Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Ecol Lett ; 27(1): e14340, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38017619

RESUMO

Herbivores that sequester toxins are thought to have cracked the code of plant defences. Nonetheless, coevolutionary theory predicts that plants should evolve toxic variants that also negatively impact specialists. We propose and test the selective sequestration hypothesis, that specialists preferentially sequester compounds that are less toxic to themselves while maintaining toxicity to enemies. Using chemically distinct plants, we show that monarch butterflies sequester only a subset of cardenolides from milkweed leaves that are less potent against their target enzyme (Na+ /K+ -ATPase) compared to several dominant cardenolides from leaves. However, sequestered compounds remain highly potent against sensitive Na+ /K+ -ATPases found in most predators. We confirmed this differential toxicity with mixtures of purified cardenolides from leaves and butterflies. The genetic basis of monarch adaptation to sequestered cardenolides was also confirmed with transgenic Drosophila that were CRISPR-edited with the monarch's Na+ /K+ -ATPase. Thus, the monarch's selective sequestration appears to reduce self-harm while maintaining protection from enemies.


Assuntos
Asclepias , Borboletas , Animais , Borboletas/genética , Larva , Asclepias/química , Cardenolídeos/toxicidade , Adenosina Trifosfatases
2.
Proc Natl Acad Sci U S A ; 120(22): e2302251120, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37216531

RESUMO

In coevolution between plants and insects, reciprocal selection often leads to phenotype matching between chemical defense and herbivore offense. Nonetheless, it is not well understood whether distinct plant parts are differentially defended and how herbivores adapted to those parts cope with tissue-specific defense. Milkweed plants produce a diversity of cardenolide toxins and specialist herbivores have substitutions in their target enzyme (Na+/K+-ATPase), each playing a central role in milkweed-insect coevolution. The four-eyed milkweed beetle (Tetraopes tetrophthalmus) is an abundant toxin-sequestering herbivore that feeds exclusively on milkweed roots as larvae and less so on milkweed leaves as adults. Accordingly, we tested the tolerance of this beetle's Na+/K+-ATPase to cardenolide extracts from roots versus leaves of its main host (Asclepias syriaca), along with sequestered cardenolides from beetle tissues. We additionally purified and tested the inhibitory activity of dominant cardenolides from roots (syrioside) and leaves (glycosylated aspecioside). Tetraopes' enzyme was threefold more tolerant of root extracts and syrioside than leaf cardenolides. Nonetheless, beetle-sequestered cardenolides were more potent than those in roots, suggesting selective uptake or dependence on compartmentalization of toxins away from the beetle's enzymatic target. Because Tetraopes has two functionally validated amino acid substitutions in its Na+/K+-ATPase compared to the ancestral form in other insects, we compared its cardenolide tolerance to that of wild-type Drosophila and CRISPR-edited Drosophila with Tetraopes' Na+/K+-ATPase genotype. Those two amino acid substitutions accounted for >50% of Tetraopes' enhanced enzymatic tolerance of cardenolides. Thus, milkweed's tissue-specific expression of root toxins is matched by physiological adaptations in its specialist root herbivore.


Assuntos
Alcaloides , Asclepias , Besouros , Animais , Herbivoria , Adaptação Fisiológica , Besouros/fisiologia , Cardenolídeos/química , Asclepias/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Drosophila/metabolismo
3.
J Chem Ecol ; 49(7-8): 418-427, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36745328

RESUMO

Plant secondary metabolites that defend leaves from herbivores also occur in floral nectar. While specialist herbivores often have adaptations providing resistance to these compounds in leaves, many social insect pollinators are generalists, and therefore are not expected to be as resistant to such compounds. The milkweeds, Asclepias spp., contain toxic cardenolides in all tissues including floral nectar. We compared the concentrations and identities of cardenolides between tissues of the North American common milkweed Asclepias syriaca, and then studied the effect of the predominant cardenolide in nectar, glycosylated aspecioside, on an abundant pollinator. We show that a generalist bumblebee, Bombus impatiens, a common pollinator in eastern North America, consumes less nectar with experimental addition of ouabain (a standard cardenolide derived from Apocynacid plants native to east Africa) but not with addition of glycosylated aspecioside from milkweeds. At a concentration matching that of the maximum in the natural range, both cardenolides reduced activity levels of bees after four days of consumption, demonstrating toxicity despite variation in behavioral deterrence (i.e., consumption). In vitro enzymatic assays of Na+/K+-ATPase, the target site of cardenolides, showed lower toxicity of the milkweed cardenolide than ouabain for B. impatiens, indicating that the lower deterrence may be due to greater tolerance to glycosylated aspecioside. In contrast, there was no difference between the two cardenolides in toxicity to the Na+/K+-ATPase from a control insect, the fruit fly Drosophila melanogaster. Accordingly, this work reveals that even generalist pollinators such as B. impatiens may have adaptations to reduce the toxicity of specific plant secondary metabolites that occur in nectar, despite visiting flowers from a wide variety of plants over the colony's lifespan.


Assuntos
Asclepias , Borboletas , Abelhas , Animais , Asclepias/metabolismo , Cardenolídeos/toxicidade , Cardenolídeos/metabolismo , Borboletas/metabolismo , Néctar de Plantas , Ouabaína/metabolismo , Drosophila melanogaster , ATPase Trocadora de Sódio-Potássio/metabolismo
4.
Molecules ; 27(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35956822

RESUMO

Pergularia tomentosa L., a milkweed tropical plant belonging to the family Asclepiadaceae, is a rich source of unusual cardiac glycosides, characterised by transfused A/B rings and a sugar moiety linked by a double link, generating a dioxanoid structure. In the present report, five cardenolides isolated from the aerial parts of the plant (calactin, calotropin, 12ß-hydroxycalactin, 12ß,6'-dihydroxycalotropin, and 16α-hydroxycalotropin) were investigated for their biological effects on a human hepatocarcinoma cell line. Cell viability was monitored by an MTT assay. The occurrence of apoptosis was evaluated by detecting caspase-3 activation and chromatin fragmentation. The ability of these compounds to induce autophagy was analysed by monitoring two markers of the autophagic process, LC3 and p62. Our results indicated that all cardenolides had cytotoxic effects, with IC50 ranging from 0.127 to 6.285 µM. All compounds were able to induce apoptosis and autophagy, calactin being the most active one. Some of them also caused a reduction in cell migration and a partial block of the cell cycle into the S-phase. The present study suggests that selected cardenolides from aerial parts of P. tomentosa, particularly calactin, possess potentially desirable properties for further investigation as anticancer agents.


Assuntos
Antineoplásicos , Apocynaceae , Asclepias , Antineoplásicos/farmacologia , Apocynaceae/química , Apoptose , Asclepias/química , Autofagia , Cardenolídeos/química , Cardenolídeos/farmacologia , Linhagem Celular Tumoral , Humanos , Componentes Aéreos da Planta/metabolismo
5.
Proc Natl Acad Sci U S A ; 119(25): e2205073119, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35696564

RESUMO

Environmental clines in organismal defensive traits are usually attributed to stronger selection by enemies at lower latitudes or near the host's range center. Nonetheless, little functional evidence has supported this hypothesis, especially for coevolving plants and herbivores. We quantified cardenolide toxins in seeds of 24 populations of common milkweed (Asclepias syriaca) across 13 degrees of latitude, revealing a pattern of increasing cardenolide concentrations toward the host's range center. The unusual nitrogen-containing cardenolide labriformin was an exception and peaked at higher latitudes. Milkweed seeds are eaten by specialist lygaeid bugs that are even more tolerant of cardenolides than the monarch butterfly, concentrating most cardenolides (but not labriformin) from seeds into their bodies. Accordingly, whether cardenolides defend seeds against these specialist bugs is unclear. We demonstrate that Oncopeltus fasciatus (Lygaeidae) metabolized two major compounds (glycosylated aspecioside and labriformin) into distinct products that were sequestered without impairing growth. We next tested several isolated cardenolides in vitro on the physiological target of cardenolides (Na+/K+-ATPase); there was little variation among compounds in inhibition of an unadapted Na+/K+-ATPase, but tremendous variation in impacts on that of monarchs and Oncopeltus. Labriformin was the most inhibitive compound tested for both insects, but Oncopeltus had the greater advantage over monarchs in tolerating labriformin compared to other compounds. Three metabolized (and stored) cardenolides were less toxic than their parent compounds found in seeds. Our results suggest that a potent plant defense is evolving by natural selection along a geographical cline and targets specialist herbivores, but is met by insect tolerance, detoxification, and sequestration.


Assuntos
Asclepias , Borboletas , Cardenolídeos , Heterópteros , Defesa das Plantas contra Herbivoria , Adenosina Trifosfatases/metabolismo , Animais , Asclepias/metabolismo , Borboletas/metabolismo , Cardenolídeos/química , Cardenolídeos/metabolismo , Cardenolídeos/toxicidade , Herbivoria , Heterópteros/metabolismo , Sementes/metabolismo
6.
PeerJ ; 10: e13524, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35673388

RESUMO

Na+/K+-ATPase is an essential transmembrane enzyme found in all mammalian cells with critical functions for cell ion homeostasis. The inhibition of this enzyme by several cardiotonic steroids (CTS) has been associated with the cytotoxic effect on cancer cell lines of phytochemicals such as ouabain and digitoxin. This study evaluated the inhibitory capacity of cardenolides calotropin and corotoxigenin 3-O-glucopyranoside (C3OG) from Asclepias subulata over the Na+/K+-ATPase activity in vitro and silico. The inhibitory assays showed that calotropin and C3OG decreased the Na+/K+-ATPase activity with IC50 values of 0.27 and 0.87 µM, respectively. Furthermore, the molecules presented an uncompetitive inhibition on Na+/K+-ATPase activity, with Ki values of 0.2 µM to calotropin and 0.5 µM to C3OG. Furthermore, the molecular modeling indicated that calotropin and C3OG might interact with the Thr797 and Gln111 residues, considered essential to the interaction with the Na+/K+-ATPase. Besides, these cardenolides can interact with amino acid residues such as Phe783, Leu125, and Ala323, to establish hydrophobic interactions on the binding site. Considering the results, these provide novel evidence about the mechanism of action of cardenolides from A. subulata, proposing that C3OG is a novel cardenolide that deserves further consideration for in vitro cellular antiproliferative assays and in vivo studies as an anticancer molecule.


Assuntos
Asclepias , Glicosídeos Cardíacos , Animais , Asclepias/química , Cardenolídeos/farmacologia , Glicosídeos Cardíacos/farmacologia , Adenosina Trifosfatases , Mamíferos/metabolismo
7.
Mol Ecol ; 31(11): 3254-3265, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35363921

RESUMO

Coevolution between plants and herbivores often involves escalation of defence-offence strategies, but attack by multiple herbivores may obscure the match of plant defence to any one attacker. As herbivores often specialize on distinct plant parts, we hypothesized that defence-offence interactions in coevolved systems may become physiologically and evolutionarily compartmentalized between plant tissues. We report that roots, leaves, flower buds and seeds of the tropical milkweed (Asclepias curassavica) show increasing concentrations of cardenolide toxins acropetally, with latex showing the highest concentration. In vitro assays of the physiological target of cardenolides, the Na+ /K+ -ATPase (hereafter "sodium pump"), of three specialized milkweed herbivores (root-feeding Tetraopes tetrophthalmus, leaf-feeding Danaus plexippus, and seed-feeding Oncopeltus fasciatus) show that they are proportionally tolerant to the cardenolide concentrations of the tissues they eat. Indeed, molecular substitutions in the insects' sodium pumps predicted their tolerance to toxins from their target tissues. Nonetheless, the relative inhibition of the sodium pumps of these specialists by the concentration versus composition (inhibition controlled for concentration, what we term "potency") of cardenolides from their target versus nontarget plant tissues revealed different degrees of insect adaptation to tissue-specific toxins. In addition, a trade-off between toxin concentration and potency emerged across plant tissues, potentially reflecting coevolutionary history or plant physiological constraints. Our findings suggest that tissue-specific coevolutionary dynamics may be proceeding between the plant and its specialized community of herbivores. This novel finding may be common in nature, contributing to ways in which coevolution proceeds in multispecies communities.


Assuntos
Asclepias , Borboletas , Animais , Asclepias/genética , Borboletas/fisiologia , Cardenolídeos , Herbivoria , Insetos , Plantas/metabolismo , Sódio , ATPase Trocadora de Sódio-Potássio
8.
Chin J Nat Med ; 20(3): 202-209, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35369964

RESUMO

Two cardenolide glycosides, corotoxigenin 3-O-[ß-D-glucopyranosyl-(1→4)-6-deoxy-ß-D-glucopyranoside] (1) and coroglaucigenin 3-O-[ß-D-glucopyranosyl-(1→4)-6-deoxy-ß-D-glucopyranoside] (2), were isolated from the seed fairs of Asclepias curassavica. The structures of 1-2 were determined based on the combination of the analysis of their MS, NMR spectroscopic data and acid hydrolysis. The inhibitory effects of compounds 1 and 2 on human colorectal carcinoma cells (HCT116), non-small cell lung carcinoma cells (A549) and hepatic cancer cells (SMMC-7721) were evaluated. The results showed that both compounds 1 and 2 significantly inhibited the viability, proliferation, and migration of A549, HCT116 and SMMC-7721 cells, suggesting that compounds 1 and 2 can be applied in the treatment of lung, colon and liver cancers in clinical practice. This study may not only provide a scientific basis for clarifying the active ingredients in A. curassavica, but also help to understand its antitumor activity, which can promote the application of A. curassavica in clinical treatment of various cancers.


Assuntos
Antineoplásicos , Asclepias , Antineoplásicos/farmacologia , Asclepias/química , Cardenolídeos/química , Cardenolídeos/farmacologia , Glicosídeos/química , Glicosídeos/farmacologia , Humanos , Sementes
9.
Molecules ; 28(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36615300

RESUMO

Cardiac glycosides are a large class of secondary metabolites found in plants. In the genus Asclepias, cardenolides in milkweed plants have an established role in plant-herbivore and predator-prey interactions, based on their ability to inhibit the membrane-bound Na+/K+-ATPase enzyme. Milkweed seeds are eaten by specialist lygaeid bugs, which are the most cardenolide-tolerant insects known. These insects likely impose natural selection for the repeated derivatisation of cardenolides. A first step in investigating this hypothesis is to conduct a phytochemical profiling of the cardenolides in the seeds. Here, we report the concentrations of 10 purified cardenolides from the seeds of Asclepias curassavica. We report the structures of new compounds: 3-O-ß-allopyranosyl coroglaucigenin (1), 3-[4'-O-ß-glucopyranosyl-ß-allopyranosyl] coroglaucigenin (2), 3'-O-ß-glucopyranosyl-15-ß-hydroxycalotropin (3), and 3-O-ß-glucopyranosyl-12-ß-hydroxyl coroglaucigenin (4), as well as six previously reported cardenolides (5-10). We test the in vitro inhibition of these compounds on the sensitive porcine Na+/K+-ATPase. The least inhibitory compound was also the most abundant in the seeds-4'-O-ß-glucopyranosyl frugoside (5). Gofruside (9) was the most inhibitory. We found no direct correlation between the number of glycosides/sugar moieties in a cardenolide and its inhibitory effect. Our results enhance the literature on cardenolide diversity and concentration among tissues eaten by insects and provide an opportunity to uncover potential evolutionary relationships between tissue-specific defense expression and insect adaptations in plant-herbivore interactions.


Assuntos
Asclepias , Glicosídeos Cardíacos , Animais , Suínos , Asclepias/química , Cardenolídeos/farmacologia , Cardenolídeos/química , Glicosídeos Cardíacos/farmacologia , Sementes/metabolismo , Plantas/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo
10.
F1000Res ; 11: 527, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37025948

RESUMO

Background: Several studies have shown that active compounds of Asclepias subulata (cardenolides) have antiproliferative effect on human cancer cells. Cardenolides isolated from A. subulata can be used as active chemical markers to elaborate phytopharmaceutical preparations. To evaluate the antiproliferative effect of a standardized extract of the aerial parts, based on Asclepias subulata cardenolides. Methods: Four standardized extracts were prepared by HPLC-DAD depending on the concentration of calotropin and the antiproliferative activity was measured for the MTT assay, on the A549, MCF-7, HeLa, PC3 and ARPE cell lines. The concentrations of calotropin used for the standardization of the extracts were 10, 7.6, 5 and 1 mg/dL. Results: Standardization of the A. subulata extract based on calotropin at 7.6 mg/g dry weight was achieved and the antiproliferative activity was evaluated over A549, HeLa and MCF-7 cell lines, obtaining proliferation percentages of 3.8 to 13.4% . Conclusions: The standardized extracts of A. subulata at different concentrations of calotropin showed antiproliferative activity against all the cell lines evaluated. The greatest effect was observed against the HeLa cell line.


Assuntos
Asclepias , Humanos , Asclepias/química , Células HeLa , Extratos Vegetais/farmacologia , Cardenolídeos/química , Cardenolídeos/farmacologia
11.
Curr Biol ; 31(22): R1465-R1466, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34813747

RESUMO

The community of plant-feeding insects (herbivores) that specialize on milkweeds (Apocynaceae) form a remarkable example of convergent evolution across levels of biological organization1. In response to toxic cardiac glycosides produced by these plants, the monarch butterfly (Danaus plexippus) and other specialist herbivores have evolved parallel substitutions in the alpha subunit (ATPA) of the Na+/K+-ATPase. These substitutions render the pump insensitive to cardiac glycosides2,3, allowing the monarch and other specialists, from aphids to beetles, to sequester cardiac glycosides, which in turn provide defense against attacks by enemies from the third trophic level4. The evolution of 'target-site-insensitivity' substitutions in these herbivores poses a fundamental biological question: have predators and parasitoids that feed on cardiac-glycoside-sequestering insects also evolved Na+/K+-ATPases that are similarly insensitive to cardiac glycosides (as predicted by Whiteman and Mooney)5? In other words, can plant toxins cause evolutionary cascades that reach the third trophic level? Here we show that at least four enemies of the monarch and other milkweed herbivores have indeed evolved amino-acid substitutions associated with target-site insensitivity to cardiac glycosides. These attackers represent four major animal clades, implicating cardiac glycosides as keystone molecules6 and establishing ATPalpha, which encodes ATPA, as a keystone gene with effects that reverberate within ecological communities7.


Assuntos
Asclepias , Borboletas , Glicosídeos Cardíacos , Parasitos , Animais , Asclepias/genética , Asclepias/parasitologia , Borboletas/genética , Cardenolídeos/toxicidade , Herbivoria , Insetos , Plantas , ATPase Trocadora de Sódio-Potássio/genética
12.
Biol Pharm Bull ; 43(10): 1609-1614, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32999172

RESUMO

In the course of our screening program for novel chemotherapeutic candidates from plants against adult T-cell leukemia/lymphoma, the extracts of Asclepias curassavica L. showed potent activity against MT-1 and MT-2 cells. Therefore, we attempted to isolate their active components. We identified a new cardenolide, 19-dihydrocalactinic acid methyl ester (1), along with 16 known cardenolides (2-17). Their structures were determined on the basis of spectroscopic data. Almost all of the isolated cardenolides inhibited the growth of both tumor cell lines. All the doubly linked cardenolides (11-17) except for 14 showed more potent activity than the other cardenolides. A comparison of the activities of 11, 14 and 16 revealed that the presence of hydroxy or acetoxy functional groups at C-16 led to a decrease in the activity. The 50% effective concentration (EC50) value of calotropin (11) against MT-2 cells was comparable to the potency of the clinical antineoplastic drug doxorubicin. The cytotoxic effect of 11 toward normal mononuclear cells obtained from the peripheral blood (PB-MNCs) was observed at a concentration 6 to 12 times higher than that used to induce growth inhibition against MT-1 and MT-2 cells. The proportions of annexin V-positive cells after 72 h of treatment with 11 were increased, indicating that it significantly induced apoptosis in MT-1 and MT-2 cells in a concentration-dependent manner. Cell cycle experiments demonstrated that 11 arrested MT-1 and MT-2 cells at the G2/M phase. Therefore, compound 11 may be a promising candidate for the treatment of adult T-cell leukemia/lymphoma.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Asclepias , Cardenolídeos/farmacologia , Leucemia-Linfoma de Células T do Adulto , Extratos Vegetais/farmacologia , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/uso terapêutico , Cardenolídeos/isolamento & purificação , Cardenolídeos/uso terapêutico , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Leucemia-Linfoma de Células T do Adulto/tratamento farmacológico , Leucemia-Linfoma de Células T do Adulto/patologia , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/uso terapêutico
13.
Food Chem ; 322: 126725, 2020 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-32283373

RESUMO

The antimutagenicity of an extract from the medicinal plant Asclepias subulata (ASE) against heterocyclic aromatic amines (HAAs) commonly found in cooked meat, as well as its stability to heat treatment (HT), was evaluated. HT (180 °C/3 min) had no effect on the content in ASE of the bioactive compound corotoxigenin-3-O-glucopyranoside; conversely, calotropin significantly decreased by 72%. ASE exerted antimutagenicity against PhIP, MelQ, and MelQx in TA98 and TA100 Salmonella strains, and this activity was not affected by heat, with the exception of MelQ (p < 0.05). Since HAAs can induce colorectal cancer, the thermal stability of ASE's antiproliferative effect against colorectal cancer cells was also evaluated. HT decreased (p < 0.05) the antiproliferative activity of ASE; however, the remaining activity was still strong with an IC50 of 16.8 ± 2.03 µg/mL. Therefore, ASE can be used as a food ingredient to reduce the carcinogenic potential of thermally induced HAAs.


Assuntos
Aminas/farmacologia , Antimutagênicos/farmacologia , Asclepias/química , Carcinógenos/farmacologia , Compostos Heterocíclicos/farmacologia , Carne/análise , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Aminas/análise , Aminas/química , Animais , Antimutagênicos/química , Carcinógenos/química , Proliferação de Células/efeitos dos fármacos , Culinária , Compostos Heterocíclicos/análise , Temperatura Alta , Humanos , Imidazóis
14.
Environ Entomol ; 49(2): 312-323, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32159219

RESUMO

The overwintering population of eastern North American monarch butterflies (Danaus plexippus) has declined significantly. Loss of milkweed (Asclepias sp.), the monarch's obligate host plant in the Midwest United States, is considered to be a major cause of the decline. Restoring breeding habitat is an actionable step towards population recovery. Monarch butterflies are highly vagile; therefore, the spatial arrangement of milkweed in the landscape influences movement patterns, habitat utilization, and reproductive output. Empirical studies of female movement patterns within and between habitat patches in representative agricultural landscapes support recommendations for habitat restoration. To track monarch movement at distances beyond human visual range, we employed very high frequency radio telemetry with handheld antennae to collect movement bearings on a biologically relevant time scale. Attachment of 220-300 mg transmitters did not significantly affect behavior and flight capability. Thirteen radio-tagged monarchs were released in a restored prairie, and locations were estimated every minute for up to 39 min by simultaneous triangulation from four operators. Monarchs that left the prairie were tracked and relocated at distances up to 250 m. Assuming straight flights between locations, the majority of steps within the prairie were below 50 m. Steps associated with exiting the prairie exceeded 50 m with high directionality. Because butterflies do not fly in straight lines between stationary points, we also illustrate how occurrence models can use location data obtained through radio telemetry to estimate movement within a prairie and over multiple land cover types.


Assuntos
Asclepias , Borboletas , Migração Animal , Animais , Ecossistema , Feminino , Dinâmica Populacional , Telemetria , Estados Unidos
15.
Molecules ; 25(1)2019 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-31877920

RESUMO

Asclepias linaria Cav. (Apocynaceae) is a shrubby plant endemic of Mexico which has been used in traditional medicine. However, the bioactive potential of this plant remains unexplored. In this study, the phenolic composition, antioxidant, and cytotoxic activities of A. linaria leaves were determined. In order to estimate the phenolic composition of the leaves, the total phenolic, flavonoid, and condensed tannins contents were determined. Furthermore, the antioxidant activity was measured by the scavenging activity of the 2,2-diphenyl-1-picrylhydrazyl (DPPH•) and 2,2'-azino-bis[3-ethylbenzothiazoline-6-sulphonic acid] (ABTS•+) radicals and the total antioxidant capacity. The phenolic compounds identified in the A. linaria leaves by ultra-performance liquid chromatography coupled to mass spectrometry (UPLC-MS) include phenolic acids, such as p-coumaric and ferulic acid, as well as flavonoids, such as rutin and quercetin. The leaves' extracts of A. linaria showed a high scavenging activity of DPPH• and ABTS•+ radicals (IC50 0.12 ± 0.001 and 0.51 ± 0.003 µg/mL, respectively), high total antioxidant capacity values (99.77 ± 4.32 mg of ascorbic acid equivalents/g of dry tissue), and had a cytotoxic effect against K562 and HL60 hematologic neoplasia cells lines, but no toxicity towards the normal mononuclear cell line was observed. These results highlight the potential of A. linaria and could be considered as a possible alternative source of anticancer compounds.


Assuntos
Antioxidantes/química , Asclepias/química , Proliferação de Células/efeitos dos fármacos , Fenóis/química , Antioxidantes/farmacologia , Ácido Ascórbico/química , Benzotiazóis/química , Compostos de Bifenilo/química , Cromatografia Líquida , Sequestradores de Radicais Livres/química , Humanos , Células K562 , Metanol/química , Fenóis/classificação , Fenóis/farmacologia , Picratos/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Quercetina/química , Ácidos Sulfônicos/química , Espectrometria de Massas em Tandem
16.
J Chem Ecol ; 45(11-12): 1004-1018, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31755020

RESUMO

Latex occurs in 10% of plant families, has evolved independently many times, and is the most effective defense of milkweeds against its chewing herbivores. Here we report on new experiments on the heritability and inducibility of latex in several milkweed species. In addition, we review what is known about the genetic and environmental determinants of latex exudation, hormonal regulation, evolution within and among species, and the role and frequency of latex in agricultural crops. We first evaluated genotype-by-environment interactions using ~20 full-sibling genetic families in each of seven Asclepias species treated as controls or attacked by monarch butterfly caterpillars. All species showed substantial genetic variation for latex exudation and six of seven species responded to monarch herbivory (two species increased latex, two species decreased, and two showed variation among genetic families). Exogenous application of jasmonic acid (JA) to three species induced a consistent increase in latex (including species which showed a decline following caterpillar herbivory). We next evaluated three hypotheses for what determines genetic variation for induced latex in A. syriaca: 1) a trade-off with constitutive investment, 2) differential endogenous JA induction, or 3) variation in responsiveness to JA. We only found support for the second hypothesis: genetic families with a stronger JA-burst showed the greatest latex exudation following herbivory. We conclude that most species exhibit a genetic and inducible basis for latex, although genetic variation in inducibility is not pervasive. Finally, we summarized studies across 22 species of Asclepias and found that neither a species' latitude nor its phylogenetic position predicted latex inducibility. Nonetheless, a negative association between constitutive and induced latex across species indicates a macroevolutionary trade-off in allocation to this defense. Our review indicates that jasmonic acid is a key regulator of latex exudation, laticifer morphology, and defensive metabolites within latex. Biotic and abiotic factors strongly modulate latex expression. A survey of latex in food crops revealed that latex and analogous exudates (gums, resins, mucilage) are more common than expected based on their distribution across all plants. In conclusion, despite its widespread occurrence, the literature on latex is currently dominated by rubber trees and milkweeds, and we look forward to the broadening of ecological, agricultural, and mechanistic research into other systems.


Assuntos
Asclepias/química , Látex/química , Látex/metabolismo , Animais , Borboletas/fisiologia , Produtos Agrícolas , Ciclopentanos/química , Ciclopentanos/metabolismo , Genótipo , Herbivoria , Interações Hospedeiro-Parasita , Larva/metabolismo , Masculino , Oxilipinas/química , Oxilipinas/metabolismo , Filogenia , Folhas de Planta/química , Transdução de Sinais
17.
Biosci. j. (Online) ; 35(4): 1160-1170, july/aug. 2019. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1048828

RESUMO

In the State of Rio Grande do Sul (RS), Southern Brazil, glyphosate has not been capable of controlling wild poinsettia (Euphorbia heterophylla L.) in soybean fields, thus, suggesting resistanceto this herbicide. Therefore, this study aimed at evaluating sensitivity of wild poinsettia biotypes to glyphosate, identifying the occurrence of resistance of wild poinsettia to the herbicide in RS state and determining the resistance factor of wild poinsettia biotypes under suspicion, besides assessing other herbicides as alternative controls. Two greenhouse experiments, which lasted two years, were conducted by a completely randomized design with four replications. Six biotypes (Factor A) and eight doses of glyphosate (Factor B) were used for getting the dose-response curve. Regarding the alternative control, post-emergence herbicides for soybean and corn crops were tested. Control and dry mass of the shoot were analyzed as variables. Resistance factors of resistant biotypes 20.2 and 21.1 were 4.83 and 5.29, respectively, by comparison with the susceptible biotype (11.4). In RS state, there has currently been high selection pressure due to the intensive use of glyphosate against wild poinsettia plants, as the result of the occurrence of biotypes 20.2 and 21.1 which have low levels of resistance to glyphosate and very little control by ALS-inhibiting herbicides. Therefore, an alternative to mitigate the problem is the use of herbicides with different mechanisms of action.


As falhas de controle de leiteira (Euphorbia heterophylla L.) após aplicação de glyphosate em lavouras de soja do Rio Grande do Sul (RS) são frequentes, sugerindo a resistência ao herbicida. Diante disso, os objetivos foram avaliar a sensibilidade de biótipos de leiteira ao herbicida glyphosate, identificar a ocorrência da resistência, determinar o fator de resistência de biótipos de leiteira com suspeita de resistência e avaliar herbicidas alternativos para o seu controle. Foram conduzidos dois experimentos em casa de vegetação, em delineamento inteiramente casualizado com quatro repetições ambos realizados em dois anos. No experimento de curva dose-resposta foram utilizados cinco biótipos (fator A) e oito doses do herbicidaglyphosate (fator B). Para o controle alternativo, foram testados herbicidas em pós emergência das culturas de soja e milho. As variáveis analisadas foram controle e massa seca da parte aérea. O fator de resistência dos biótipos resistentes (20.2 e 21.1) foram 4,83 e 5,29 comparativamente ao biótipo suscetível (11.4) respectivamente. Existe elevada pressão de seleção pelo glyphosate em plantas de leiteira no RS, observando-se a ocorrência de biótipos 20.2 e 21.1 com resistência de nível baixo ao herbicida e com controle reduzido pelos herbicidas inibidores de ALS. Portanto, uma alternativa para atenuar o problema é o uso de herbicidas com diferentes mecanismos de ação


Assuntos
Euphorbia , Plantas Daninhas , Herbicidas , Asclepias
18.
J Agric Food Chem ; 67(26): 7530-7537, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31184878

RESUMO

We developed and applied a fully automated portable gas chromatography (GC) device for rapid and in situ analysis of plant volatile organic compounds (VOCs) to examine plant health status. A total of 42 emission samples were collected over a period of 5 days from 10 milkweed ( Asclepias syriaca) plants, half of which were infested by aphids. Thirty-five VOC peaks were separated and detected in 8 min. An algorithm based on machine learning, principal component analysis, and linear discriminant analysis was developed to evaluate the GC results. We found that our device and algorithm are able to distinguish between the undamaged control and the aphid-infested milkweeds with an overall accuracy of 90-100% within 48-72 h of the attack. Such rapid in situ detection of insect attack attests to the great potential of VOC monitoring in plant health management.


Assuntos
Asclepias/química , Cromatografia Gasosa/métodos , Doenças das Plantas/parasitologia , Compostos Orgânicos Voláteis/química , Animais , Afídeos/fisiologia , Asclepias/parasitologia
19.
J Cell Biochem ; 120(8): 12843-12858, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30861186

RESUMO

Hemostasis is a tightly regulated process which maintains a fluid state of blood within the vasculature and provides thrombotic response upon tissue injury. Various scientific studies have implicated the role of plant latex proteases in hemostasis using in vitro experiments. However, in vivo models substantiate their role in hemostasis. Therefore, in the present study, the effect of plant latex thrombin-like proteases (PTLPs) on hemostasis was investigated systematically using mice tail bleeding as a preclinical model. In this direction, latex protease fractions (LPFs), which showed potent thrombin-like activity, were selected as they act directly on fibrinogen to form clot and quickly stop bleeding. Thrombin-like activity was exhibited mainly by cysteine proteases. Calotropis gigantea, Carica papaya, Jatropha curcas, Oxystelma esculentum, Tabernaemontana divaricata, and Vallaris solanacea LPFs and papain from C. papaya latex significantly reduced bleeding on a topical application in normal and aspirin administered mice. In addition, PTLPs accelerated the clotting of factor VIII deficient plasma, while, papain brought back the clotting time to normal levels acting like a bypassing agent. Further, papain failed to show activity in the presence of specific cysteine protease inhibitor iodoacetic acid; confirming protease role in all the activities exhibited. At the tested dose, PTLPs except C. gigantea did not show toxicity. Further, structural and sequence comparison between PTLPs and human thrombin revealed structural and sequence dissimilarity indicating their unique nature. The findings of the present study may open up a new avenue for considering PTLPs including papain in the treatment of bleeding wounds.


Assuntos
Aspirina/efeitos adversos , Cisteína Endopeptidases/administração & dosagem , Fator VIII/metabolismo , Hemorragia/tratamento farmacológico , Látex/química , Animais , Asclepias/química , Calotropis/química , Carica , Cisteína Endopeptidases/farmacologia , Modelos Animais de Doenças , Hemorragia/induzido quimicamente , Hemorragia/metabolismo , Homeostase , Humanos , Jatropha/química , Camundongos , Papaína/administração & dosagem , Papaína/farmacologia , Proteínas de Plantas/administração & dosagem , Proteínas de Plantas/farmacologia , Tabernaemontana/química
20.
J Chem Ecol ; 45(1): 50-60, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30523520

RESUMO

Cardenolides are classically studied steroidal defenses in chemical ecology and plant-herbivore coevolution. Although milkweed plants (Asclepias spp.) produce up to 200 structurally different cardenolides, all compounds seemingly share the same well-characterized mode of action, inhibition of the ubiquitous Na+/K+ ATPase in animal cells. Over their evolutionary radiation, milkweeds show a quantitative decline of cardenolide production and diversity. This reduction is contrary to coevolutionary predictions and could represent a cost-saving strategy, i.e. production of fewer but more toxic cardenolides. Here we test this hypothesis by tandem cardenolide quantification using HPLC (UV absorption of the unsaturated lactone) and a pharmacological assay (in vitro inhibition of a sensitive Na+/K+ ATPase) in a comparative study of 16 species of Asclepias. We contrast cardenolide concentrations in leaf tissue to the subset of cardenolides present in exuding latex. Results from the two quantification methods were strongly correlated, but the enzymatic assay revealed that milkweed cardenolide mixtures often cause stronger inhibition than equal amounts of a non-milkweed reference cardenolide, ouabain. Cardenolide concentrations in latex and leaves were positively correlated across species, yet latex caused 27% stronger enzyme inhibition than equimolar amounts of leaf cardenolides. Using a novel multiple regression approach, we found three highly potent cardenolides (identified as calactin, calotropin, and voruscharin) to be primarily responsible for the increased pharmacological activity of milkweed cardenolide mixtures. However, contrary to an expected trade-off between concentration and toxicity, later-diverging milkweeds had the lowest amounts of these potent cardenolides, perhaps indicating an evolutionary response to milkweed's diverse community of specialist cardenolide-sequestering insect herbivores.


Assuntos
Asclepias/fisiologia , Borboletas/fisiologia , Cardenolídeos/metabolismo , Herbivoria , Látex/metabolismo , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , Animais , Asclepias/química , Asclepias/genética , Borboletas/efeitos dos fármacos , Borboletas/enzimologia , Cardenolídeos/análise , Cardenolídeos/toxicidade , Inibidores Enzimáticos/análise , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/toxicidade , Látex/química , Látex/toxicidade , Filogenia , Folhas de Planta/química , Folhas de Planta/genética , Folhas de Planta/fisiologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA