Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Vet Med Sci ; 10(3): e1445, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38652025

RESUMO

BACKGROUND: This study aimed to evaluate the antimicrobial effects of zahter extract, zahter essential oil, laurel extract, and laurel essential oil on Salmonella Typhimurium inoculated on chicken wings. METHODS: A total of 10 groups, including eight study groups and two control groups were formed, consisting of zahter extract and zahter essential oil and laurel extract and laurel essential oil in different proportions. In the study, laurel extract at 6.4% and 12.8% concentrations, laurel essential oil at 0.2% and 0.4% concentrations, zahter extract at 0.2% and 0.4% concentrations, and zahter essential oil at 0.2% and 0.4% concentrations were used. RESULTS: The broth microdilution method was used to evaluate the antimicrobial activity of the extract and essential oils on the S. Typhimurium. Minimum inhibitory concentrations of the extracts and essential oils used in the study against S. Typhimurium were determined. The highest inhibitory effect on S. Typhimurium was observed in the 0.4% laurel essential oil group. It was determined that the inhibitory effect increased as the concentration of laurel essential oil increased. In addition, the antimicrobial activity of zahter essential oil is less inhibitory than the laurel extract, laurel essential oil, and zahter extract. CONCLUSION: According to the results of this study, it has been revealed that extracts and essential oils obtained from zahter and laurel plants, which have been shown to be natural antimicrobial, can be used in foods as an alternative to chemical additives. To develop research results, the applicability of these extracts and essential oils in different foodstuffs should be examined using different ingredients and concentrations.


Assuntos
Galinhas , Óleos Voláteis , Extratos Vegetais , Salmonella typhimurium , Asas de Animais , Animais , Salmonella typhimurium/efeitos dos fármacos , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Asas de Animais/efeitos dos fármacos , Doenças das Aves Domésticas/microbiologia , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Laurus/química , Óleos de Plantas/farmacologia , Óleos de Plantas/química , Anti-Infecciosos/farmacologia
2.
Toxicol Ind Health ; 36(11): 835-843, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32873197

RESUMO

It is known that nickel-iron oxide nanocomposite (NiFe2O4NP) is used in many important areas such as modern industry, biomedical applications, magnetic resonance imaging, construction of sensors, targeted drug treatment, and photoelectric devices in our life. In this study, we have carried out a genotoxic evaluation of NiFe2O4NP (30 nm) in Drosophila melanogaster by using the wing somatic mutation and recombination assay. For this purpose, third instar larvae carrying the recessive genes (flr3) and multiple wing hairs (mwh) in their third chromosomes were used. The larvae were fed at concentrations ranging from 25 µg/mL to 200 µg/mL. The genotoxic effects of NiFe2O4NPs were evaluated according to mutant trichomes resulting from genetic changes (mitotic recombination, deletion, point mutation, nondisjunction) on development of the wing imaginal discs. Mutant clone evaluations were performed based on small single spots, large single spots, and twin spots classifications. The results showed that significant increases were observed in the frequency of all spots, indicating that the highest concentration of nanoparticles was able to induce genotoxic activity in the wing spot assay of D. melanogaster.


Assuntos
Compostos Férricos/toxicidade , Níquel/toxicidade , Animais , Dano ao DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Drosophila melanogaster/efeitos dos fármacos , Compostos Férricos/química , Larva/efeitos dos fármacos , Testes de Mutagenicidade , Nanopartículas , Níquel/química , Asas de Animais/efeitos dos fármacos
3.
Food Chem Toxicol ; 138: 111228, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32112866

RESUMO

Betulinic acid (BA) is a pentacyclic triterpenoid found in several plant species. Urethane (URE) is a known promutagen. Here, we examine the genotoxicity and mutagenicity of BA alone or in combination with URE using the bone marrow micronucleus assay in mice bone marrow cells and the Somatic Mutation and Recombination Test in Drosophila melanogaster. Findings revealed that BA alone was not genotoxic, but reduced the frequency of micronucleus when compared to the positive control. No significant differences were observed in the cytotoxicity. Biochemical analyzes showed no significant differences for liver (AST and ALT) or renal (creatinine and urea) function parameters, indicating the absence of hepatotoxic and nephrotoxic effects. BA alone did not increase the frequency of mutant spots, but reduced the total frequency of mutant spots when co-administered with URE in both ST and HB crosses. In addition, BA reduced the recombinogenic effect of URE at the highest concentrations of both crosses. In conclusion, under experimental conditions, BA has modulatory effects on the genotoxicity induced by URE in mice, as well as in somatic cells of D. melanogaster. We suggest that the modulatory effects of BA may be mainly due to its antioxidant and apoptotic properties.


Assuntos
Drosophila melanogaster/efeitos dos fármacos , Mutagênese/efeitos dos fármacos , Triterpenos/farmacologia , Uretana/toxicidade , Animais , Antimutagênicos/farmacologia , Antioxidantes/farmacologia , Medula Óssea/efeitos dos fármacos , Carcinógenos/farmacologia , Drosophila melanogaster/genética , Feminino , Cabelo/efeitos dos fármacos , Masculino , Camundongos , Testes de Mutagenicidade , Triterpenos Pentacíclicos , Taxa de Sobrevida , Tricomas/efeitos dos fármacos , Triterpenos/química , Asas de Animais/efeitos dos fármacos , Ácido Betulínico
4.
PLoS One ; 14(11): e0225003, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31738776

RESUMO

Polyphenism is a type of phenotypic plasticity supposedly adaptive to drastic and recurrent changes in the environment such as seasonal alternation in temperate and tropical regions. The butterfly Bicyclus anynana shows polyphenism with well-described wet and dry seasonal forms in sub-Saharan Africa, displaying striking morphological, physiological and behavioural differences in response to higher or lower developmental temperatures. During the seasonal transition in the wild, the intermediate phenotype co-occurs with wet and dry phenotypes. In this study, we aimed to characterize the secondary sexually-selected wing traits of the intermediate form to infer its potential fitness compared to wet and dry phenotypes. Among the previously described wing morphological traits, we first showed that the area of the fifth eyespot on the ventral hindwing is the most discriminant trait to identify wet, dry and intermediate phenotypes in both sexes. Second, we characterized the intermediate form for two secondary sexually-selected wing traits: the area and UV reflectance of the dorsal forewing pupil and the composition of the male sex pheromone. We showed that values of these two traits are often between those of the wet and dry phenotypes. Third, we observed increasing male sex pheromone production in ageing dry and wet phenotypes. Our results contrast with previous reports of values for sexually-selected traits in wet and dry seasonal forms, which might be explained by differences in rearing conditions or sample size effects among studies. Wet, dry and intermediate phenotypes display redundant sexually dimorphic traits, including sexually-selected traits that can inform about their developmental temperature in sexual interactions.


Assuntos
Adaptação Fisiológica , Borboletas/anatomia & histologia , Característica Quantitativa Herdável , Atrativos Sexuais/farmacologia , Caracteres Sexuais , Vias Visuais/fisiologia , Asas de Animais/anatomia & histologia , Animais , Feminino , Malaui , Masculino , Fenótipo , Estações do Ano , Temperatura , Asas de Animais/efeitos dos fármacos
5.
Methods Mol Biol ; 2031: 337-348, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31473970

RESUMO

In spite of its pioneer use in detecting mutational processes, Drosophila still plays an important role in those studies aiming to detect and quantify the induction of DNA damage. Here we describe two assays, one detecting primary damage (the Comet assay) and the other detecting somatic mutation and recombination effects (wing-spot test). It is important to emphasize that somatic recombination is a key event in cancer development and no assays exist at present to detect and quantify somatic recombination processes, other than the spot tests developed in Drosophila.


Assuntos
Drosophila melanogaster/genética , Testes de Mutagenicidade/métodos , Animais , Ensaio Cometa/métodos , Dano ao DNA/efeitos dos fármacos , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/ultraestrutura , Hemócitos/efeitos dos fármacos , Hemócitos/metabolismo , Mutagênicos/toxicidade , Recombinação Genética/efeitos dos fármacos , Asas de Animais/efeitos dos fármacos , Asas de Animais/metabolismo , Asas de Animais/ultraestrutura
6.
Food Chem Toxicol ; 131: 110557, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31176925

RESUMO

The aim of the present study was to appraise the mutagenic and recombinogenic potential of bupropion hydrochloride (BHc) and trazodone hydrochloride (THc). We used standard (ST) and the high bioactivation (HB) crossings from Drosophila melanogaster in the Somatic Mutation and Recombination Test. We treated third-instar larvae from both crossings with different concentrations of BHc and THc (0.9375 to 7.5 mg/mL). BHc significantly increased the frequency of mutant spots in both crossings, except for the lowest concentration in the ST crossing. ST had also the mostly recombinogenic result, and in the HB, BHc was highly mutagenic. On the other hand, THc significantly increased the frequency of mutant spots in both the ST and HB crossings at all concentrations. The three initial concentrations were recombinogenic and the highest concentration was mutagenic for the THc. BHc and THc at high concentrations were toxic, even though their mutagenicity was not dose-related. THc significantly increased the frequency of mutant spots when metabolized, probably as a result of the production of 1-(3'-chlorophenyl) piperazine. BHc was essentially recombinogenic and when metabolized, it became mutagenic. THc was recombinogenic in both crossings. Further studies are needed to clarify the action mechanisms from BHc and THc.


Assuntos
Antidepressivos/toxicidade , Bupropiona/toxicidade , Drosophila melanogaster/efeitos dos fármacos , Mutagênicos/toxicidade , Recombinação Genética/efeitos dos fármacos , Trazodona/toxicidade , Animais , Drosophila melanogaster/genética , Feminino , Masculino , Testes de Mutagenicidade , Mutação , Asas de Animais/efeitos dos fármacos
7.
Mutat Res Genet Toxicol Environ Mutagen ; 836(Pt B): 47-53, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30442345

RESUMO

Nickel-based nanoparticles (NPs) are new products with an increasing number of industrial applications that were developed in recent years. NiO NPs are present in several nanotechnological industrial products, and the characterization of their genotoxic potential is essential. The present study assessed the genotoxicity of NiO NPs in vivo and in vitro using the somatic mutation and recombination test in somatic cells of Drosophila melanogaster (SMART), the cytokinesis - block micronucleus assay (CBMN), and the comet assay in a V79 cell line. The NiO NPs used in this study were about 30 nm in mean size. Larvae of Drosophila melanogaster were exposed to 5 mL of five different concentrations (1.31, 2.62, 5.25, 10.5, and 21 mg/mL) of NiO NPs. In turn, V79 cells were treated with a concentration range of 15-2000 µg/mL NiO NPs. The SMART showed that all concentrations of NiO NPs are genotoxic to the standart (ST) cross when compared to the negative control. On the other hand, only the highest concentration (21 mg/mL) was genotoxic to the HB cross. Somatic recombination was the preferential mechanism lesions were induced in D. melanogaster. The results show that NiO NPs were mutagenic to V79 cells as assessed by the CBMN assay. Significant differences in the frequencies of micronuclei (MN) were observed using the highest NiO NP concentrations (250 and 500 µg/mL) in the 4- and 24-h treatments, but when 125 µg/mL NiO NPs was used, such difference was observed only in the 4-h exposure time. The comet assay revealed that 62, 125, 250 and 500 µg/mL NiO NPs induced a significant increase in DNA damage. The results observed in this study indicate that NiO NPs are genotoxic and mutagenic in vitro and in vivo.


Assuntos
Ensaio Cometa/métodos , Dano ao DNA , Drosophila melanogaster/genética , Nanopartículas Metálicas/toxicidade , Níquel/toxicidade , Asas de Animais/efeitos dos fármacos , Animais , Células Cultivadas , Drosophila melanogaster/efeitos dos fármacos , Feminino , Técnicas In Vitro , Masculino , Testes para Micronúcleos
8.
Environ Toxicol Pharmacol ; 63: 16-20, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30121516

RESUMO

Ionizing radiation plays a key role in the adaptation of an individual organism to environmental pollution, at the same time, it has biological effects that depend on radiation intensity or dose rate (DR). Although the effect of DR has been studied in vitro, the phenomenon known as the inverse effect of DR, which indicates as it decreases that the induction of damage is greater, has not been widely studied in vivo. The present study is aimed to test 0.5 and 1 Gy in somatic cells of the wing of D. melanogaster, administered at 5.4 or 34.3 Gy/h and from 0.037 to 0.3 mM of CrO3 as conditioning treatment. No changes were found in larva-to-adult viability. A protective as well as a cross effect of pre-exposure to different DR and CrO3 concentrations against genetic damage induced by 20 Gy or 1 mM CrO3 was evident.


Assuntos
Compostos de Cromo/farmacologia , Drosophila melanogaster/genética , Asas de Animais/citologia , Animais , Meios de Cultivo Condicionados , Dano ao DNA/efeitos dos fármacos , Relação Dose-Resposta à Radiação , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/efeitos da radiação , Feminino , Tolerância a Radiação , Radiação Ionizante , Asas de Animais/efeitos dos fármacos , Asas de Animais/efeitos da radiação
9.
Environ Toxicol Pharmacol ; 62: 210-214, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30081379

RESUMO

Many studies have revealed that ascorbic acid (Aa) acts as a powerful inhibitor of genetic damage. The objetive of the present study was to evaluate the radioprotector effect of Aa at two diferent radiation dose rates. The somatic mutation and recombination test in Drosophila melanogaster was used. 48 h larvae were treated for 24 h with 25, 50 and 100 mM of Aa. After pretreatment, larvae were irradiated with 20 Gy of gamma rays administered at 36 or 960 Gy/h. Toxicity, development rate and frequency of mutant spots were recorded. Results provide evidence of a radioprotective effect for all tested concentrations of Aa only when 20 Gy were delivered at 36 Gy/h and only with 25 mM using the 960 Gy/h. To consider the use of Aa as radioprotector or therapeutic agent, it is necessary to know its potential under different situations to avoid unwanted injuries.


Assuntos
Antioxidantes/farmacologia , Ácido Ascórbico/farmacologia , Drosophila melanogaster/efeitos dos fármacos , Raios gama/efeitos adversos , Protetores contra Radiação/farmacologia , Animais , Dano ao DNA , Relação Dose-Resposta à Radiação , Drosophila melanogaster/genética , Drosophila melanogaster/efeitos da radiação , Feminino , Larva/efeitos dos fármacos , Larva/genética , Larva/efeitos da radiação , Masculino , Mutação , Asas de Animais/anormalidades , Asas de Animais/efeitos dos fármacos , Asas de Animais/efeitos da radiação
10.
Proc Natl Acad Sci U S A ; 115(21): 5588-5593, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29735707

RESUMO

Nervous systems must distinguish sensory signals derived from an animal's own movements (reafference) from environmentally derived sources (exafference). To accomplish this, motor networks producing reafference transmit motor information, via a corollary discharge circuit (CDC), to affected sensory networks, modulating sensory function during behavior. While CDCs have been described in most sensory modalities, none have been observed projecting to an olfactory pathway. In moths, two mesothoracic to deutocerebral histaminergic neurons (MDHns) project from flight sensorimotor centers in the mesothoracic neuromere to the antennal lobe (AL), where they provide the sole source of histamine (HA), but whether they represent a CDC is unknown. We demonstrate that MDHn spiking activity is positively correlated with wing-motor output and increased before bouts of motor activity, suggesting that MDHns communicate global locomotor state, rather than providing a precisely timed motor copy. Within the AL, HA application sharpened entrainment of projection neuron responses to odor stimuli embedded within simulated wing-beat-induced flows, whereas MDHn axotomy or AL HA receptor (HA-r) blockade reduced entrainment. This finding is consistent with higher-order CDCs, as the MDHns enhanced rather than filtered entrainment of AL projection neurons. Finally, HA-r blockade increased odor detection and discrimination thresholds in behavior assays. These results establish MDHns as a CDC that modulates AL temporal resolution, enhancing odor-guided behavior. MDHns thus appear to represent a higher-order CDC to an insect olfactory pathway; this CDC's unique nature highlights the importance of motor-to-sensory signaling as a context-specific mechanism that fine-tunes sensory function.


Assuntos
Voo Animal , Histamina/farmacologia , Condutos Olfatórios/fisiologia , Neurônios Receptores Olfatórios/fisiologia , Asas de Animais/fisiologia , Animais , Manduca , Bulbo Olfatório/citologia , Bulbo Olfatório/efeitos dos fármacos , Bulbo Olfatório/fisiologia , Condutos Olfatórios/efeitos dos fármacos , Neurônios Receptores Olfatórios/citologia , Neurônios Receptores Olfatórios/efeitos dos fármacos , Asas de Animais/efeitos dos fármacos
11.
Drug Chem Toxicol ; 41(1): 9-15, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28274136

RESUMO

Amphotericin B (AmB) is an antifungal antibiotic extracted from Streptomyces nodosus. Its fungicidal activity depends primarily on its binding to the sterol group that is present in fungal membranes. In view of the toxicity of this drug, the purpose of this study was to evaluate its mutagenic, carcinogenic, and recombinogenic activity, based on the wing somatic mutation and recombination test (SMART) and the epithelial tumor detection test (wts) applied to Drosophila melanogaster. Larvae were chronically treated with different concentrations of AmB (0.01, 0.02, and 0.04 mg/mL). The results revealed that AmB is a promutagen exhibiting increase in the number of spots on individuals from high bioactivation (HB) cross with a high level of cytochrome P450. The results also indicate that the main genotoxic event induced by AmB is recombinogenicity. Homologous recombination can act as a determinant at different stages of carcinogenesis. For verification of carcinogenic potential of this compound, larvae from the wts/mwh and wts/ORR, flr3 were treated with the same three AmB concentrations used in the SMART assay. The results did not provide evidence that AmB has carcinogenic potential in wts/mwh individuals. However, individuals from wts/ORR, flr3 developed tumors at the highest concentration tested.


Assuntos
Anfotericina B/toxicidade , Antifúngicos/toxicidade , Transformação Celular Neoplásica/induzido quimicamente , Proteínas de Drosophila/genética , Drosophila melanogaster/efeitos dos fármacos , Recombinação Homóloga/efeitos dos fármacos , Mutação , Neoplasias/induzido quimicamente , Asas de Animais/efeitos dos fármacos , Animais , Animais Geneticamente Modificados , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Relação Dose-Resposta a Droga , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Regulação Neoplásica da Expressão Gênica , Genótipo , Larva/efeitos dos fármacos , Larva/genética , Larva/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Fenótipo , Medição de Risco , Asas de Animais/metabolismo
12.
Toxicol Ind Health ; 33(10): 802-809, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28893155

RESUMO

In this study, the genotoxic potential of <50 nm, <100 nm iron oxide (Fe2O3) nanoparticles (IONPs) and ionic form were investigated using the wing somatic mutation and recombination test (SMART) and Allium and comet assays. In the SMART assay, different concentrations (1, 2, 5 and 10 mM) of NPs and ionic forms were fed to transheterozygous larvae of Drosophila melanogaster. No significant genotoxic effect was observed in <100 nm NPs and ionic form, while <50 nm IONPs showed genotoxicity at 1 and 10 mM concentrations. Allium cepa root meristems were exposed to five concentrations (0.001, 0.01, 0.1, 1 and 10 mM) of <50 nm and ionic forms for 4 h and three concentrations (2.5, 5 and 10 mM) for <100 nm of IONPs for 24 and 96 h. There was a statistically significant effect at 96 h at all concentrations of <100 nm IONPs. Similarly, <50 nm of IONPs and ionic forms also showed a statistically significant effect on mitotic index frequencies for all concentrations at 4 h. There was a dose-dependent increase in chromosomal abnormalities for IONPs and ionic form. Comet assay results showed time- and concentration-dependent increases in <100 nm NPs. There was a concentration-dependent increase in <50 nm NPs and ionic form ( p < 0.05). Consequently, the <50 nm of Fe2O3 was found toxic compared to 100 nm Fe2O3 and ionic form.


Assuntos
Nanopartículas de Magnetita/toxicidade , Testes de Mutagenicidade/métodos , Mutagênicos/toxicidade , Allium/efeitos dos fármacos , Anáfase/efeitos dos fármacos , Animais , Ensaio Cometa , Dano ao DNA/efeitos dos fármacos , Drosophila melanogaster/efeitos dos fármacos , Larva/efeitos dos fármacos , Nanopartículas de Magnetita/química , Mutagênicos/química , Tamanho da Partícula , Telófase/efeitos dos fármacos , Asas de Animais/efeitos dos fármacos
13.
J Toxicol Environ Health A ; 80(6): 365-373, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28644726

RESUMO

Casiopeinas® are a group of newly synthesized drugs designed to treat cancer. These copper (Cu) complexes exhibit cytostatic, cytotoxic, genotoxic, and antineoplastic activities through different mechanisms of action. To evaluate the influence of these compounds, some in vivo studies were performed using predominantly somatic cells. The aim of the present study was to examine the cytotoxic and genotoxic actions of Casiopeina III-Ea (Cas III-Ea) in somatic as well as germ cells of Drosophila melanogaster. For cytotoxicity, the productivity and some morphometric parameters were measured and genotoxicity was assessed by means of the somatic mutation and recombination test assay in the wing. For this purpose, second-instar larvae of the Canton-S strain were treated with different concentrations of Cas III-Ea. The emerged adults were weighed, the area of the wings determined, and the number of trichomes of the region C' counted. The productivity of treated males was measured by a brood method to monitor the influence of Cas III-Ea on spermatozoa, meiotic stage cells, and spermatogonia. For genotoxicity, mwh + /+ flr3 larvae 48 hr age were chronically treated within the same concentration range. Results indicated that Cas III-Ea at all concentrations tested significantly increased the productivity per couple in Brood III (spermatids) while at 1 mM a marked elevation was noted in the three broods tested. In contrast, the weight and size of individuals as well as the size and number of cells in the wing were decreased significantly. Data suggest that Cas III-Ea is a weak genotoxic but selective mutagen. Failure to obtain a dose-related genotoxic response suggests that one of the preferred mechanisms of action of Cas III-Ea is to induce apoptosis.


Assuntos
Antineoplásicos/toxicidade , Complexos de Coordenação/toxicidade , Fenantrolinas/toxicidade , Animais , Drosophila melanogaster/efeitos dos fármacos , Feminino , Células Germinativas/efeitos dos fármacos , Masculino , Testes de Mutagenicidade , Asas de Animais/efeitos dos fármacos
14.
Apoptosis ; 22(6): 786-799, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28401354

RESUMO

Apoptosis is an important phenomenon in multi cellular organisms for maintaining tissue homeostasis and embryonic development. Defect in apoptosis leads to a number of disorders like- autoimmune disorder, immunodeficiency and cancer. 21-22 nucleotides containing micro RNAs (miRNAs/miRs) function as a crucial regulator of apoptosis alike other cellular pathways. Recently, small molecules have been identified as a potent inducer of apoptosis. In this study, we have identified novel Triazole linked 2-phenyl benzoxazole derivatives (13j and 13h) as a negative regulator of apoptosis inhibiting micro RNAs (miR-2, miR-13 and miR-14) in a well established in vivo model Drosophila melanogaster where the process of apoptosis is very similar to human apoptosis. These compounds inhibit miR-2, miR-13 and miR-14 activity at their target sites, which induce an increased caspase activity, and in turn influence the caspase dependent apoptotic pathway. These two compounds also increase the mitochondrial reactive oxygen species (ROS) level to trigger apoptotic cell death.


Assuntos
Apoptose/genética , Benzoxazóis/farmacologia , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , MicroRNAs/genética , Triazóis/farmacologia , Animais , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Linhagem Celular , MicroRNAs/metabolismo , Mitocôndrias/metabolismo , Modelos Biológicos , Organogênese/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Asas de Animais/citologia , Asas de Animais/efeitos dos fármacos , Asas de Animais/metabolismo
15.
Ecotoxicol Environ Saf ; 141: 171-177, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28343006

RESUMO

The ability to takeoff quickly and accelerate away from predators is crucial to bird survival. Crude oil can disrupt the fine structure and function of feathers, and here we tested for the first time how small amounts of oil on the trailing edges of the wings and tail of Western sandpipers (Calidris mauri) affected takeoff flight performance. In oiled birds, the distance travelled during the first 0.4s after takeoff was reduced by 29%, and takeoff angle was decreased by 10° compared to unoiled birds. Three-axis accelerometry indicated that oiled sandpipers produced less mechanical power output per wingbeat during the initial phase of flight. Slower and lower takeoff would make oiled birds more likely to be targeted and captured by predators, reducing survival and facilitating the exposure of predators to oil. Whereas the direct mortality of heavily-oiled birds is often obvious and can be quantified, our results show that there are significant sub-lethal effects of small amounts crude oil on feathers, which must be considered in natural resource injury assessments for birds.


Assuntos
Charadriiformes/fisiologia , Poluentes Ambientais/toxicidade , Plumas/efeitos dos fármacos , Voo Animal/efeitos dos fármacos , Petróleo/toxicidade , Animais , Poluentes Ambientais/análise , Plumas/química , Plumas/fisiologia , Voo Animal/fisiologia , Golfo do México , Modelos Teóricos , Petróleo/análise , Cauda , Asas de Animais/química , Asas de Animais/efeitos dos fármacos , Asas de Animais/fisiologia
16.
Food Chem Toxicol ; 103: 233-245, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28202360

RESUMO

4-nitroquinoline-1-oxide (4-NQO) is a pro-oxidant carcinogen bioactivated by xenobiotic metabolism (XM). We investigated if antioxidants lycopene [0.45, 0.9, 1.8 µM], resveratrol [11, 43, 172 µM], and vitamin C [5.6 mM] added or not with FeSO4 [0.06 mM], modulate the genotoxicity of 4-NQO [2 mM] with the Drosophila wing spot test standard (ST) and high bioactivation (HB) crosses, with inducible and high levels of cytochromes P450, respectively. The genotoxicity of 4-NQO was higher when dissolved in an ethanol - acetone mixture. The antioxidants did not protect against 4-NQO in any of both crosses. In the ST cross, resveratrol [11 µM], vitamin C and FeSO4 resulted in genotoxicity; the three antioxidants and FeSO4 increased the damage of 4-NQO. In the HB cross, none of the antioxidants, neither FeSO4, were genotoxic. Only resveratrol [172 µM] + 4-NQO increased the genotoxic activity in both crosses. We concluded that the effects of the antioxidants, FeSO4 and the modulation of 4-NQO were the result of the difference of Cyp450s levels, between the ST and HB crosses. We propose that the basal levels of the XM's enzymes in the ST cross interacted with a putative pro-oxidant activity of the compounds added to the pro-oxidant effects of 4-NQO.


Assuntos
4-Nitroquinolina-1-Óxido/toxicidade , Ácido Ascórbico/farmacologia , Carotenoides/farmacologia , Compostos Ferrosos/farmacologia , Estilbenos/farmacologia , Animais , Antioxidantes/farmacologia , Ácido Ascórbico/efeitos adversos , Carcinógenos/toxicidade , Carotenoides/efeitos adversos , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/genética , Feminino , Compostos Ferrosos/efeitos adversos , Larva/efeitos dos fármacos , Licopeno , Masculino , Resveratrol , Estilbenos/efeitos adversos , Testes de Toxicidade/métodos , Asas de Animais/efeitos dos fármacos , Xenobióticos/toxicidade
17.
Environ Mol Mutagen ; 58(1): 46-55, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28079919

RESUMO

The biological reactivity of metal and metal oxide nanomaterials is attributed to their redox properties, which would explain their pro- or anti-cancer properties depending on exposure circumstances. In this sense, copper oxide nanoparticles (CuONP) have been proposed as a potential anti-tumoral agent. The aim of this study was to assess if CuONP can exert antigenotoxic effects using Drosophila melanogaster as an in vivo model. Genotoxicity was induced by two well-known genotoxic compounds, namely potassium dichromate (PD) and ethyl methanesulfonate (EMS). The wing-spot assay and the comet assay were used as biomarkers of genotoxic effects. In addition, changes in the expression of Ogg1 and Sod genes were determined. The effects of CuONP cotreatment were compared with those induced by copper sulfate (CS), an agent releasing copper ions. Using the wing-spot assay, CuONP and CS were not able to reduce the genotoxic effects of EMS exposure, but had the ability to decrease the effects induced by PD, reducing the frequency of mutant twin-spots that arise from mitotic recombination. In addition, CuONP and CS were able to reduce the DNA damage induced by PD as determined by the comet assay. In general, similar qualitative antigenotoxic effects were obtained with both copper compounds. The antigenotoxic effects of environmentally relevant and non-toxic doses of CuONP and CS may be explained by their ability to partially restore the expression levels of the repair gene Ogg1 and the antioxidant gene Cu,ZnSod, both of which are inhibited by PD treatment. Environ. Mol. Mutagen. 58:46-55, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Antimutagênicos/farmacologia , Sulfato de Cobre/farmacologia , Cobre/farmacologia , Dano ao DNA/efeitos dos fármacos , Drosophila melanogaster/efeitos dos fármacos , Nanopartículas/química , Animais , Antimutagênicos/química , Ensaio Cometa , Cobre/química , Sulfato de Cobre/química , DNA Glicosilases/genética , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/genética , Relação Dose-Resposta a Droga , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Metanossulfonato de Etila/toxicidade , Mutagênicos/toxicidade , Dicromato de Potássio/toxicidade , Reação em Cadeia da Polimerase em Tempo Real , Superóxido Dismutase/genética , Propriedades de Superfície , Asas de Animais/efeitos dos fármacos
18.
Proc Natl Acad Sci U S A ; 114(6): 1419-1423, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28115695

RESUMO

The wing polyphenism of pea aphids is a compelling laboratory model with which to study the molecular mechanisms underlying phenotypic plasticity. In this polyphenism, environmental stressors such as high aphid density cause asexual, viviparous adult female aphids to alter the developmental fate of their embryos from wingless to winged morphs. This polyphenism is transgenerational, in that the pea aphid mother experiences the environmental signals, but it is her offspring that are affected. Previous research suggested that the steroid hormone ecdysone may play a role in this polyphenism. Here, we analyzed ecdysone-related gene expression patterns and found that they were consistent with a down-regulation of the ecdysone pathway being involved in the production of winged offspring. We therefore predicted that reduced ecdysone signaling would result in more winged offspring. Experimental injections of ecdysone or its analog resulted in a decreased production of winged offspring. Conversely, interfering with ecdysone signaling using an ecdysone receptor antagonist or knocking down the ecdysone receptor gene with RNAi resulted in an increased production of winged offspring. Our results are therefore consistent with the idea that ecdysone plays a causative role in the regulation of the proportion of winged offspring produced in response to crowding in this polyphenism. Our results also show that an environmentally regulated maternal hormone can mediate phenotype production in the next generation, as well as provide significant insight into the molecular mechanisms underlying the functioning of transgenerational phenotypic plasticity.


Assuntos
Afídeos/efeitos dos fármacos , Ecdisona/farmacologia , Morfogênese/efeitos dos fármacos , Asas de Animais/efeitos dos fármacos , Animais , Afídeos/embriologia , Afídeos/genética , Aglomeração , Ecdisona/metabolismo , Ecdisterona/farmacologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Morfogênese/genética , Pisum sativum/parasitologia , Fenótipo , Interferência de RNA , Receptores de Esteroides/antagonistas & inibidores , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Transdução de Sinais , Triterpenos/farmacologia , Asas de Animais/embriologia , Asas de Animais/metabolismo
19.
Environ Toxicol Pharmacol ; 48: 286-293, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27866098

RESUMO

The present study evaluates the superoxide dismutase (SOD) and catalase (CAT) activities in a wild strain of Drosophila melanogaster and the genotoxic potential induced by Cas II-gly (a new antineoplastic drug) using the somatic mutation and recombination test. Larvae 48h old were treated with Cas II-gly in a range of 0-1.5mM and aliquot were taken every 24h to have individuals treated for 24, 48, 72h and adulthood as well. A dose-dependent toxicity and a significant increase in SOD and CAT activities were found after a 24 and 48h treatment with 0.5-1.5mM concentrations. The comparison of the effect in enzymes with mutation indicated a positive correlation with increased genetic damage, after 24 and 48h of exposure for all concentrations tested. The addition of the genetic damage induced in each exposure time showed a significant effect, but only the small single spots had a concentration-related increase.


Assuntos
Antineoplásicos/toxicidade , Quelantes/toxicidade , Cobre/metabolismo , Mutagênicos/toxicidade , Compostos Organometálicos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Animais , Catalase/metabolismo , Relação Dose-Resposta a Droga , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Feminino , Dose Letal Mediana , Peroxidação de Lipídeos/efeitos dos fármacos , Peroxidação de Lipídeos/genética , Masculino , Estresse Oxidativo/genética , Recombinação Genética/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Asas de Animais/efeitos dos fármacos
20.
Chemosphere ; 165: 342-351, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27664524

RESUMO

Fipronil (FP) is an insecticide that belongs to the phenylpyrazole chemical family and is used to control pests by blocking GABA receptor at the entrance channel of the chlorine neurons. The aim of this study was to evaluate the mutagenic, recombinogenic and carcinogenic potential of FP. The mutagenic and recombinogenic effects were evaluated using the somatic mutation and recombination test (SMART) on wing cells of Drosophila melanogaster. Third instar larvae from standard (ST) and high bioactivation (HB) crosses were treated with different concentrations of FP (0.3, 0.7, 1.5 or 3.0 × 10-5 mM). The results showed mutagenic effects at all concentrations tested in the HB cross; and all concentrations tested in the ST cross, except at concentration of 0.7 × 10-5 mM. The carcinogenic effect of FP was assayed through the test for detection of epithelial tumor (warts) in D. melanogaster. Third instar larvae from wts/TM3 virgin females mated to mwh/mwh males were treated with different concentrations of FP (0.3, 0.7, 1.5 or 3.0 × 10-5 mM). All these concentrations induced a statistically significant increase in tumor frequency. In conclusion, FP proved to be mutagenic, recombinogenic and carcinogenic in somatic cells of D. melanogaster.


Assuntos
Carcinógenos/toxicidade , Drosophila melanogaster/efeitos dos fármacos , Inseticidas/toxicidade , Testes de Mutagenicidade/métodos , Neoplasias/induzido quimicamente , Pirazóis/toxicidade , Asas de Animais/patologia , Animais , Feminino , Larva/efeitos dos fármacos , Masculino , Mutagênese , Mutagênicos/toxicidade , Recombinação Genética/efeitos dos fármacos , Asas de Animais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA