Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Talanta ; 272: 125704, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38359716

RESUMO

Herein, we successfully synthesized two-dimensional iron-doped carbon-based nanosheets (Fe-N800 CS) with catalase-like activity through doping Fe into Zn MOF and introducing graphitic C3N4 (g-C3N4). The interaction of the Fe-N800 CS with hydrogen peroxide could generated abundant reactive oxygen species (ROS) and further oxidize o-Phenylenediamine (OPD) to 2,3-diaminophenazine (DAP) which has constant fluorescence at 560 nm. Ascorbic acid (AA) could be generated via the hydrolysis reaction between alkaline phosphatase (ALP) and ascorbic acid 2-phosphate (AAP). AA can be oxidized to dehy-droascorbic acid (DHA) by ROS, and then combined with OPD to generate 3-(1,2-dihydroxyethyl)furo[3,4b]-quinoxaline (QXD) with fluorescence at 440 nm, which could increase as the concentration of AA enhanced. DHA could also be generated through oxidation of AA by ascorbate oxidase (AAO). Thus, by monitoring the fluorescence ratio (I560/I440), a ratiometric fluorescence biosensing platform for ALP and AAO was established with the linear ranges in 0.2-10 U/L and 1-60 U/L, respectively. The limit of detection for ALP and AAO were 0.12 U/L and 0.59 U/L. Furthermore, the biosensing platform was successfully applied for the detection of ALP and AAO activity in human serum samples. This work provides a potential tool for future biomedical diagnostics.


Assuntos
Fosfatase Alcalina , Carbono , Humanos , Ascorbato Oxidase , Catalase , Ferro , Espécies Reativas de Oxigênio , Corantes , Limite de Detecção
2.
Planta ; 259(2): 38, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38227024

RESUMO

MAIN CONCLUSION: Silencing of an ascorbate oxidase (AO) gene in N. benthamiana enhanced disease severity from cucumber mosaic virus (CMV), showing higher accumulation and expansion of the spreading area of CMV. A Nicotiana benthamiana ascorbate oxidase (NbAO) gene was found to be induced upon cucumber mosaic virus (CMV) infection. Virus-induced gene silencing (VIGS) was employed to elucidate the function of AO in N. benthamiana. The tobacco rattle virus (TRV)-mediated VIGS resulted in an efficient silencing of the NbAO gene, i.e., 97.5% and 78.8% in relative quantification as compared to the control groups (TRV::eGFP- and the mock-inoculated plants), respectively. In addition, AO enzymatic activity decreased in the TRV::NtAO-silenced plants as compared to control. TRV::NtAO-mediated NbAO silencing induced a greater reduction in plant height by 15.2% upon CMV infection. CMV titer at 3 dpi was increased in the systemic leaves of NbAO-silenced plants (a 35-fold change difference as compared to the TRV::eGFP-treated group). Interestingly, CMV and TRV titers vary in different parts of systemically infected N. benthamiana leaves. In TRV::eGFP-treated plants, CMV accumulated only at the top half of the leaf, whereas the bottom half of the leaf was "occupied" by TRV. In contrast, in the NbAO-silenced plants, CMV accumulated in both the top and the bottom half of the leaf, suggesting that the silencing of the NbAO gene resulted in the expansion of the spreading area of CMV. Our data suggest that the AO gene might function as a resistant factor against CMV infection in N. benthamiana.


Assuntos
Cucumovirus , Infecções por Citomegalovirus , Nicotiana/genética , Ascorbato Oxidase , Folhas de Planta/genética
3.
Biosens Bioelectron ; 220: 114893, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36423391

RESUMO

Despite the extensive investigation of the nanozymes exhibit their favorable performance compared to natural enzymes, nevertheless, the highly specific nanozyme still needs to be developed so that it can meet the requirements of exploring the mechanism as well as administration of related diseases and selective monitoring in biological system. In this study, self-assembled glutathione-Cu/Cu2O nanoparticles (GSH-Cu/Cu2O NPs) that exhibits specific ascorbic acid (AA) oxidase-like catalytic activity were constructed for AA-activated and H2O2-reinforced cancer cell proliferation inhibition and selective neurochemical monitoring. Cu/Cu2O NPs demonstrates effective AA oxidase-like activity and no common characteristics of other redox mimic enzymes often present in nanozyme. In particular, we found that the AA oxidase-like activity of GSH-Cu/Cu2O nanozyme was significantly improved by about 40% by improving the activation ability toward oxygen. The synthesized nanozyme can induce the generation of active oxygen by accelerating the oxidation of AA, which effectively suppresses the proliferation of cancer cells. We constructed an online electrochemical system (OECS) though loading nanozyme with enhanced ascorbate oxidase activity into a microreactor and setting it in the upstream of the detector. This GSH-Cu/Cu2O NPs-integrated microreactor can completely eliminate AA interference of the physical level toward 3,4-dihydroxy phenylacetic acid (DOPAC) electrochemical measurement, and the nanozyme-based OECS is able to continuously capture DOPAC alteration in rat brain acidosis model. Our findings may inspire rational design of nanozymes with high specificity as well as nanozyme-based selectivity solution for in vivo detection and show promising opportunities for their involvement in neurochemistry investigation.


Assuntos
Técnicas Biossensoriais , Neoplasias , Animais , Ratos , Ascorbato Oxidase , Ácido 3,4-Di-Hidroxifenilacético , Peróxido de Hidrogênio , Proliferação de Células , Ácido Ascórbico , Glutationa
4.
Mikrochim Acta ; 188(5): 166, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33876310

RESUMO

A sensitive photoelectrochemical (PEC) sensor based on hexagonal carbon nitride tubes (HCNT) as photoactive material was prepared for the detection of human epidermal growth factor receptor 2 (HER2). Magnetic Fe3O4 nanospheres (MNs) modified with anti-HER2 antibodies were employed for highly efficient capture of HER2 from serum sample, and Co3O4 nanoparticles (Co3O4 NPs) modified with ascorbic acid oxidase (AAO) as well as HER2 aptamer were used for signal amplification. When the aptamer-Co3O4-AAO probe was captured onto the electrode surface through the specific binding of the aptamer with HER2, the photocurrent intensity decreased. This was because Co3O4 NPs competed with HCNT for consumption of the excitation energy. As a consequence AAO catalyzed the oxidation of the electron donor (AA), and the aptamer-Co3O4-AAO probe increased the steric hindrance at the electrode surface, leading to significant photocurrent intensity decrease, thus realizing multiple signal amplification. Based on this signal amplification strategy, at 0 V (vs Ag/AgCl), the PEC sensor shows a wide linear response ranging from 1 pg mL-1 to 1 ng mL-1 with a low detection limit of 0.026 pg mL-1 for HER2. Importantly, the prepared PEC sensor was applied for detection of HER2 in human serum samples with recoveries between 98.8 and 101%. Sensitive photoelectrochemical sensor based on Co3O4 nanoparticles modified with ascorbic acid oxidase for signal amplification is reported.


Assuntos
Ascorbato Oxidase/química , Cobalto/química , Técnicas Eletroquímicas/métodos , Óxidos/química , Receptor ErbB-2/sangue , Anticorpos Imobilizados/imunologia , Aptâmeros de Nucleotídeos/química , Ácido Ascórbico/química , Técnicas Biossensoriais/métodos , Enzimas Imobilizadas/química , Humanos , Separação Imunomagnética , Limite de Detecção , Nanopartículas de Magnetita/química , Nanocompostos/química , Processos Fotoquímicos , Receptor ErbB-2/química , Receptor ErbB-2/imunologia , Reprodutibilidade dos Testes
5.
ACS Appl Mater Interfaces ; 12(38): 42521-42530, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32844641

RESUMO

Nanozymes are artificial enzymes, which can substitute traditional biological enzymes for multifield applications. However, to date, it remains challenging to search novel mimic enzymes or multienzyme mimics. Herein, a facile and green method for preparing monodisperse, homogeneous copper nanoclusters (Cu NCs) with smaller size was developed, which used cysteamine as a template and hydrazine hydrate as a reductant to reduce Cu2+. The as-prepared Cu NCs exhibited excellent tetraenzyme-like activities, including peroxidase (POD)-, catalase (CAT)-, superoxide dismutase (SOD)-, and ascorbic acid oxidase (AAO)-mimic activities. The mechanisms, kinetics, and catalytic performances of Cu NCs were systematically studied. Moreover, based on the POD-like activity of Cu NCs, sensitive and simple colorimetric sensing glutathione (GSH) was explored, with the low limit of detection of 0.89 µM GSH (S/N = 3). Additionally, a novel fluorimetric ascorbic acid (AA) sensor was developed with the linear range of 0.5-30 µM and limit of detection (LOD) of 0.144 µM, on the basis of the principle that AA is oxidized to dehydroascorbic acid (DHAA) specifically catalyzed by the AAO-like activity of Cu NCs, while DHAA can further react with o-phenylenediamine (OPDA) to generate a highly fluorescent quinoxaline (DFQ) derivative. The as-proposed colorimetric GSH sensor and the fluorimetric AA sensor were capable of detecting GSH and AA, respectively, in real samples accurately and reproducibly. Thus, the Cu NCs-based multienzyme mimic is a promising candidate for biocatalysis and biosensing.


Assuntos
Ácido Ascórbico/análise , Colorimetria , Cobre/química , Fluorometria , Glutationa/análise , Nanopartículas Metálicas/química , Ascorbato Oxidase/química , Ascorbato Oxidase/metabolismo , Ácido Ascórbico/metabolismo , Catalase/química , Catalase/metabolismo , Cobre/metabolismo , Glutationa/metabolismo , Tamanho da Partícula , Peroxidase/química , Peroxidase/metabolismo , Superóxido Dismutase/química , Superóxido Dismutase/metabolismo , Propriedades de Superfície
6.
J Tradit Chin Med ; 40(3): 473-483, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32506863

RESUMO

OBJECTIVE: To explore the total phenolic and flavonoid content, enzymatic, non-enzymatic antioxidant properties, anti-inflammation and anticancer activities of hexane, ethyl acetate and methanol extracts of Floscopa scandens (F. scandens). METHODS: Non-enzymatic antioxidant activity was examined by 2, 2-diphenyl-1-picrylhydrazyl assay, nitric oxide scavenging assay, hydroxyl radical scavenging assay, reducing power assay, hydrogen peroxide scavenging assay, superoxide scavenging assay and metal chelating assay. Enzymatic antioxidant ability was screened for the antioxidant enzymes such as ascorbate oxidase, peroxidase, catalase and polyphenol oxidase. The anti-inflammatory property was proved with the inhibition of protein denaturation and protease inhibitory assays. In vitro anticancer activity was assessed by cell viability assay. RESULTS: Methanol extract contained high amount of phenols (198.41 mg catechol equivalent/gram extract) and flavonoids (101.70 mg quercetin equivalent/gram extract) showed higher activity than hexane and ethyl acetate extracts in all experiments. Fresh plant showed considerable enzymatic antioxidant activity. CONCLUSION: The results revealed that the methanol extracts of F. scandens could be used as a potential source of antioxidant, anti-inflammatory and anticancer bioactive compounds.


Assuntos
Anti-Inflamatórios/química , Antineoplásicos/química , Antioxidantes/química , Commelinaceae/química , Inibidores Enzimáticos/química , Extratos Vegetais/química , Anti-Inflamatórios/farmacologia , Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Ascorbato Oxidase/antagonistas & inibidores , Ascorbato Oxidase/química , Catalase/antagonistas & inibidores , Catalase/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Flavonoides/química , Flavonoides/farmacologia , Humanos , Peroxidase/antagonistas & inibidores , Peroxidase/química , Fenóis/química , Fenóis/farmacologia , Extratos Vegetais/farmacologia , Folhas de Planta/química , Quercetina/química , Quercetina/farmacologia
7.
Free Radic Res ; 53(7): 758-767, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31170853

RESUMO

Chemotherapy is the most effective strategy for the treatment of metastatic breast cancer. However, P-glycoprotein (P-gp)-mediated multidrug resistance severely limits the efficacy of chemotherapy and is a major cause of the failure during chemotherapeutic treatment. In this study, we investigated the anticancer effects of combining chemotherapeutic drugs with ascorbate (AA) in human breast cancer cells. We found that combined administration of AA can improve the sensitivity of both MCF-7 and doxorubicin (Dox)-resistant MCF-7/Adr cells to Dox in vitro and in vivo by a reactive oxygen species (ROS)-dependent mechanism. Further studies proved that AA can promote the accumulation of Dox in MCF-7/Adr cells when combined with doxorubicin. AA had no effect on the expression of P-gp at the mRNA and protein levels, but could decrease its activity as demonstrated by an obvious inhibition of efflux of P-gp substrate Rh 123. AA reduced ATP levels in both MCF-7 and MCF-7/Adr cells, and pretreating AA-stimulating cells with catalase completely rescued ATP levels. With ATP reduction, we observed an increased cellular calcium and the appearance of vacuoles and micropores on the cell surface, indicating the increased cell membrane permeability in AA-treated MCF-7/Adr cells. The above results suggest that AA could promote the cellular accumulation of doxorubicin by inducing ROS-dependent ATP depletion. Clinically, a combination of AA with doxorubicin would be a novel strategy for reversal of the multidrug resistance in human breast cancer cells during chemotherapy.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Ascorbato Oxidase/uso terapêutico , Doxorrubicina/uso terapêutico , Animais , Ascorbato Oxidase/farmacologia , Doxorrubicina/farmacologia , Resistência a Múltiplos Medicamentos , Humanos , Camundongos , Camundongos Nus , Espécies Reativas de Oxigênio , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Free Radic Biol Med ; 133: 75-87, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30268889

RESUMO

This review discusses the chemical mechanisms of ascorbate-dependent reduction and solubilization of ferritin's ferric iron core and subsequent release of ferrous iron. The process is accelerated by low concentrations of Fe(II) that increase ferritin's intrinsic ascorbate oxidase activity, hence increasing the rate of ascorbate radical formation. These increased rates of ascorbate oxidation provide reducing equivalents (electrons) to ferritin's core and speed the core reduction rates with subsequent solubilization and release of Fe(II). Ascorbate-dependent solubilization of ferritin's iron core has consequences relating to the interpretation of 59Fe uptake sourced from 59Fe-lebelled holotransferrin into ferritin. Ascorbate-dependent reduction of the ferritin core iron solubility increases the size of ferritin's iron exchangeable pool and hence the rate and amount of exchange uptake of 59Fe into ferritin, whilst simultaneously increasing net iron release rate from ferritin. This may rationalize the inconsistency that ascorbate apparently stabilizes 59Fe ferritin and retards lysosomal ferritinolysis and whole cell 59Fe release, whilst paradoxically increasing the rate of net iron release from ferritin. This capacity of ascorbate and iron to synergise ferritin iron release has pathological significance, as it lowers the concentration at which ascorbate activates ferritin's iron release to within the physiological range (50-250 µM). These effects have relevance to inflammatory pathology and to the pro-oxidant effects of ascorbate in cancer therapy and cell death by ferroptosis.


Assuntos
Ácido Ascórbico/metabolismo , Ferritinas/metabolismo , Inflamação/genética , Ferro/metabolismo , Ascorbato Oxidase/genética , Ascorbato Oxidase/metabolismo , Ácido Ascórbico/genética , Ferritinas/genética , Humanos , Inflamação/metabolismo , Inflamação/patologia , Radioisótopos de Ferro/metabolismo , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Transferrina/genética , Transferrina/metabolismo
9.
Biochim Biophys Acta Gen Subj ; 1862(8): 1826-1834, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29684424

RESUMO

Multicopper oxidases (MCOs) are a specific group of enzymes that contain multiple copper centers through which different substrates are oxidized. Main members of MCO family include ferroxidases, ascorbate oxidases, and laccases. MCO type of ferroxidases is key to iron transport across the plasma membrane. In Drosophila, there are four potential multicopper oxidases, MCO1-4. No convincing evidence has been presented so far to indicate any of these, or even any insect multicopper oxidase, to be a ferroxidase. Here we show Drosophila MCO3 (dMCO3) is highly likely a bona fide ferroxidase. In vitro activity assay with insect-cell-expressed dMCO3 demonstrated it has potent ferroxidase activity. Meanwhile, the ascorbate oxidase and laccase activities of dMCO3 are much less significant. dMCO3 expression in vivo, albeit at low levels, appears mostly extracellular, reminiscent of mammalian ceruloplasmin in the serum. A null dMCO3 mutant, generated by CRISPR/Cas9 technology, showed disrupted iron homeostasis, evidenced by increased iron level and reduced metal importer Mvl expression. Notably, dMCO3-null flies phenotypically are largely normal at normal or iron stressed-conditions. We speculate the likely existence of a similar iron efflux apparatus as the mammalian ferroportin/ferroxidase in Drosophila. However, its importance to fly iron homeostasis is greatly minimized, which is instead dominated by another iron efflux avenue mediated by the ZIP13-ferritin axis along the ER/Golgi secretion pathway.


Assuntos
Ascorbato Oxidase/metabolismo , Ceruloplasmina/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Homeostase , Ferro/fisiologia , Lacase/metabolismo , Oxirredutases/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/crescimento & desenvolvimento , Feminino , Masculino , Oxirredução , Oxirredutases/genética
10.
Colloids Surf B Biointerfaces ; 163: 379-384, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29353215

RESUMO

Herein we reported Prussian blue nanoparticles (PBNPs) possess ascorbic acid oxidase (AAO)- and ascorbic acid peroxidase (APOD)-like activities, which suppressed the formation of harmful H2O2 and finally inhibited the anti-cancer efficiency of ascorbic acid (AA). This newly revealed correlation between iron and AA could provide new insight for the studies of nanozymes and free radical biology.


Assuntos
Ascorbato Oxidase/metabolismo , Ascorbato Peroxidases/metabolismo , Ácido Ascórbico/química , Ferrocianetos/química , Ferro/química , Nanopartículas/química , Catálise , Humanos , Células MCF-7 , Nanopartículas/ultraestrutura , Oxirredução
11.
Plant Cell Environ ; 41(5): 1083-1097, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28369975

RESUMO

The redox state of the apoplast is largely determined by ascorbate oxidase (AO) activity. The influence of AO activity on leaf acclimation to changing irradiance was explored in wild-type (WT) and transgenic tobacco (Nicotiana tobaccum) lines containing either high [pumpkin AO (PAO)] or low [tobacco AO (TAO)] AO activity at low [low light (LL); 250 µmol m-2  s-1 ] and high [high light (HL); 1600 µmol m-2  s-1 ] irradiance and following the transition from HL to LL. AO activities changed over the photoperiod, particularly in the PAO plants. AO activity had little effect on leaf ascorbate, which was significantly higher under HL than under LL. Apoplastic ascorbate/dehydroascorbate (DHA) ratios and threonate levels were modified by AO activity. Despite decreased levels of transcripts encoding ascorbate synthesis enzymes, leaf ascorbate increased over the first photoperiod following the transition from HL to LL, to much higher levels than LL-grown plants. Photosynthesis rates were significantly higher in the TAO leaves than in WT or PAO plants grown under HL but not under LL. Sub-sets of amino acids and fatty acids were lower in TAO and WT leaves than in the PAO plants under HL, and following the transition to LL. Light acclimation processes are therefore influenced by the apoplastic as well as chloroplastic redox state.


Assuntos
Ascorbato Oxidase/metabolismo , Ácido Ascórbico/metabolismo , Nicotiana/fisiologia , Aclimatação , Ascorbato Oxidase/genética , Cloroplastos/metabolismo , Luz , Oxirredução , Fotossíntese , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nicotiana/enzimologia , Nicotiana/genética , Nicotiana/efeitos da radiação
12.
Plant Physiol ; 175(1): 259-271, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28743764

RESUMO

The mechanisms underpinning plant perception of phloem-feeding insects, particularly aphids, remain poorly characterized. Therefore, the role of apoplastic redox state in controlling aphid infestation was explored using transgenic tobacco (Nicotiana tabacum) plants that have either high (PAO) or low (TAO) ascorbate oxidase (AO) activities relative to the wild type. Only a small number of leaf transcripts and metabolites were changed in response to genotype, and cell wall composition was largely unaffected. Aphid fecundity was decreased significantly in TAO plants compared with other lines. Leaf sugar levels were increased and maximum extractable AO activities were decreased in response to aphids in all genotypes. Transcripts encoding the Respiratory Burst Oxidase Homolog F, signaling components involved in ethylene and other hormone-mediated pathways, photosynthetic electron transport components, sugar, amino acid, and cell wall metabolism, were increased significantly in the TAO plants in response to aphid perception relative to other lines. The levels of galactosylated xyloglucan were decreased significantly in response to aphid feeding in all the lines, the effect being the least in the TAO plants. Similarly, all lines exhibited increases in tightly bound (1→4)-ß-galactan. Taken together, these findings identify AO-dependent mechanisms that limit aphid infestation.


Assuntos
Afídeos/fisiologia , Ascorbato Oxidase/metabolismo , Herbivoria , Nicotiana/enzimologia , Folhas de Planta/enzimologia , Aminoácidos/metabolismo , Animais , Ascorbato Oxidase/genética , Metabolismo dos Carboidratos , Parede Celular/metabolismo , Cucurbita/genética , Fertilidade , Oxirredução , Plantas Geneticamente Modificadas/enzimologia , Nicotiana/genética , Transcriptoma
13.
Int J Mol Sci ; 18(7)2017 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-28644407

RESUMO

Ascorbate oxidase (AO) plays an important role in cell growth through the modulation of reduction/oxidation (redox) control of the apoplast. Here, a cotton (Gossypium hirsutum) apoplastic ascorbate oxidase gene (GhAO1) was obtained from fast elongating fiber tissues. GhAO1 belongs to the multicopper oxidase (MCO) family and includes a signal peptide and several transmembrane regions. Analyses of quantitative real-time polymerase chain reaction (QRT-PCR) and enzyme activity showed that GhAO1 was expressed abundantly in 15-day post-anthesis (dpa) wild-type (WT) fibers in comparison with fuzzless-lintless (fl) mutant ovules. Subcellular distribution analysis in onion cells demonstrated that GhAO1 is localized in the cell wall. In transgenic tobacco bright yellow-2 (BY-2) cells with ectopic overexpression of GhAO1, the enhancement of cell growth with 1.52-fold increase in length versus controls was indicated, as well as the enrichment of both total ascorbate in whole-cells and dehydroascorbate acid (DHA) in apoplasts. In addition, promoted activities of AO and monodehydroascorbate reductase (MDAR) in apoplasts and dehydroascorbate reductase (DHAR) in whole-cells were displayed in transgenic tobacco BY-2 cells. Accumulation of H2O2, and influenced expressions of Ca2+ channel genes with the activation of NtMPK9 and NtCPK5 and the suppression of NtTPC1B were also demonstrated in transgenic tobacco BY-2 cells. Finally, significant induced expression of the tobacco NtAO gene in WT BY-2 cells under indole-3-acetic acid (IAA) treatment appeared; however, the sensitivity of the NtAO gene expression to IAA disappeared in transgenic BY-2 cells, revealing that the regulated expression of the AO gene is under the control of IAA. Taken together, these results provide evidence that GhAO1 plays an important role in fiber cell elongation and may promote cell growth by generating the oxidation of apoplasts, via the auxin-mediated signaling pathway.


Assuntos
Ascorbato Oxidase/genética , Proliferação de Células , Gossypium/enzimologia , Nicotiana/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Ascorbato Oxidase/metabolismo , Linhagem Celular , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Gossypium/genética , Gossypium/metabolismo , Peróxido de Hidrogênio/metabolismo , Ácidos Indolacéticos/metabolismo , Oxirredução , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/citologia , Plantas Geneticamente Modificadas/metabolismo , Nicotiana/citologia , Nicotiana/metabolismo
14.
PLoS One ; 11(9): e0161695, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27597995

RESUMO

Apoplastic ascorbate oxidase (AO) plays significant roles in plant cell growth. However, the mechanism of underlying the transcriptional regulation of AO in Gossypium hirsutum remains unclear. Here, we obtained a 1,920-bp promoter sequence from the Gossypium hirsutum ascorbate oxidase (GhAO1) gene, and this GhAO1 promoter included a number of known cis-elements. Promoter activity analysis in overexpressing pGhAO1::GFP-GUS tobacco (Nicotiana benthamiana) showed that the GhAO1 promoter exhibited high activity, driving strong reporter gene expression in tobacco trichomes, leaves and roots. Promoter 5'-deletion analysis demonstrated that truncated GhAO1 promoters with serial 5'-end deletions had different GUS activities. A 360-bp fragment was sufficient to activate GUS expression. The P-1040 region had less GUS activity than the P-720 region, suggesting that the 320-bp region from nucleotide -720 to -1040 might include a cis-element acting as a silencer. Interestingly, an auxin-responsive cis-acting element (TGA-element) was uncovered in the promoter. To analyze the function of the TGA-element, tobacco leaves transformed with promoters with different 5' truncations were treated with indole-3-acetic acid (IAA). Tobacco leaves transformed with the promoter regions containing the TGA-element showed significantly increased GUS activity after IAA treatment, implying that the fragment spanning nucleotides -1760 to -1600 (which includes the TGA-element) might be a key component for IAA responsiveness. Analyses of the AO promoter region and AO expression pattern in Gossypium arboreum (Ga, diploid cotton with an AA genome), Gossypium raimondii (Gr, diploid cotton with a DD genome) and Gossypium hirsutum (Gh, tetraploid cotton with an AADD genome) indicated that AO promoter activation and AO transcription were detected together only in D genome/sub-genome (Gr and Gh) cotton. Taken together, these results suggest that the 1,920-bp GhAO1 promoter is a functional sequence with a potential effect on fiber cell development, mediated by TGA-element containing sequences, via the auxin-signaling pathway.


Assuntos
Ascorbato Oxidase/genética , Gossypium/genética , Ácidos Indolacéticos/metabolismo , Regiões Promotoras Genéticas/genética , Ascorbato Oxidase/biossíntese , Ascorbato Oxidase/química , Ascorbato Oxidase/isolamento & purificação , Clonagem Molecular , Regulação Enzimológica da Expressão Gênica , Gossypium/enzimologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Transdução de Sinais/genética , Nicotiana/enzimologia , Nicotiana/genética
16.
Plant Physiol ; 169(1): 873-89, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26220952

RESUMO

A novel protein, OZONE-RESPONSIVE APOPLASTIC PROTEIN1 (OsORAP1), was characterized, which was previously suggested as a candidate gene underlying OzT9, a quantitative trait locus for ozone stress tolerance in rice (Oryza sativa). The sequence of OsORAP1 was similar to that of ASCORBATE OXIDASE (AO) proteins. It was localized in the apoplast, as shown by transient expression of an OsORAP1/green fluorescent protein fusion construct in Nicotiana benthamiana leaf epidermal and mesophyll cells, but did not possess AO activity, as shown by heterologous expression of OsORAP1 in Arabidopsis (Arabidopsis thaliana) mutants with reduced background AO activity. A knockout rice line of OsORAP1 showed enhanced tolerance to ozone stress (120 nL L(-1) average daytime concentration, 20 d), as demonstrated by less formation of leaf visible symptoms (i.e. cell death), less lipid peroxidation, and lower NADPH oxidase activity, indicating reduced active production of reactive oxygen species. In contrast, the effect of ozone on chlorophyll content was not significantly different among the lines. These observations suggested that OsORAP1 specifically induced cell death in ozone stress. Significantly enhanced expression of jasmonic acid-responsive genes in the knockout line implied the involvement of the jasmonic acid pathway in symptom mitigation. Sequence analysis revealed extensive polymorphisms in the promoter region of OsORAP1 between the ozone-susceptible cv Nipponbare and the ozone-tolerant cv Kasalath, the OzT9 donor variety, which could be responsible for the differential regulation of OsORAP1 reported earlier. These pieces of evidence suggested that OsORAP1 enhanced cell death in ozone stress, and its expression levels could explain the effect of a previously reported quantitative trait locus.


Assuntos
Genes de Plantas , Oryza/citologia , Oryza/genética , Ozônio/farmacologia , Proteínas de Plantas/metabolismo , Ascorbato Oxidase/metabolismo , Sequência de Bases , Morte Celular/efeitos dos fármacos , Biologia Computacional , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Técnicas de Inativação de Genes , Variação Genética , Modelos Biológicos , Dados de Sequência Molecular , Oryza/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Reguladores de Crescimento de Plantas/metabolismo , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/fisiologia , Transporte Proteico/efeitos dos fármacos , Locos de Características Quantitativas/genética , Transdução de Sinais/efeitos dos fármacos , Estresse Fisiológico/genética
17.
Insect Biochem Mol Biol ; 59: 58-71, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25701385

RESUMO

Members of the multicopper oxidase (MCO) family of enzymes can be classified by their substrate specificity; for example, ferroxidases oxidize ferrous iron, ascorbate oxidases oxidize ascorbate, and laccases oxidize aromatic substrates such as diphenols. Our previous work on an insect multicopper oxidase, MCO1, suggested that it may function as a ferroxidase. This hypothesis was based on three lines of evidence: RNAi-mediated knock down of Drosophila melanogaster MCO1 (DmMCO1) affects iron homeostasis, DmMCO1 has ferroxidase activity, and DmMCO1 has predicted iron binding residues. In our current study, we expanded our focus to include MCO1 from Anopheles gambiae, Tribolium castaneum, and Manduca sexta. We verified that MCO1 orthologs have similar expression profiles, and that the MCO1 protein is located on the basal surface of cells where it is positioned to oxidize substrates in the hemolymph. In addition, we determined that RNAi-mediated knock down of MCO1 in A. gambiae affects iron homeostasis. To further characterize the enzymatic activity of MCO1 orthologs, we purified recombinant MCO1 from all four insect species and performed kinetic analyses using ferrous iron, ascorbate and two diphenols as substrates. We found that all of the MCO1 orthologs are much better at oxidizing ascorbate than they are at oxidizing ferrous iron or diphenols. This result is surprising because ascorbate oxidases are thought to be specific to plants and fungi. An analysis of three predicted iron binding residues in DmMCO1 revealed that they are not required for ferroxidase or laccase activity, but two of the residues (His374 and Asp380) influence oxidation of ascorbate. These two residues are conserved in MCO1 orthologs from insects and crustaceans; therefore, they are likely to be important for MCO1 function. The results of this study suggest that MCO1 orthologs function as ascorbate oxidases and influence iron homeostasis through an unknown mechanism.


Assuntos
Anopheles/enzimologia , Ascorbato Oxidase/metabolismo , Proteínas de Insetos/metabolismo , Manduca/enzimologia , Tribolium/enzimologia , Sequência de Aminoácidos , Animais , Ácido Ascórbico/química , Ceruloplasmina/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Compostos Ferrosos/química , Hemolinfa/enzimologia , Proteínas de Insetos/genética , Cinética , Dados de Sequência Molecular , Oxirredução , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Alinhamento de Sequência , Especificidade da Espécie , Especificidade por Substrato
18.
Anal Chem ; 86(17): 8727-34, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25088601

RESUMO

A new carbon ascorbate oxidase-based sensor-biosensor system (SB) was coupled to a dual-channel telemetric device for online simultaneous electrochemical detection of ascorbic acid (AA) and antioxidant capacity in Hamlin, Sanguinello, and Moro orange varieties. The electrocatalytic performances of the SB were investigated by cyclic voltammetry and amperometric techniques. The phenol composition of orange juice of each variety, and the cyclic voltammetries of the most represented phenols, were provided. The in vitro calibrations were performed in PBS (pH 5.6), applying a constant potential of +500 mV. A standard mixture of phenols, based on orange juice composition, was used as reference material for studying SB behavior. SB works at an applied potential of +500 mV, in a concentration range comprised between the LOD 0.26 µM and 20 µM. In this concentration range, limiting the data acquisition time to 2 min, the problems of electrode passivation due to phenols polymerization were overcome. AA calibration showed that the biosensor registered statistically lower currents than the sensor since the enzyme oxidized AA before it reached the electrode surface. Standard mixture calibration showed that currents registered by sensor and biosensor did not statistically differ. The difference between sensor and biosensor AA registered currents was used to calculate an AA selectivity index and, consequently, to determine the AA content and the antioxidant capacity in the juices. The novelty of the SB is its ability to distinguish between AA and phenols contribution to antioxidant capacity. The obtained results were in accordance with reference methods.


Assuntos
Antioxidantes/análise , Ascorbato Oxidase/metabolismo , Ácido Ascórbico/análise , Bebidas/análise , Técnicas Biossensoriais/métodos , Tecnologia de Alimentos/instrumentação , Tecnologia de Alimentos/métodos , Ascorbato Oxidase/química , Técnicas Biossensoriais/instrumentação , Técnicas Eletroquímicas , Eletrodos , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Oxirredução , Fenóis/análise , Telemetria/instrumentação
19.
Bioelectrochemistry ; 95: 15-22, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24189123

RESUMO

A direct electrochemistry and intramolecular electron transfer of multicopper oxidases are of a great importance for the fabrication of these enzyme-based bioelectrochemical-devices. Ascorbate oxidase from Acremonium sp. (ASOM) has been successfully immobilized via a chemisorptive interaction on the l-cysteine self-assembled monolayer modified gold electrode (cys-SAM/AuE). Thermodynamics and kinetics of adsorption of ASOM on the cys-SAM/AuE were studied using cyclic voltammetry. A well-defined redox wave centered at 166±3mV (vs. Ag│AgCl│KCl(sat.)) was observed in 5.0mM phosphate buffer solution (pH7.0) at the fabricated ASOM electrode, abbreviated as ASOM/cys-SAM/AuE, confirming a direct electrochemistry, i.e., a direct electron transfer (DET) between ASOM and cys-SAM/AuE. The direct electrochemistry of ASOM was further confirmed by taking into account the chemical oxidation of ascorbic acid (AA) by O2 via an intramolecular electron transfer in the ASOM as well as the electrocatalytic oxidation of AA at the ASOM/cys-SAM/AuE. Thermodynamics and kinetics of the adsorption of ASOM on the cys-SAM/AuE have been elaborated along with its direct electron transfer at the modified electrodes on the basis of its intramolecular electron transfer and electrocatalytic activity towards ascorbic acid oxidation and O2 reduction. ASOM saturated surface area was obtained as 2.41×10(-11)molcm(-2) with the apparent adsorption coefficient of 1.63×10(6)Lmol(-1). The ASOM confined on the cys-SAM/AuE possesses its essential enzymatic function.


Assuntos
Ascorbato Oxidase/química , Cisteína/química , Enzimas Imobilizadas/química , Ouro/química , Acremonium/enzimologia , Adsorção , Ascorbato Oxidase/metabolismo , Biocatálise , Eletroquímica , Eletrodos , Transporte de Elétrons , Enzimas Imobilizadas/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Termodinâmica
20.
Plant Physiol Biochem ; 73: 154-60, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24100076

RESUMO

Ascorbate oxidase (AO) is an apoplastic enzyme that uses oxygen to catalyse the oxidation of ascorbate (AA) to dehydroascorbate (DHA) via the unstable radical monodehydroascorbate (MDHA). Here, we report that transgenic tobacco plants (Nicotiana tabacum L. cv. Xanthi) with an in vivo lowered apoplastic AA redox state through increased AO expression demonstrate signs of delayed dark-induced senescence compared with wild-type plants, as shown by chlorophyll loss assay. In situ localization of hydrogen peroxide (H2O2) suggests that, although transgenic plants have higher constitutive levels of H2O2 under normal growth conditions, imposed dark-induced senescence results in smaller induction levels of H2O2, an observation which correlates with increased antioxidant enzyme activities and an induction in the expression of AA recycling genes compared with that in wild-type plants. Our current findings, combined with previous studies which showed the contribution of AO in the regulation of AA redox state, suggest that the reduction in AA redox state in the leaf apoplast of these transgenic plants results in an increase in the endogenous levels of H2O2, which provides a form of 'acquired tolerance' to oxidative stress imposed by dark-induced senescence.


Assuntos
Adaptação Fisiológica/genética , Ascorbato Oxidase/genética , Ácido Ascórbico/metabolismo , Senescência Celular , Nicotiana/genética , Estresse Oxidativo/genética , Folhas de Planta/fisiologia , Antioxidantes/metabolismo , Ascorbato Oxidase/metabolismo , Clorofila/metabolismo , Escuridão , Ácido Desidroascórbico/análogos & derivados , Ácido Desidroascórbico/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Peróxido de Hidrogênio/metabolismo , Oxirredução , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Nicotiana/enzimologia , Nicotiana/metabolismo , Nicotiana/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA