Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 321
Filtrar
1.
Elife ; 102021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34292155

RESUMO

Morphogen signaling proteins disperse across tissues to activate signal transduction in target cells. We investigated dispersion of Hedgehog (Hh), Wnt homolog Wingless (Wg), and Bone morphogenic protein homolog Decapentaplegic (Dpp) in the Drosophila wing imaginal disc. We discovered that delivery of Hh, Wg, and Dpp to their respective targets is regulated. We found that <5% of Hh and <25% of Wg are taken up by disc cells and activate signaling. The amount of morphogen that is taken up and initiates signaling did not change when the level of morphogen expression was varied between 50 and 200% (Hh) or 50 and 350% (Wg). Similar properties were observed for Dpp. We analyzed an area of 150 µm×150 µm that includes Hh-responding cells of the disc as well as overlying tracheal cells and myoblasts that are also activated by disc-produced Hh. We found that the extent of signaling in the disc was unaffected by the presence or absence of the tracheal and myoblast cells, suggesting that the mechanism that disperses Hh specifies its destinations to particular cells, and that target cells do not take up Hh from a common pool.


Assuntos
Proteínas de Drosophila/metabolismo , Proteínas Hedgehog/metabolismo , Discos Imaginais/metabolismo , Transdução de Sinais , Proteína Wnt1/metabolismo , Animais , Drosophila/metabolismo , Proteínas de Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/genética , Morfogênese , Asas de Animais/embriologia , Proteína Wnt1/genética
2.
Insect Biochem Mol Biol ; 131: 103552, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33577967

RESUMO

Regeneration is a common phenomenon in various organisms by which tissues restore the damaged or naturally detached parts. In insects, appendage regeneration takes place during the embryonic, larval and pupal stages for individual survival. The wing disc of black cutworm Agrotis ypsilon has the capacity of regeneration after ablation, but understanding of molecular mechanisms in wing disc regeneration is still limited. After ablation of partial or whole wing discs before the fifth instar larval stage, the adult wings appeared to be normal. In the last two larval stages, ablation of the left wing disc led to smaller corresponding adult wing. Cell proliferation was reduced in the ablated wing disc but was gradually recovered two days post ablation. Transcriptome analysis found that genes in the mitogen-activated protein kinase (MAPK) pathway were upregulated. Repression of gene expression in this pathway, including Ras oncogene at 64B (Ras64B), Downstream of raf1 (Dsor1), and cAMP-dependent protein kinase catalytic subunit 3 (Pka-C3) by RNA interference after ablation, led to diminishment of both adult wings, suggesting that the MAPK signaling is essential for wing growth. Additionally, cell proliferation was still decelerated by injecting Ras64B, Dsor, or Pka-C3 dsRNA two days after ablation, indicating that the MAPK signaling-regulated cell proliferation is essential for growth. These results provide molecular clues to the regulation of cell proliferation during regeneration in lepidopteran insects.


Assuntos
Mariposas , Regeneração , Asas de Animais , Animais , Proliferação de Células/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genes de Insetos , Genes ras , Larva/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mariposas/embriologia , Mariposas/metabolismo , Pupa/metabolismo , Regeneração/genética , Regeneração/fisiologia , Transdução de Sinais , Asas de Animais/embriologia , Asas de Animais/crescimento & desenvolvimento
3.
Development ; 147(22)2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33028612

RESUMO

Cell extrusion is a crucial regulator of epithelial tissue development and homeostasis. Epithelial cells undergoing apoptosis, bearing pathological mutations or possessing developmental defects are actively extruded toward elimination. However, the molecular mechanisms of Drosophila epithelial cell extrusion are not fully understood. Here, we report that activation of the conserved Hippo (Hpo) signaling pathway induces both apical and basal cell extrusion in the Drosophila wing disc epithelia. We show that canonical Yorkie targets Diap1, Myc and Cyclin E are not required for either apical or basal cell extrusion induced by activation of this pathway. Another target gene, bantam, is only involved in basal cell extrusion, suggesting novel Hpo-regulated apical cell extrusion mechanisms. Using RNA-seq analysis, we found that JNK signaling is activated in the extruding cells. We provide genetic evidence that JNK signaling activation is both sufficient and necessary for Hpo-regulated cell extrusion. Furthermore, we demonstrate that the ETS-domain transcription factor Ets21c, an ortholog of proto-oncogenes FLI1 and ERG, acts downstream of JNK signaling to mediate apical cell extrusion. Our findings reveal a novel molecular link between Hpo signaling and cell extrusion.


Assuntos
Proteínas de Drosophila/metabolismo , Discos Imaginais/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-ets/metabolismo , Transdução de Sinais/fisiologia , Asas de Animais/embriologia , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster , Discos Imaginais/citologia , Proteínas Inibidoras de Apoptose/genética , Proteínas Inibidoras de Apoptose/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , MAP Quinase Quinase 4/genética , MAP Quinase Quinase 4/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas c-ets/genética , Transativadores/genética , Transativadores/metabolismo , Asas de Animais/citologia , Proteínas de Sinalização YAP
4.
Development ; 147(5)2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32161062

RESUMO

The modulation of mechanical tension is important for sculpturing tissues during animal development, yet how mechanical tension is controlled remains poorly understood. In Drosophila wing discs, the local reduction of mechanical tension at basal cell edges results in basal relaxation and the formation of an epithelial fold. Here, we show that Wingless, which is expressed next to this fold, promotes basal cell edge tension to suppress the formation of this fold. Ectopic expression of Wingless blocks fold formation, whereas the depletion of Wingless increases fold depth. Moreover, local depletion of Wingless in a region where Wingless signal transduction is normally high results in ectopic fold formation. The depletion of Wingless also results in decreased basal cell edge tension and basal cell area relaxation. Conversely, the activation of Wingless signal transduction leads to increased basal cell edge tension and basal cell area constriction. Our results identify the Wingless signal transduction pathway as a crucial modulator of mechanical tension that is important for proper wing disc morphogenesis.


Assuntos
Padronização Corporal/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Morfogênese/genética , Asas de Animais/embriologia , Proteína Wnt1/genética , Animais , Padronização Corporal/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Transdução de Sinais/genética , Estresse Mecânico
5.
Evol Dev ; 22(3): 257-268, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31682317

RESUMO

Developmental plasticity allows the matching of adult phenotypes to different environments. Although considerable effort has gone into understanding the evolution and ecology of plasticity, less is known about its developmental genetic basis. We focused on the pea aphid wing polyphenism, in which high- or low-density environments cause viviparous aphid mothers to produce winged or wingless offspring, respectively. Maternally provided ecdysone signals to embryos to be winged or wingless, but it is unknown how embryos respond to that signal. We used transcriptional profiling to investigate the gene expression state of winged-destined (WD) and wingless-destined (WLD) embryos at two developmental stages. We found that embryos differed in a small number of genes, and that gene sets were enriched for the insulin-signaling portion of the FoxO pathway. To look for a global signature of insulin signaling, we examined the size and stage of WD and WLD embryos but found no differences. These data suggest the hypothesis that FoxO signaling is important for morph development in a tissue-specific manner. We posit that maternally supplied ecdysone affects embryonic FoxO signaling, which ultimately plays a role in alternative morph development. Our study is one of an increasing number that implicate insulin signaling in the generation of alternative environmentally induced morphologies.


Assuntos
Afídeos/embriologia , Embrião não Mamífero/embriologia , Transdução de Sinais , Asas de Animais/embriologia , Animais , Proteínas de Insetos/metabolismo , Insulina/metabolismo , Somatomedinas/metabolismo
6.
PLoS Genet ; 15(9): e1008351, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31527874

RESUMO

Wnt proteins are secreted signaling factors that regulate cell fate specification and patterning decisions throughout the animal kingdom. In the Drosophila wing epithelium, Wingless (Wg, the homolog of Wnt1) is secreted from a narrow strip of cells at the dorsal-ventral boundary. However, the route of Wg secretion in polarized epithelial cells remains poorly understood and key proteins involved in this process are still unknown. Here, we performed an in vivo RNAi screen and identified members of the exocyst complex to be required for apical but not basolateral Wg secretion. Specifically blocking the apical Wg secretion leads to reduced downstream signaling. Using an in vivo 'temporal-rescue' assay, our results further indicate that apically secreted Wg activates target genes that require high signaling activity. In conclusion, our results demonstrate that the exocyst is required for an apical route of Wg secretion from polarized wing epithelial cells.


Assuntos
Proteínas de Drosophila/metabolismo , Via Secretória/fisiologia , Via de Sinalização Wnt/fisiologia , Proteína Wnt1/metabolismo , Animais , Padronização Corporal/genética , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Células Epiteliais/metabolismo , Epitélio/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Ligantes , Transdução de Sinais , Asas de Animais/embriologia , Asas de Animais/metabolismo , Proteínas Wnt/genética , Via de Sinalização Wnt/genética , Proteína Wnt1/genética , Proteína Wnt1/fisiologia
7.
Dev Cell ; 51(1): 49-61.e4, 2019 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-31495693

RESUMO

As epithelial tissues develop, groups of cells related by descent tend to associate in clonal populations rather than dispersing within the cell layer. While this is frequently assumed to be a result of differential adhesion, precise mechanisms controlling clonal cohesiveness remain unknown. Here we employ computational simulations to modulate epithelial cell size in silico and show that junctions between small cells frequently collapse, resulting in clone-cell dispersal among larger neighbors. Consistent with similar dynamics in vivo, we further demonstrate that mosaic disruption of Drosophila Tor generates small cells and results in aberrant clone dispersal in developing wing disc epithelia. We propose a geometric basis for this phenomenon, supported in part by the observation that soap-foam cells exhibit similar size-dependent junctional rearrangements. Combined, these results establish a link between cell-size pleomorphism and the control of epithelial cell packing, with potential implications for understanding tumor cell dispersal in human disease.


Assuntos
Tamanho Celular , Drosophila melanogaster/embriologia , Epitélio/embriologia , Animais , Apoptose , Adesão Celular , Divisão Celular , Proliferação de Células , Simulação por Computador , Proteínas de Drosophila/metabolismo , Células Epiteliais/citologia , Feminino , Células Espumosas/citologia , Masculino , Morfogênese , Receptores Proteína Tirosina Quinases/metabolismo , Asas de Animais/embriologia
8.
Development ; 146(15)2019 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-31399474

RESUMO

Wnts are secreted proteins that regulate cell fate during development of all metazoans. Wnt proteins were proposed to spread over several cells to activate signaling directly at a distance. In the Drosophila wing epithelium, an extracellular gradient of the Wnt1 homolog Wingless (Wg) was observed extending over several cells away from producing cells. Surprisingly, however, it was also shown that a membrane-tethered Neurotactin-Wg fusion protein (NRT-Wg) can largely replace endogenous Wg, leading to proper patterning of the wing. Therefore, the functional range of Wg and whether Wg spreading is required for correct tissue patterning remains controversial. Here, by capturing secreted Wg on cells away from the source, we show that Wg acts over a distance of up to 11 cell diameters to induce signaling. Furthermore, cells located outside the reach of extracellular Wg depend on the Frizzled2 receptor to maintain signaling. Frizzled2 expression is increased in the absence of Wg secretion and is required to maintain signaling and cell survival in NRT-wg wing discs. Together, these results provide insight into the mechanisms by which robust Wnt signaling is achieved in proliferating tissues.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Receptores Frizzled/metabolismo , Asas de Animais/embriologia , Via de Sinalização Wnt/fisiologia , Proteína Wnt1/metabolismo , Animais , Glicoproteínas de Membrana/metabolismo
9.
J Hand Surg Eur Vol ; 44(1): 43-50, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29587601

RESUMO

Preaxial polydactyly is a congenital hand anomaly predominantly of sporadic occurrence, which is frequently associated with abnormalities of the Sonic hedgehog signalling pathway. In experimentally induced preaxial polydactyly, radial aplasia is also frequently observed. To determine if there is a correlation between preaxial polydactyly and radial aplasia, we induced ectopic Sonic hedgehog signalling during chicken limb development with application of a smoothened-agonist (SAG) or retinoic acid. Application of SAG caused malformations in 71% limbs including preaxial polydactyly (62%) and forearm abnormalities (43%). Retinoic acid application induced malformations in 56% of limb including preaxial polydactyly (45%) and forearm abnormalities (50%). Radial dysplasia and ulnar dimelia were observed in both experimental conditions. We demonstrate that ectopic Sonic hedgehog signalling may cause both preaxial polydactyly and predictable forearm anomalies and that these conditions could potentially be classified as one embryological group. We propose a unifying model based on known models of ectopic Sonic hedgehog signalling.


Assuntos
Proteínas Hedgehog/genética , Botões de Extremidades/embriologia , Polidactilia/genética , Rádio (Anatomia)/anormalidades , Polegar/anormalidades , Asas de Animais/embriologia , Animais , Embrião de Galinha , Cicloexilaminas , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Modelos Animais , Transdução de Sinais , Tiofenos , Tretinoína
10.
Cell Prolif ; 52(1): e12529, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30328653

RESUMO

OBJECTIVES: Over the past decade an intriguing connection between cell polarity and tumorigenesis has emerged. Multiple core components of the junction complexes that help to form and maintain cell polarity display both pro- and anti-tumorigenic functions in a context-dependent manner, with the underlying mechanisms poorly understood. MATERIALS AND METHODS: With transgenic fly lines that overexpress or knock down specific signalling components, we perform genetic analysis to investigate the precise role of the polarity protein Canoe (Cno) in tumorigenesis and the downstream pathways. RESULTS: We show that overexpression of cno simultaneously activates JNK and Ras-MEK-ERK signalling, resulting in mixed phenotypes of both overproliferation and cell death in the Drosophila wing disc. Moderate alleviation of JNK activation eliminates the effect of Cno on cell death, leading to organ overgrowth and cell migration that mimic the formation and invasion of tumours. In addition, we find that the Hippo pathway acts downstream of JNK and Ras signalling to mediate the effect of Cno on cell proliferation. CONCLUSIONS: Our work reveals an oncogenic role of Cno and creates a new type of Drosophila tumour model for cancer research.


Assuntos
Polaridade Celular/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas ras/metabolismo , Animais , Carcinogênese/genética , Morte Celular/genética , Proliferação de Células/genética , Drosophila/embriologia , Drosophila/genética , Proteínas de Drosophila/genética , Técnicas de Silenciamento de Genes , Neoplasias/genética , Neoplasias/patologia , Asas de Animais/embriologia
11.
Biochem Biophys Res Commun ; 503(2): 1148-1153, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-29959918

RESUMO

Magnesium transporter subtype 1 (MagT1) is a magnesium membrane transporter with channel like properties. We have previously identified MagT1 (CG7830) in Drosophila genome and characterized its protein product by electrophysiological means. Here, we report the generation of fly MagT1 mutants and show that MagT1 is essential for early embryonic development. In wings and primordial wings, by clonal analysis and RNAi knock down of MagT1, we have found that loss of MagT1 results in enhanced/ectopic Wingless (Wg, a fly Wnt) signaling and disrupted Decapentaplegic (Dpp) signaling, indicating the crucial role of MagT1 for fly development at later stages. Finally, we demonstrate directly that magnesium transportations are proportional with the MagT1 expressional levels in Drosophila S2  cells. Taken together, these findings may suggest that MagT1 is a major magnesium transporter/channel profoundly involved in fly development by affecting developmental signaling pathways, such as Wg and Dpp signaling.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/embriologia , Transdução de Sinais , Asas de Animais/embriologia , Proteína Wnt1/metabolismo , Animais , Proteínas de Transporte de Cátions/genética , Linhagem Celular , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Feminino , Magnésio/metabolismo , Masculino , Mutação , Asas de Animais/metabolismo , Via de Sinalização Wnt
12.
Dev Cell ; 46(1): 23-39.e5, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29974861

RESUMO

Epithelial tissues can elongate in two dimensions by polarized cell intercalation, oriented cell division, or cell shape change, owing to local or global actomyosin contractile forces acting in the plane of the tissue. In addition, epithelia can undergo morphogenetic change in three dimensions. We show that elongation of the wings and legs of Drosophila involves a columnar-to-cuboidal cell shape change that reduces cell height and expands cell width. Remodeling of the apical extracellular matrix by the Stubble protease and basal matrix by MMP1/2 proteases induces wing and leg elongation. Matrix remodeling does not occur in the haltere, a limb that fails to elongate. Limb elongation is made anisotropic by planar polarized Myosin-II, which drives convergent extension along the proximal-distal axis. Subsequently, Myosin-II relocalizes to lateral membranes to accelerate columnar-to-cuboidal transition and isotropic tissue expansion. Thus, matrix remodeling induces dynamic changes in actomyosin contractility to drive epithelial morphogenesis in three dimensions.


Assuntos
Padronização Corporal/fisiologia , Drosophila melanogaster/embriologia , Células Epiteliais/citologia , Extremidade Inferior/embriologia , Morfogênese/fisiologia , Asas de Animais/embriologia , Animais , Polaridade Celular/fisiologia , Forma Celular/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Embrião não Mamífero/embriologia , Epitélio/metabolismo , Metaloproteinase 1 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Proteínas de Membrana/metabolismo , Miosina Tipo II/metabolismo , Serina Endopeptidases/metabolismo
13.
PLoS Genet ; 14(2): e1007167, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29420531

RESUMO

Several transcription factors have been identified that activate an epithelial-to-mesenchymal transition (EMT), which endows cells with the capacity to break through basement membranes and migrate away from their site of origin. A key program in development, in recent years it has been shown to be a crucial driver of tumour invasion and metastasis. However, several of these EMT-inducing transcription factors are often expressed long before the initiation of the invasion-metastasis cascade as well as in non-invasive tumours. Increasing evidence suggests that they may promote primary tumour growth, but their precise role in this process remains to be elucidated. To investigate this issue we have focused our studies on two Drosophila transcription factors, the classic EMT inducer Snail and the Drosophila orthologue of hGATAs4/6, Serpent, which drives an alternative mechanism of EMT; both Snail and GATA are specifically expressed in a number of human cancers, particularly at the invasive front and in metastasis. Thus, we recreated conditions of Snail and of Serpent high expression in the fly imaginal wing disc and analysed their effect. While either Snail or Serpent induced a profound loss of epithelial polarity and tissue organisation, Serpent but not Snail also induced an increase in the size of wing discs. Furthermore, the Serpent-induced tumour-like tissues were able to grow extensively when transplanted into the abdomen of adult hosts. We found the differences between Snail and Serpent to correlate with the genetic program they elicit; while activation of either results in an increase in the expression of Yorki target genes, Serpent additionally activates the Ras signalling pathway. These results provide insight into how transcription factors that induce EMT can also promote primary tumour growth, and how in some cases such as GATA factors a 'multi hit' effect may be achieved through the aberrant activation of just a single gene.


Assuntos
Proliferação de Células/genética , Proteínas de Drosophila/fisiologia , Drosophila/genética , Transição Epitelial-Mesenquimal/genética , Fatores de Transcrição GATA/fisiologia , Neoplasias/patologia , Fatores de Transcrição da Família Snail/fisiologia , Animais , Animais Geneticamente Modificados , Linhagem Celular Tumoral , Drosophila/embriologia , Drosophila/crescimento & desenvolvimento , Drosophila/fisiologia , Proteínas de Drosophila/genética , Embrião não Mamífero , Feminino , Fatores de Transcrição GATA/genética , Invasividade Neoplásica , Neoplasias/genética , Fatores de Transcrição da Família Snail/genética , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia , Carga Tumoral/genética , Asas de Animais/embriologia , Asas de Animais/transplante
14.
J Cell Biol ; 217(3): 1033-1045, 2018 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-29326288

RESUMO

Growth of epithelial tissues is regulated by a plethora of components, including signaling and scaffolding proteins, but also by junctional tension, mediated by the actomyosin cytoskeleton. However, how these players are spatially organized and functionally coordinated is not well understood. Here, we identify the Drosophila melanogaster scaffolding protein Big bang as a novel regulator of growth in epithelial cells of the wing disc by ensuring proper junctional tension. Loss of big bang results in the reduction of the regulatory light chain of nonmuscle myosin, Spaghetti squash. This is associated with an increased apical cell surface, decreased junctional tension, and smaller wings. Strikingly, these phenotypic traits of big bang mutant discs can be rescued by expressing constitutively active Spaghetti squash. Big bang colocalizes with Spaghetti squash in the apical cytocortex and is found in the same protein complex. These results suggest that in epithelial cells of developing wings, the scaffolding protein Big bang controls apical cytocortex organization, which is important for regulating cell shape and tissue growth.


Assuntos
Proteínas de Drosophila/metabolismo , Células Epiteliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Discos Imaginais/metabolismo , Asas de Animais/embriologia , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster , Células Epiteliais/citologia , Discos Imaginais/citologia , Asas de Animais/citologia
15.
Development ; 144(10): 1841-1850, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28360132

RESUMO

Smoothened (SMO) is a G-protein-coupled receptor-related protein required for the transduction of Hedgehog (HH). The HH gradient leads to graded phosphorylation of SMO, mainly by the PKA and CKI kinases. How thresholds in HH morphogen regulate SMO to promote switch-like transcriptional responses is a central unsolved issue. Using the wing imaginal disc model in Drosophila, we identified new SMO phosphosites that enhance the effects of the PKA/CKI kinases on SMO accumulation, its localization at the plasma membrane and its activity. Surprisingly, phosphorylation at these sites is induced by the kinase Fused (FU), a known downstream effector of SMO. In turn, activation of SMO induces FU to act on its downstream targets. Overall, our data provide evidence for a SMO/FU positive regulatory loop nested within a multikinase phosphorylation cascade. We propose that this complex interplay amplifies signaling above a threshold that allows high HH signaling.


Assuntos
Caseína Quinase I/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Proteínas Hedgehog/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Receptor Smoothened/metabolismo , Animais , Animais Geneticamente Modificados , Caseína Quinase I/genética , Membrana Celular/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas Hedgehog/genética , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Recombinantes de Fusão/genética , Transdução de Sinais , Receptor Smoothened/genética , Asas de Animais/embriologia , Asas de Animais/metabolismo
16.
Apoptosis ; 22(4): 479-490, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28150056

RESUMO

The proto-oncogene Myc is well known for its roles in promoting cell growth, proliferation and apoptosis. However, in this study, we found from a genetic screen that Myc inhibits, rather than promotes, cell death triggered by c-Jun N-terminal kinase (JNK) signaling in Drosophila. Firstly, expression of Drosophila Myc (dMyc) suppresses, whereas loss of dMyc enhances, ectopically activated JNK signaling-induced cell death. Secondly, dMyc impedes physiologically activated JNK pathway-mediated cell death. Thirdly, loss of dMyc triggers JNK pathway activation and JNK-dependent cell death. Finally, the mammalian cMyc gene, when expressed in Drosophila, impedes activated JNK signaling-induced cell death. Thus, besides its well-studied apoptosis promoting function, Myc also antagonizes JNK-mediated cell death in Drosophila, and this function is likely conserved from fly to human.


Assuntos
Apoptose/genética , Proteínas de Ligação a DNA/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/genética , Genes myc , Sistema de Sinalização das MAP Quinases/genética , Fatores de Transcrição/fisiologia , Animais , Olho Composto de Artrópodes/citologia , Olho Composto de Artrópodes/embriologia , Olho Composto de Artrópodes/crescimento & desenvolvimento , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Genes Sintéticos , Humanos , Larva , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Morfogênese , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiologia , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/fisiologia , Proteínas Recombinantes de Fusão/metabolismo , Especificidade da Espécie , Tórax/citologia , Tórax/embriologia , Tórax/crescimento & desenvolvimento , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Asas de Animais/citologia , Asas de Animais/embriologia , Asas de Animais/crescimento & desenvolvimento
17.
Proc Natl Acad Sci U S A ; 114(6): 1419-1423, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28115695

RESUMO

The wing polyphenism of pea aphids is a compelling laboratory model with which to study the molecular mechanisms underlying phenotypic plasticity. In this polyphenism, environmental stressors such as high aphid density cause asexual, viviparous adult female aphids to alter the developmental fate of their embryos from wingless to winged morphs. This polyphenism is transgenerational, in that the pea aphid mother experiences the environmental signals, but it is her offspring that are affected. Previous research suggested that the steroid hormone ecdysone may play a role in this polyphenism. Here, we analyzed ecdysone-related gene expression patterns and found that they were consistent with a down-regulation of the ecdysone pathway being involved in the production of winged offspring. We therefore predicted that reduced ecdysone signaling would result in more winged offspring. Experimental injections of ecdysone or its analog resulted in a decreased production of winged offspring. Conversely, interfering with ecdysone signaling using an ecdysone receptor antagonist or knocking down the ecdysone receptor gene with RNAi resulted in an increased production of winged offspring. Our results are therefore consistent with the idea that ecdysone plays a causative role in the regulation of the proportion of winged offspring produced in response to crowding in this polyphenism. Our results also show that an environmentally regulated maternal hormone can mediate phenotype production in the next generation, as well as provide significant insight into the molecular mechanisms underlying the functioning of transgenerational phenotypic plasticity.


Assuntos
Afídeos/efeitos dos fármacos , Ecdisona/farmacologia , Morfogênese/efeitos dos fármacos , Asas de Animais/efeitos dos fármacos , Animais , Afídeos/embriologia , Afídeos/genética , Aglomeração , Ecdisona/metabolismo , Ecdisterona/farmacologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Morfogênese/genética , Pisum sativum/parasitologia , Fenótipo , Interferência de RNA , Receptores de Esteroides/antagonistas & inibidores , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Transdução de Sinais , Triterpenos/farmacologia , Asas de Animais/embriologia , Asas de Animais/metabolismo
18.
Development ; 143(23): 4543-4553, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27899511

RESUMO

Many signalling components are apically restricted in epithelial cells, and receptor localisation and abundance is key for morphogenesis and tissue homeostasis. Hence, controlling apicobasal epithelial polarity is crucial for proper signalling. Notch is a ubiquitously expressed, apically localised receptor, which performs a plethora of functions; therefore, its activity has to be tightly regulated. Here, we show that Drosophila Crumbs, an evolutionarily conserved polarity determinant, prevents Notch endocytosis in developing wings through direct interaction between the two proteins. Notch endocytosis in the absence of Crumbs results in the activation of the ligand-independent, Deltex-dependent Notch signalling pathway, and does not require the ligands Delta and Serrate or γ-secretase activity. This function of Crumbs is not due to general defects in apicobasal polarity, as localisation of other apical proteins is unaffected. Our data reveal a mechanism to explain how Crumbs directly controls localisation and trafficking of the potent Notch receptor, and adds yet another aspect of Crumbs regulation in Notch pathway activity. Furthermore, our data highlight a close link between the apical determinant Crumbs, receptor trafficking and tissue homeostasis.


Assuntos
Polaridade Celular/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila/embriologia , Endocitose/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Membrana/metabolismo , Receptores Notch/metabolismo , Asas de Animais/embriologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Dinaminas/antagonistas & inibidores , Dinaminas/genética , Ativação Enzimática , Células Epiteliais/fisiologia , Olho/embriologia , Hidrazonas/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína Jagged-1/metabolismo , Transdução de Sinais/fisiologia
19.
Sci Rep ; 6: 27981, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27301278

RESUMO

Wingless (Wg) and Hedgehog (Hh) signaling pathways are key players in animal development. However, regulation of the expression of wg and hh are not well understood. Here, we show that Midline (Mid), an evolutionarily conserved transcription factor, expresses in the wing disc of Drosophila and plays a vital role in wing development. Loss or knock down of mid in the wing disc induced hyper-expression of wingless (wg) and yielded cocked and non-flat wings. Over-expression of mid in the wing disc markedly repressed the expression of wg, DE-Cadherin (DE-Cad) and armadillo (arm), and resulted in a small and blistered wing. In addition, a reduction in the dose of mid enhanced phenotypes of a gain-of-function mutant of hedgehog (hh). We also observed repression of hh upon overexpression of mid in the wing disc. Taken together, we propose that Mid regulates wing development by repressing wg and hh in Drosophila.


Assuntos
Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/metabolismo , Drosophila/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/antagonistas & inibidores , Organogênese , Proteínas com Domínio T/metabolismo , Proteína Wnt1/antagonistas & inibidores , Animais , Transcrição Gênica , Asas de Animais/embriologia
20.
PLoS One ; 11(5): e0155438, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27176767

RESUMO

Studying the dynamic of gene regulatory networks is essential in order to understand the specific signals and factors that govern cell proliferation and differentiation during development. This also has direct implication in human health and cancer biology. The general transcriptional elongation regulator P-TEFb regulates the transcriptional status of many developmental genes. Its biological activity is controlled by an inhibitory complex composed of HEXIM and the 7SK snRNA. Here, we examine the function of HEXIM during Drosophila development. Our key finding is that HEXIM affects the Hedgehog signaling pathway. HEXIM knockdown flies display strong phenotypes and organ failures. In the wing imaginal disc, HEXIM knockdown initially induces ectopic expression of Hedgehog (Hh) and its transcriptional effector Cubitus interuptus (Ci). In turn, deregulated Hedgehog signaling provokes apoptosis, which is continuously compensated by apoptosis-induced cell proliferation. Thus, the HEXIM knockdown mutant phenotype does not result from the apoptotic ablation of imaginal disc; but rather from the failure of dividing cells to commit to a proper developmental program due to Hedgehog signaling defects. Furthermore, we show that ci is a genetic suppressor of hexim. Thus, HEXIM ensures the integrity of Hedgehog signaling in wing imaginal disc, by a yet unknown mechanism. To our knowledge, this is the first time that the physiological function of HEXIM has been addressed in such details in vivo.


Assuntos
Proteínas de Drosophila/metabolismo , Proteínas Hedgehog/metabolismo , Organogênese , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Asas de Animais/embriologia , Asas de Animais/metabolismo , Animais , Apoptose/genética , Pontos de Checagem do Ciclo Celular/genética , Morte Celular/genética , Proliferação de Células/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Mutação , Fenótipo , Ligação Proteica , Interferência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA