (cysts) that are released from females and enter diapause, a state of suppressed metabolism and greatly enhanced stress tolerance. Diapause-destined embryos of A. franciscana synthesize three small heat shock proteins (sHsps), p26, ArHsp21 and ArHsp22, as well as artemin, a ferritin homologue, all lacking in embryos that develop directly into nauplii. Of these diapause-specific molecular chaperones, p26 and artemin are important contributors to the extraordinary stress tolerance of A. franciscana cysts, but how their synthesis is regulated is unknown. To address this issue, a cDNA for heat shock factor 1 (Hsf1), shown to encode a protein similar to Hsf1 from other organisms, was cloned from A. franciscana. Hsf1 was knocked down by RNA interference (RNAi) in nauplii and cysts of A. franciscana. Nauplii lacking Hsf1 died prematurely upon release from females, showing that this transcription factor is essential to the survival of nauplii. Diapause cysts with diminished amounts of Hsf1 were significantly less stress tolerant than cysts containing normal levels of Hsf1. Moreover, cysts deficient in Hsf1 possessed reduced amounts of p26, ArHsp21, ArHsp22 and artemin, revealing dependence on Hsf1 for expression of their genes and maximum stress tolerance. The results demonstrate an important role for Hsf1, likely in concert with other transcription factors, in the survival and growth of A. franciscana and in the developmentally regulated synthesis of proteins responsible for the stress tolerance of diapausing A. franciscana cysts.


Assuntos
Artemia/metabolismo , Proteínas de Artrópodes/metabolismo , Fatores de Transcrição de Choque Térmico/metabolismo , Sequência de Aminoácidos , Animais , Artemia/embriologia , Artemia/genética , Proteínas de Artrópodes/antagonistas & inibidores , Proteínas de Artrópodes/genética , Sequência de Bases , DNA Complementar/genética , Diapausa/genética , Diapausa/fisiologia , Feminino , Expressão Gênica , Técnicas de Silenciamento de Genes , Fatores de Transcrição de Choque Térmico/antagonistas & inibidores , Fatores de Transcrição de Choque Térmico/genética , Proteínas de Choque Térmico Pequenas/genética , Proteínas de Choque Térmico Pequenas/metabolismo , Domínios Proteicos , Homologia de Sequência de Aminoácidos , Estresse Fisiológico
6.
Mol Cell Biol ; 37(7)2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28031330

RESUMO

As a prominent characteristic of cell life, the regulation of cell quiescence is important for proper development, regeneration, and stress resistance and may play a role in certain degenerative diseases. However, the mechanism underlying quiescence remains largely unknown. Encysted embryos of Artemia are useful for studying the regulation of this state because they remain quiescent for prolonged periods during diapause, a state of obligate dormancy. In the present study, SET domain-containing protein 4, a histone lysine methyltransferase from Artemia, was identified, characterized, and named Ar-SETD4. We found that Ar-SETD4 was expressed abundantly in Artemia diapause embryos, in which cells were in a quiescent state. Meanwhile, trimethylated histone H4K20 (H4K20me3) was enriched in diapause embryos. The knockdown of Ar-SETD4 reduced the level of H4K20me3 significantly and prevented the formation of diapause embryos in which neither the cell cycle nor embryogenesis ceased. The catalytic activity of Ar-SETD4 on H4K20me3 was confirmed by an in vitro histone methyltransferase (HMT) assay and overexpression in cell lines. This study provides insights into the function of SETD4 and the mechanism of cell quiescence regulation.


Assuntos
Artemia/embriologia , Artemia/metabolismo , Biocatálise , Ciclo Celular , Diapausa de Inseto , Histonas/metabolismo , Lisina/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Animais , Artemia/citologia , Sequência de Bases , Divisão Celular , Linhagem Celular Tumoral , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Técnicas de Silenciamento de Genes , Metilação , Fatores de Transcrição/química , Fatores de Transcrição/genética
7.
Biochim Biophys Acta ; 1861(11): 1727-1735, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27542539

RESUMO

Encysted embryos (cysts) of the crustacean Artemia franciscana exhibit enormous tolerance to adverse conditions encompassing high doses of radiation, years of anoxia, desiccation and extreme salinity. So far, several mechanisms have been proposed to contribute to this extremophilia, however, none were sought in the lipid profile of the cysts. Here in, we used high resolution shotgun lipidomics suited for detailed quantitation and analysis of lipids in uncharacterized biological membranes and samples and assembled the total, mitochondrial and mitoplastic lipidome of Artemia franciscana cysts. Overall, we identified and quantitated 1098 lipid species dispersed among 22 different classes and subclasses. Regarding the mitochondrial lipidome, most lipid classes exhibited little differences from those reported in other animals, however, Artemia mitochondria harboured much less phosphatidylethanolamine, plasmenylethanolamines and ceramides than mitochondria of other species, some of which by two orders of magnitude. Alternatively, Artemia mitochondria exhibited much higher levels of phosphatidylglycerols and phosphatidylserines. The identification and quantitation of the total and mitochondrial lipidome of the cysts may help in the elucidation of actionable extremophilia-affording proteins, such as the 'late embryogenesis abundant' proteins, which are known to interact with lipid membranes.


Assuntos
Artemia/embriologia , Artemia/metabolismo , Embrião não Mamífero/metabolismo , Metabolismo dos Lipídeos , Metaboloma , Mitocôndrias/metabolismo , Animais , Western Blotting , Cardiolipinas/metabolismo , Análise por Conglomerados
8.
Gene ; 591(2): 351-61, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-27267406

RESUMO

Retinoblastoma binding protein 4 (RBBP4) is a nuclear protein with four WD-repeat sequences and thus belongs to a highly conserved subfamily of proteins with such domains. This retinoblastoma-binding protein plays an important role in nucleosome assembly and histone modification, which influences gene transcription and regulates cell cycle and proliferation. Artemia sinica (brine shrimp) undergoes an unusual diapause process under stress conditions of high salinity and low temperature. However, the role of RBBP4 in diapause termination of embryo development in A. sinica remains unknown. Here, the full-length cDNA of the As-rbbp4 gene was obtained from A. sinica and found to contain 1411 nucleotides, including a 1281 bp open reading frame (ORF), 63 bp 5'-untranslated region (UTR) and a 67-bp 3'-UTR, which encodes a 427 amino acid (48 kDa) protein. Bioinformatic analysis indicated As-RBBP4 to be mainly located in the nucleus, with a theoretical isoelectric point of 4.79. Protein sequence domain analysis showed that As-RBBP4 is a conserved protein, especially in the WD40 domain. No specificity in expression of this gene was observed in tissues or organs by in situ hybridization. Real-time quantitative PCR and Western blot analyses of As-RBBP4 gene and protein expression, respectively, showed notably high levels at 10 h and a subsequent downward trend. Obvious trends in upregulation of As-RBBP4 were observed under conditions of low temperature and high salinity stress. As-E2F1 and As-CyclinE also presented similar trends as that of As-RBBP4 in Western blots. Analysis of the RBBP4 expression in early embryonic development of A. sinica indicated that this protein plays an important role in diapause termination and cell cycle regulation.


Assuntos
Artemia/embriologia , Artemia/genética , Proteína 4 de Ligação ao Retinoblastoma/genética , Animais , Western Blotting , Clonagem Molecular , Biologia Computacional , DNA Complementar , Embrião não Mamífero , Desenvolvimento Embrionário , Perfilação da Expressão Gênica , Técnicas de Amplificação de Ácido Nucleico , Reação em Cadeia da Polimerase em Tempo Real , Salinidade , Estresse Fisiológico
9.
Cell Stress Chaperones ; 21(4): 665-75, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27125785

RESUMO

Autophagy is an essential homeostatic process by which cytoplasmic components, including macromolecules and organelles, are degraded by lysosome. Increasing evidence suggests that phosphorylated AMP-activated protein kinase (p-AMPK) and target of rapamycin (TOR) play key roles in the regulation of autophagy. However, the regulation of autophagy in quiescent cells remains unclear, despite the fact that autophagy is known to be critical for normal development, regeneration, and degenerative diseases. Here, crustacean Artemia parthenogenetica was used as a model system because they produced and released encysted embryos that enter a state of obligate dormancy in cell quiescence to withstand various environmental threats. We observed that autophagy was increased before diapause stage but dropped to extremely low level in diapause cysts in Artemia. Western blot analyses indicated that the regulation of autophagy was AMPK/TOR independent during diapause embryo formation. Importantly, the level of p8 (Ar-p8), a stress-inducible transcription cofactor, was elevated at the stage just before diapause and was absent in encysted embryos, indicating that Ar-p8 may regulate autophagy. The results of Ar-p8 knockdown revealed that Ar-p8 regulated autophagy during diapause formation in Artemia. Moreover, we observed that activating transcription factors 4 and 6 (ATF4 and ATF6) responded to Ar-p8-regulated autophagy, indicating that autophagy targeted endoplasmic reticulum (ER) during diapause formation in Artemia. Additionally, AMPK/TOR-independent autophagy was validated in human gastric cancer MKN45 cells overexpressing Ar-p8. The findings presented here may provide insights into the role of p8 in regulating autophagy in quiescent cells.


Assuntos
Artemia/citologia , Artemia/embriologia , Autofagia , Diapausa de Inseto/genética , Embrião não Mamífero/citologia , Fatores de Transcrição/metabolismo , Fator 4 Ativador da Transcrição/metabolismo , Fator 6 Ativador da Transcrição/metabolismo , Adenilato Quinase/metabolismo , Animais , Artemia/efeitos da radiação , Autofagia/efeitos da radiação , Linhagem Celular Tumoral , Diapausa de Inseto/efeitos da radiação , Embrião não Mamífero/efeitos da radiação , Estresse do Retículo Endoplasmático/efeitos da radiação , Meio Ambiente , Humanos , Estresse Fisiológico/efeitos da radiação , Raios Ultravioleta
10.
Cell Stress Chaperones ; 21(1): 9-18, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26334984

RESUMO

Oviparously developing embryos of the brine shrimp, Artemia, arrest at gastrulation and are released from females as cysts before entering diapause, a state of dormancy and stress tolerance. Diapause is terminated by an external signal, and growth resumes if conditions are permissible. However, if circumstances are unfavorable, cysts enter quiescence, a dormant stage that continues as long as adverse conditions persist. Artemia embryos in diapause and quiescence are remarkably resistant to environmental and physiological stressors, withstanding desiccation, cold, heat, oxidation, ultraviolet radiation, and years of anoxia at ambient temperature when fully hydrated. Cysts have adapted to stress in several ways; they are surrounded by a rigid cell wall impermeable to most chemical compounds and which functions as a shield against ultraviolet radiation. Artemia cysts contain large amounts of trehalose, a non-reducing sugar thought to preserve membranes and proteins during desiccation by replacing water molecules and/or contributing to vitrification. Late embryogenesis abundant proteins similar to those in seeds and other anhydrobiotic organisms are found in cysts, and they safeguard cell organelles and proteins during desiccation. Artemia cysts contain abundant amounts of p26, a small heat shock protein, and artemin, a ferritin homologue, both ATP-independent molecular chaperones important in stress tolerance. The evidence provided in this review supports the conclusion that it is the interplay of these protective elements that make Artemia one of the most stress tolerant of all metazoan organisms.


Assuntos
Adaptação Fisiológica/fisiologia , Artemia/embriologia , Proteínas de Artrópodes/metabolismo , Proteínas de Choque Térmico/metabolismo , Resposta ao Choque Térmico/fisiologia , Proteínas de Ligação ao Ferro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Estresse Fisiológico/fisiologia , Exoesqueleto/anatomia & histologia , Exoesqueleto/fisiologia , Animais , Dessecação , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário
11.
Biochem J ; 470(2): 223-31, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26348910

RESUMO

Regulation of the cell cycle is complex but critical for proper development, reproduction and stress resistance. To survive unfavourable environmental conditions, the crustacean Artemia produces diapause embryos whose metabolism is maintained at extremely low levels. In the present study, the expression profiles of miRNAs during Artemia diapause entry and termination were characterized using high-throughput sequencing. A total of 13 unclassified miRNAs and 370 miRNAs belonging to 87 families were identified; among them, 107 were differentially expressed during diapause entry and termination. We focused on the roles of two of these miRNAs, miR-100 and miR-34, in regulating cell cycle progression; during the various stages of diapause entry, these miRNAs displayed opposing patterns of expression. A functional analysis revealed that miR-100 and miR-34 regulate the cell cycle during diapause entry by targeting polo-like kinase 1 (PLK1), leading to activation of the mitogen-activated protein kinase kinase-extracellular signal-regulated kinase-ribosomal S6 kinase 2 (MEK-ERK-RSK2) pathway and cyclin K, leading to suppression of RNA polymerase II (RNAP II) activity respectively. The findings presented in the present study provide insights into the functions of miR-100 and miR-34 and suggest that the expression profiles of miRNAs in Artemia can be used to characterize their functions in cell cycle regulation.


Assuntos
Artemia/metabolismo , MicroRNAs/metabolismo , Animais , Artemia/citologia , Artemia/embriologia , Artemia/crescimento & desenvolvimento , Pontos de Checagem do Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Ciclinas/metabolismo , Oviparidade , Ovoviviparidade , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , RNA Polimerase II/metabolismo , Transdução de Sinais , Quinase 1 Polo-Like
12.
Cell Stress Chaperones ; 19(6): 939-48, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24846336

RESUMO

Water loss either by desiccation or freezing causes multiple forms of cellular damage. The encysted embryos (cysts) of the crustacean Artemia franciscana have several molecular mechanisms to enable anhydrobiosis-life without water-during diapause. To better understand how cysts survive reduced hydration, group 1 late embryogenesis abundant (LEA) proteins, hydrophilic unstructured proteins that accumulate in the stress-tolerant cysts of A. franciscana, were knocked down using RNA interference (RNAi). Embryos lacking group 1 LEA proteins showed significantly lower survival than control embryos after desiccation and freezing, or freezing alone, demonstrating a role for group 1 LEA proteins in A. franciscana tolerance of low water conditions. In contrast, regardless of group 1 LEA protein presence, cysts responded similarly to hydrogen peroxide (H2O2) exposure, indicating little to no function for these proteins in diapause termination. This is the first in vivo study of group 1 LEA proteins in an animal and it contributes to the fundamental understanding of these proteins. Knowing how LEA proteins protect A. franciscana cysts from desiccation and freezing may have applied significance in aquaculture, where Artemia is an important feed source, and in the cryopreservation of cells for therapeutic applications.


Assuntos
Artemia/metabolismo , Temperatura Baixa , Proteínas/metabolismo , Estresse Fisiológico , Água/metabolismo , Adaptação Fisiológica , Sequência de Aminoácidos , Animais , Artemia/efeitos dos fármacos , Artemia/embriologia , Artemia/genética , Artemia/crescimento & desenvolvimento , Sequência de Bases , Dessecação , Embrião não Mamífero/metabolismo , Feminino , Congelamento , Técnicas de Silenciamento de Genes , Peróxido de Hidrogênio/farmacologia , Dados de Sequência Molecular , Proteínas/genética
13.
J Biol Chem ; 289(23): 16006-15, 2014 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-24755224

RESUMO

There are multiple isoforms of p90 ribosomal S6 kinase (RSK), which regulate diverse cellular functions such as cell growth, proliferation, maturation, and motility. However, the relationship between the structures and functions of RSK isoforms remains undetermined. Artemia is a useful model in which to study cell cycle arrest because these animals undergo prolonged diapauses, a state of obligate dormancy. A novel RSK isoform was identified in Artemia, which was termed Ar-Rsk2. This isoform was compared with an RSK isoform that we previously identified in Artemia, termed Ar-Rsk1. Ar-Rsk2 has an ERK-docking motif, whereas Ar-Rsk1 does not. Western blot analysis revealed that Ar-Rsk1 was activated by phosphorylation, which blocked meiosis in oocytes. Knockdown of Ar-Rsk1 reduced the level of phosphorylated cdc2 and thereby suppressed cytostatic factor activity. This indicates that Ar-Rsk1 regulates the cytostatic factor in meiosis. Expression of Ar-Rsk2 was down-regulated in Artemia cysts in which mitosis was arrested. Knockdown of Ar-Rsk2 resulted in decreased levels of cyclin D3 and phosphorylated histone H3, and the production of pseudo-diapause cysts. This indicates that Ar-Rsk2 regulates mitotic arrest. PLK and ERK RNAi showed that Ar-Rsk2, but not Ar-Rsk1, could be activated by PLK-ERK in Artemia. This is the first study to report that RSK isoforms with and without an ERK-docking motif regulate mitosis and meiosis, respectively. This study provides insight into the relationship between the structures and functions of RSK isoforms.


Assuntos
Artemia/citologia , Isoenzimas/metabolismo , Meiose , Mitose , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Sequência de Aminoácidos , Animais , Artemia/embriologia , Artemia/enzimologia , Sequência de Bases , DNA , Desenvolvimento Embrionário , Técnicas de Silenciamento de Genes , Humanos , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Homologia de Sequência de Aminoácidos
14.
Gene ; 540(2): 161-70, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24583171

RESUMO

Caveolins are integral membrane proteins that serve as scaffolds to recruit numerous signaling molecules. Caveolins play an important role in membrane trafficking, signal transduction, substrate transport and endocytosis in differentiated cells. In this study, a caveolin-1 gene from Artemia sinica (As-cav-1) was successfully cloned for the first time. The full-length cDNA of As-cav-1 comprises 974 bp, with a 675 bp open reading frame (ORF) that encodes a polypeptide of 224 amino acids with a caveolin scaffolding domain (CSD) and two transmembrane domains. Multiple sequence alignment revealed that the putative As-CAV-1 protein sequence was relatively conserved across species, especially in the CSD domain. Real-time PCR revealed high levels of the As-cav-1 transcript at 0h of embryo development. Furthermore, As-cav-1 transcripts were highly upregulated under high salinity (200‰) and low temperature stresses (15°C). To further characterize As-cav-1, recombinant pET30a-cav-1 protein was expressed using a prokaryotic expression system. The recombinant protein comprised 290 amino acids with a theoretical molecular weight of 32kDa, and a predicted isoelectric point of 5.6. Western blotting of the expression levels of As-CAV-1 during different embryo development stages revealed that As-CAV-1 levels decreased gradually during development stages from 0 h to 40 h, and increased at 3d. Furthermore, western blotting showed that As-CAV-1 was upregulated to its highest expression level by low temperature stress (15°C) and high salinity. Confocal laser microscopy analysis, using antibodies generated against the recombinant As-CAV-1 protein, showed that As-CAV-1 was mostly located in the cell membrane. Our results suggested that As-cav-1 plays a vital role in protecting embryos from high salt damage and low temperature stress, especially during post-diapause embryonic development.


Assuntos
Artemia/metabolismo , Proteínas de Artrópodes/genética , Caveolina 1/genética , Adaptação Fisiológica , Sequência de Aminoácidos , Animais , Artemia/citologia , Artemia/embriologia , Artemia/genética , Proteínas de Artrópodes/metabolismo , Sequência de Bases , Caveolina 1/metabolismo , Clonagem Molecular , Resposta ao Choque Frio , Sequência Conservada , Dados de Sequência Molecular , Filogenia , Transporte Proteico , Reação em Cadeia da Polimerase em Tempo Real , Tolerância ao Sal/genética , Transcriptoma
15.
Pak J Biol Sci ; 17(12): 1231-6, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26027170

RESUMO

Mentha is one of the genera of Lamiaceae family. The aim of the present study was to evaluate the antimutagenic and anticancer activity of the water and methanolic extract of Alhasawy mint (Mentha longifolia), that grown in Madina Province, western region, Saudi Arabia using three different bioassays namely; Brine shrimp bioassay, Ames mutagenicity bioassay using 3 Hist-Salmonella typhimurium strains of different mutations (TA98, TA97 and TA100) and 2 reference mutagenic drugs nitrosopiperidine (NP) and 2-amino-3-methylimidazo-quinolidine (IQ) and Mammalian cell lines bioassays using 2 different cell lines HepG2 and Vero cell lines. The plant extract showed an efficient antimutagenic activity against the studied bioassays in a directly proportional effect with concentration.


Assuntos
Antimutagênicos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Mentha , Extratos Vegetais/farmacologia , Animais , Antimutagênicos/química , Antimutagênicos/isolamento & purificação , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Artemia/efeitos dos fármacos , Artemia/embriologia , Bioensaio , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Células Hep G2 , Humanos , Larva/efeitos dos fármacos , Mentha/química , Metanol/química , Testes de Mutagenicidade , Mutação/efeitos dos fármacos , Fitoterapia , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Folhas de Planta , Plantas Medicinais , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/genética , Solventes/química , Células Vero , Água/química
16.
Biochem J ; 456(2): 185-94, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24063546

RESUMO

Trehalase, which specifically hydrolyses trehalose into glucose, plays an important role in the metabolism of trehalose. Large amounts of trehalose are stored in the diapause encysted embryos (cysts) of Artemia, which are not only vital to their extraordinary stress resistance, but also provide a source of energy for development after diapause is terminated. In the present study, a mechanism for the transcriptional regulation of trehalase was described in Artemia parthenogenetica. A trehalase-associated protein (ArTAP) was identified in Artemia-producing diapause cysts. ArTAP was found to be expressed only in diapause-destined embryos. Further analyses revealed that ArTAP can bind to a specific intronic segment of a trehalase gene. Knockdown of ArTAP by RNAi resulted in the release of cysts with coarse shells in which two chitin-binding proteins were missing. Western blotting showed that the level of trehalase was increased and apoptosis was induced in these ArTAP-knockdown cysts compared with controls. Taken together, these results show that ArTAP is a key regulator of trehalase expression which, in turn, plays an important role in trehalose metabolism during the formation of diapause cysts.


Assuntos
Apoptose , Artemia/enzimologia , Proteínas de Artrópodes/metabolismo , Embrião não Mamífero/enzimologia , Trealose/metabolismo , Animais , Artemia/citologia , Artemia/embriologia , Proteínas de Artrópodes/genética , Sequência de Bases , Clonagem Molecular , Proteínas de Ligação a DNA/fisiologia , Embrião não Mamífero/citologia , Regulação Enzimológica da Expressão Gênica , Íntrons , Dados de Sequência Molecular , Ligação Proteica , Transporte Proteico , Análise de Sequência de DNA , Transcrição Gênica , Trealose/genética
17.
Pharm Biol ; 51(10): 1293-7, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23855832

RESUMO

UNLABELLED: CONTEXT. Cymbopogon winterianus Jowitt ex Bor (Poaceae), known as citronella grass, is an aromatic herbaceous plant and the essential oil extracted from this grass is used in cosmetics, perfumes, hygiene and cleanliness products worldwide. OBJECTIVE: This study investigated the composition and molluscicidal and larvicidal activities of the essential oil of C. winterianus cultivated in North Brazil. MATERIALS AND METHODS: The oil was obtained by hydrodistillation, analyzed by gas chromatography (GC) and GC-mass spectrometry and then its molluscicidal and larvicidal activities against snails (Biomphalaria glabrata) and hatched larvae of Artemia salina, respectively, were evaluated at concentrations from 10 to 1000 mg/L. RESULTS: The main constituents of oil were citronellal (26.5%), geraniol (16.2%), elemol (14.5%) and citronellol (7.3%). The molluscicidal test revealed significant lethal concentration (LC) values (LC90=97.0 mg/L, LC50=54.0 mg/L and LC20=22.0 mg/L), indicating the presence of molluscicidal compounds in the oil. In addition, the oil showed moderate larvicidal activity (LC50=181.0 mg/L) against the larvae of A. salina, which could justify its use in the aquatic environment without affecting other living organisms. DISCUSSION AND CONCLUSION: The results suggest that the oil of C. winterianus could be an effective alternative to control schistosomiasis, with an average margin of safety to other living organisms that coexist with snails.


Assuntos
Artemia/efeitos dos fármacos , Biomphalaria/efeitos dos fármacos , Cymbopogon , Moluscocidas/farmacologia , Óleos Voláteis/farmacologia , Óleos de Plantas/farmacologia , Animais , Artemia/embriologia , Cymbopogon/química , Destilação , Relação Dose-Resposta a Droga , Cromatografia Gasosa-Espectrometria de Massas , Larva/efeitos dos fármacos , Dose Letal Mediana , Moluscocidas/química , Moluscocidas/isolamento & purificação , Moluscocidas/toxicidade , Óleos Voláteis/química , Óleos Voláteis/isolamento & purificação , Óleos Voláteis/toxicidade , Folhas de Planta , Óleos de Plantas/química , Óleos de Plantas/isolamento & purificação , Óleos de Plantas/toxicidade , Fatores de Tempo
18.
PLoS One ; 8(6): e68374, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23840851

RESUMO

BACKGROUND: As a response to harsh environments, the crustacean artemia produces diapause gastrula embryos (cysts), in which cell division and embryonic development are totally arrested. This dormant state can last for very long periods but be terminated by specific environmental stimuli. Thus, artemia is an ideal model organism in which to study cell cycle arrest and embryonic development. PRINCIPAL FINDING: Our study focuses on the roles of H3K56ac in the arrest of cell cycle and development during artemia diapause formation and termination. We found that the level of H3K56ac on chromatin increased during diapause formation, and decreased upon diapause termination, remaining basal level throughout subsequent embryonic development. In both HeLa cells and artemia, blocking the deacetylation with nicotinamide, a histone deacetylase inhibitor, increased the level of H3K56ac on chromatin and induced an artificial cell cycle arrest. Furthermore, we found that this arrest of the cell cycle and development was induced by H3K56ac and dephosphorylation of the checkpoint protein, retinoblastoma protein. CONCLUSIONS/SIGNIFICANCE: These results have revealed the dynamic change in H3K56ac on chromatin during artemia diapause formation and termination. Thus, our findings provide insight into the regulation of cell division during arrest of artemia embryonic development and provide further insight into the functions of H3K56ac.


Assuntos
Artemia/embriologia , Cromatina/metabolismo , Embrião não Mamífero/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Acetilação , Animais , Ciclo Celular , Embrião não Mamífero/citologia , Células HeLa , Histonas/química , Humanos
19.
FEBS J ; 280(19): 4761-72, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23879561

RESUMO

Encysted embryos of Artemia franciscana cease development and enter diapause, a state of metabolic suppression and enhanced stress tolerance. The development of diapause-destined Artemia embryos is characterized by the coordinated synthesis of the small heat shock proteins (sHsps) p26, ArHsp21 and ArHsp22, with the latter being stress inducible in adults. The amounts of sHsp mRNA and protein varied in Artemia cysts, suggesting transcriptional and translational regulation. By contrast to p26, knockdown of ArHsp21 by RNA interference had no effect on embryo development. ArHsp21 provided limited protection against stressors such as desiccation and freezing but not heat. ArHsp21 may have a non-essential or unidentified role in cysts. Injection of Artemia adults with amounts of ArHsp22 double-stranded RNA less than those used for other sHsps killed females and males, curtailing the analysis of ArHsp22 function in developing embryos and cysts. The results indicate that diapause-destined Artemia embryos synthesize varying amounts of sHsps as a result of differential gene expression and mRNA translation and also suggest that these sHsps have distinctive functions.


Assuntos
Artemia/metabolismo , Embrião não Mamífero/metabolismo , Proteínas de Choque Térmico Pequenas/metabolismo , Animais , Artemia/embriologia , Artemia/genética , Proteínas de Choque Térmico Pequenas/genética , RNA de Cadeia Dupla/genética , RNA Mensageiro/genética
20.
Biochem J ; 449(1): 285-94, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23013449

RESUMO

The brine shrimp Artemia reproduces either ovoviviparously, producing free-swimming nauplii, or oviparously, producing encysted embryos (diapause cysts) able to cope with harsh and complex habitats. When the cysts enter diapause they are encased in a complex external shell that protects them from certain extreme environments. The genomic comparison of oviparous and ovoviviparous ovisacs has been described previously. We isolated three significantly up-regulated genes in oviparous oocytes and identified them as Arp-CBP (Artemia parthenogenetica chitin-binding protein) genes. Quantitative real-time PCR indicated that the expression of Arp-CBP genes gradually increases during diapause cyst formation and significant mRNA accumulation occurs during the ovisac stage of oviparous development. Moreover, in situ hybridization results demonstrated that Arp-CBP mRNAs are expressed in the embryo. Interestingly, the results of immune electron microscopy showed that all three Arp-CBPs are distributed throughout the cellular ECL (embryonic cuticle layer) of the cyst shell. Furthermore, knockdown of Arp-CBP by RNA interference resulted in marked changes in the composition of the embryonic cuticular layer. The fibrous layer of the cyst shell adopted a loose conformation and the inner and outer cuticular membranes exhibited marked irregularities when Arp-CBP expression was suppressed. Finally, an in vitro recombinant protein-binding assay showed that all three Arp-CBPs have carbohydrate-binding activities. These findings provide significant insight into the mechanisms by which the ECL of Artemia cyst shell is formed, and demonstrate that Arp-CBPs are involved in construction of the fibrous lattice and are required for formation of the ECL of the cyst shell.


Assuntos
Artemia/embriologia , Artemia/metabolismo , Proteínas de Transporte/metabolismo , Quitina/metabolismo , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Sequência de Aminoácidos , Animais , Artemia/genética , Proteínas de Transporte/genética , Quitina/genética , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA