Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.998
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731941

RESUMO

Micro- and nanoplastic particles, including common forms like polyethylene and polystyrene, have been identified as relevant pollutants, potentially causing health problems in living organisms. The mechanisms at the cellular level largely remain to be elucidated. This study aims to visualize nanoplastics in bronchial smooth muscle (BSMC) and small airway epithelial cells (SAEC), and to assess the impact on mitochondrial metabolism. Healthy and asthmatic human BSMC and SAEC in vitro cultures were stimulated with polystyrene nanoplastics (PS-NPs) of 25 or 50 nm size, for 1 or 24 h. Live cell, label-free imaging by holotomography microscopy and mitochondrial respiration and glycolysis assessment were performed. Furthermore, 25 and 50 nm NPs were shown to penetrate SAEC, along with healthy and diseased BSMC, and they impaired bioenergetics and induce mitochondrial dysfunction compared to cells not treated with NPs, including changes in oxygen consumption rate and extracellular acidification rate. NPs pose a serious threat to human health by penetrating airway tissues and cells, and affecting both oxidative and glycolytic metabolism.


Assuntos
Brônquios , Células Epiteliais , Mitocôndrias , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Brônquios/metabolismo , Brônquios/citologia , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Nanopartículas , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Células Cultivadas , Poliestirenos , Asma/metabolismo , Asma/patologia , Músculo Liso/metabolismo , Microplásticos/toxicidade , Consumo de Oxigênio/efeitos dos fármacos
2.
PeerJ ; 12: e17106, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646478

RESUMO

Background: Allergic asthma is the most prevalent asthma phenotype and is associated with the disorders of immune cells and glycolysis. Macrophages are the most common type of immune cells in the lungs. Calprotectin (S100A8 and S100A9) are two pro-inflammatory molecules that target the Toll-like receptor 4 (TLR4) and are substantially increased in the serum of patients with severe asthma. This study aimed to determine the effects of S100A8/A9 on macrophage polarization and glycolysis associated with allergic asthma. Methods: To better understand the roles of S100A8 and S100A9 in the pathogenesis of allergic asthma, we used ovalbumin (OVA)-induced MH-S cells, and OVA-sensitized and challenged mouse models (wild-type male BALB/c mice). Enzyme-linked immunosorbent assay, quantitative real-time polymerase chain reaction, flow cytometry, hematoxylin-eosin staining, and western blotting were performed. The glycolysis inhibitor 3-bromopyruvate (3-BP) was used to observe changes in glycolysis in mice. Results: We found knockdown of S100A8 or S100A9 in OVA-induced MH-S cells inhibited inflammatory cytokines, macrophage polarization biomarker expression, and pyroptosis cell proportion, but increased anti-inflammatory cytokine interleukin (IL)-10 mRNA; also, glycolysis was inhibited, as evidenced by decreased lactate and key enzyme expression; especially, knockdown of S100A8 or S100A9 inhibited the activity of TLR4/myeloid differentiation primary response gene 88 (MyD88)/Nuclear factor kappa-B (NF-κB) signaling pathway. Intervention with lipopolysaccharides (LPS) abolished the beneficial effects of S100A8 and S100A9 knockdown. The observation of OVA-sensitized and challenged mice showed that S100A8 or S100A9 knockdown promoted respiratory function, improved lung injury, and inhibited inflammation; knockdown of S100A8 or S100A9 also suppressed macrophage polarization, glycolysis levels, and activation of the TLR4/MyD88/NF-κB signaling pathway in the lung. Conversely, S100A9 overexpression exacerbated lung injury and inflammation, promoting macrophage polarization and glycolysis, which were antagonized by the glycolysis inhibitor 3-BP. Conclusion: S100A8 and S100A9 play critical roles in allergic asthma pathogenesis by promoting macrophage perturbation and glycolysis through the TLR4/MyD88/NF-κB signaling pathway. Inhibition of S100A8 and S100A9 may be a potential therapeutic strategy for allergic asthma.


Assuntos
Asma , Calgranulina A , Calgranulina B , Modelos Animais de Doenças , Glicólise , Macrófagos , Camundongos Endogâmicos BALB C , Animais , Masculino , Camundongos , Asma/genética , Asma/imunologia , Asma/patologia , Calgranulina A/metabolismo , Calgranulina A/genética , Calgranulina B/genética , Calgranulina B/metabolismo , Citocinas/metabolismo , Glicólise/efeitos dos fármacos , Glicólise/genética , Macrófagos/metabolismo , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 88 de Diferenciação Mieloide/genética , NF-kappa B/metabolismo , Ovalbumina , Transdução de Sinais/genética , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética
3.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167176, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38641013

RESUMO

Ferroptosis is a programmed form of cell death regulated by iron and has been linked to the development of asthma. However, the precise mechanisms driving ferroptosis in asthma remain elusive. To gain deeper insights, we conducted an analysis of nasal epithelial and sputum samples from the GEO database using three machine learning methods. Our investigation identified a pivotal gene, Arachidonate 15-lipoxygenase (ALOX15), associated with ferroptosis in asthma. Through both in vitro and in vivo experiments, we further confirmed the significant role of ALOX15 in ferroptosis in asthma. Our results demonstrate that ferroptosis manifests in an HDM/LPS-induced allergic airway inflammation (AAI) mouse model, mimicking human asthma, and in HDM/LPS-stimulated 16HBE cells. Moreover, we observed an up-regulation of ALOX15 expression in HDM/LPS-induced mice and cells. Notably, silencing ALOX15 markedly decreased HDM/LPS-induced ferroptosis in 16HBE cells. These findings indicate that ferroptosis may be implicated in the onset and progression of asthma, with ALOX15-induced lipid peroxidation raising the susceptibility to ferroptosis in asthmatic epithelial cells.


Assuntos
Araquidonato 15-Lipoxigenase , Asma , Células Epiteliais , Ferroptose , Peroxidação de Lipídeos , Araquidonato 15-Lipoxigenase/metabolismo , Araquidonato 15-Lipoxigenase/genética , Animais , Asma/patologia , Asma/metabolismo , Asma/genética , Humanos , Camundongos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Modelos Animais de Doenças , Linhagem Celular , Feminino , Araquidonato 12-Lipoxigenase
4.
Clin Immunol ; 263: 110228, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38663494

RESUMO

Asthma is a heterogeneous disease characterized by chronic airway inflammation, reversible airflow limitation, and airway remodeling. Eosinophil peroxidase (EPX) is the most abundant secondary granule protein unique to activated eosinophils. In this study, we aimed to illustrate the effect of EPX on the epithelial-mesenchymal transition (EMT) in BEAS-2B cells. Our research found that both EPX and ADAM33 were negatively correlated with FEV1/FVC and FEV1%pred, and positively correlated with IL-5 levels. Asthma patients had relatively higher levels of ADAM33 and EPX compared to the healthy control group. The expression of TSLP, TGF-ß1 and ADAM33 in the EPX intervention group was significantly higher. Moreover, EPX could promote the proliferation, migration and EMT of BEAS-2B cells, and the effect of EPX on various factors was significantly improved by the PI3K inhibitor LY294002. The findings from this study could potentially offer a novel therapeutic target for addressing airway remodeling in bronchial asthma, particularly focusing on EMT.


Assuntos
Remodelação das Vias Aéreas , Asma , Brônquios , Peroxidase de Eosinófilo , Células Epiteliais , Transição Epitelial-Mesenquimal , Fator de Crescimento Transformador beta1 , Humanos , Asma/metabolismo , Asma/patologia , Asma/fisiopatologia , Asma/imunologia , Masculino , Feminino , Células Epiteliais/metabolismo , Peroxidase de Eosinófilo/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Pessoa de Meia-Idade , Adulto , Brônquios/patologia , Interleucina-5/metabolismo , Cromonas/farmacologia , Citocinas/metabolismo , Linhagem Celular , Linfopoietina do Estroma do Timo , Proliferação de Células , Movimento Celular , Morfolinas/farmacologia , Proteínas ADAM
5.
Mol Immunol ; 170: 9-18, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38593669

RESUMO

Asthma is viewed as an airway disease and an inflammatory condition. This study aims to reveal the role of Kruppel-like factor 5 (KLF5)-mediated pyroptosis of airway epithelial cells in airway inflammation in asthma. The asthmatic mouse model was established. The mice were infected with the lentivirus containing sh-KLF5, antagomiR-182-5p, and pc-Toll-like receptor 4 (TLR4). Airway hyperresponsiveness was measured, and the cells in bronchoalveolar lavage fluid (BALF) were sorted and counted. The expression levels of interleukin (IL)-4/IL-13/IL-6/IL-18/IL-1ß/NOD-like receptor family pyrin domain containing 3 (NLRP3)/N-gasdermin D (GSDMD-N)/cleaved caspase-1 were detected. The pathological changes in lung tissue were observed. The enrichment of KLF5 in the miR-182-5p promoter region was measured. The binding relationship among KLF5, miR-182-5p, and TLR4 were analyzed. KLF5 was highly expressed in asthmatic mice. Silencing KLF5 improved airway resistance and lung dynamic compliance, reduced the cells in BALF and the expression of IL-4/IL-13/IL-6/NLRP3/GSDMD-N/cleaved caspase-1/IL-18/IL-1ß, and alleviated the pathological changes. Mechanistically, KLF5 bonded to the miR-182-5p promoter to inhibit miR-182-5p expression, and miR-182-5p inhibited TLR4. Silencing miR-182-5p or TLR4 overexpression reversed the improvement of silencing KLF5 on airway inflammation and pyroptosis in asthmatic mice. In conclusion, KLF5 inhibited miR-182-5p to promote TLR4 expression, thus aggravating pyroptosis and airway inflammation in asthmatic mice.


Assuntos
Asma , Células Epiteliais , Fatores de Transcrição Kruppel-Like , MicroRNAs , Piroptose , Receptor 4 Toll-Like , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Asma/metabolismo , Asma/genética , Asma/patologia , Receptor 4 Toll-Like/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Camundongos , Células Epiteliais/metabolismo , Inflamação/patologia , Inflamação/genética , Inflamação/metabolismo , Transdução de Sinais , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C , Feminino
6.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 225-232, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38650129

RESUMO

Abnormal expression of non-coding microRNA is associated with the development of combined allergic rhinitis and asthma syndrome (CARAS). However, the function of miR-4454 in CARAS is unknown. Our study aimed to reveal the clinical significance and related mechanism of miR-4454 in CARAS. Blood samples from 38 cases of CARAS and 43 cases of healthy subjects were collected to detect the expression of miR-4454. House dust mite (HDM) sensitization and challenge-induced bronchial epithelial cells to simulate the asthma state model in vitro, miR-4454 mimics and inhibitor transfection to detect the expression level of pro-inflammatory cytokines, cell survival rate and migration ability, flow cytometry and western blot (WB) Detection of cell cycle, apoptosis and inflammation-related protein levels. Compared with healthy controls, the expression of miR-4454 in the blood of CARAS patients was significantly up-regulated, and IL-6 and IL-8 were significantly up-regulated in the HDM treatment group, indicating that the model induction was successful. After overexpression of miR-4454, cell proliferation and migration in the HDM-treated group were significantly inhibited, and the levels of early apoptosis and inflammation-related proteins (IL-17, IL-17RD, TNF-α, GCSF and NF-κB) were increased High; after inhibiting miR-4454, cell proliferation and migration were significantly enhanced, and the levels of apoptosis and inflammation-related proteins were decreased. This study found that inhibiting the expression of miR-4454 can improve HDM-induced cell injury, which may be related to miR-4454 regulating the activation of IL-17/NF-кB inflammatory axis.


Assuntos
Apoptose , Asma , Proliferação de Células , MicroRNAs , Rinite Alérgica , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Rinite Alérgica/genética , Rinite Alérgica/metabolismo , Asma/genética , Asma/patologia , Masculino , Feminino , Apoptose/genética , Adulto , Proliferação de Células/genética , Animais , Inflamação/genética , Inflamação/patologia , Movimento Celular/genética , Pyroglyphidae/imunologia , Citocinas/metabolismo , Citocinas/sangue , NF-kappa B/metabolismo , Estudos de Casos e Controles , Células Epiteliais/metabolismo , Síndrome , Relevância Clínica
7.
BMJ Open Respir Res ; 11(1)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38569671

RESUMO

BACKGROUND: Asthma is a chronic disease affecting the lower respiratory tract, which can lead to death in severe cases. The cause of asthma is not fully known, so exploring its potential mechanism is necessary for the targeted therapy of asthma. METHOD: Asthma mouse model was established with ovalbumin (OVA). H&E staining, immunohistochemistry and ELISA were used to detect the inflammatory response in asthma. Transcriptome sequencing was performed to screen differentially expressed genes (DEGs). The role of KIF23 silencing in cell viability, proliferation and apoptosis was explored by cell counting kit-8, EdU assay and flow cytometry. Effects of KIF23 knockdown on inflammation, oxidative stress and pyroptosis were detected by ELISA and western blot. After screening KIF23-related signalling pathways, the effect of KIF23 on p53 signalling pathway was explored by western blot. RESULTS: In the asthma model, the levels of caspase-3, IgG in serum and inflammatory factors (interleukin (IL)-1ß, KC and tumour necrosis factor (TNF)-α) in serum and bronchoalveolar lavage fluid were increased. Transcriptome sequencing showed that there were 352 DEGs in the asthma model, and 7 hub genes including KIF23 were identified. Knockdown of KIF23 increased cell proliferation and inhibited apoptosis, inflammation and pyroptosis of BEAS-2B cells induced by IL-13 in vitro. In vivo experiments verified that knockdown of KIF23 inhibited oxidative stress, inflammation and pyroptosis to alleviate OVA-induced asthma mice. In addition, p53 signalling pathway was suppressed by KIF23 knockdown. CONCLUSION: Knockdown of KIF23 alleviated the progression of asthma by suppressing pyroptosis and inhibited p53 signalling pathway.


Assuntos
Asma , Pulmão , Animais , Humanos , Camundongos , Asma/genética , Asma/patologia , Inflamação/genética , Pulmão/patologia , Proteínas Associadas aos Microtúbulos/efeitos adversos , Proteínas Associadas aos Microtúbulos/metabolismo , Piroptose , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/efeitos adversos , Proteína Supressora de Tumor p53/metabolismo
8.
Exp Cell Res ; 438(1): 114029, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38608805

RESUMO

Aberrant expression of airway epithelial E-cadherin is a key feature of asthma, yet the underlying mechanisms are largely unknown. Ferroptosis is a novel form of regulated cell death involved in asthma pathogenesis. This study was aimed to evaluate the role of ferroptosis and to investigate whether ferroptosis mediates E-cadherin disruption in mixed granulocyte asthma (MGA). Two murine models of MGA were established using toluene diisocyanate (TDI) or ovalbumin with Complete Freund's Adjuvant (OVA/CFA). Specific antagonists of ferroptosis, including Liproxstatin-1 (Lip-1) and Ferrostatin-1 (Fer-1) were given to the mice. The allergen-exposed mice displayed markedly shrunk mitochondria in the airway epithelia, with decreased volume and denser staining accompanied by down-regulated GPX4 as well as up-regulated FTH1 and malondialdehyde, which are markers of ferroptosis. Decreased pulmonary expression of E-cadherin was also observed, with profound loss of membrane E-cadherin in the airway epithelia, as well as increased secretion of sE-cadherin. Treatment with Lip-1 not only showed potent protective effects against the allergen-induced airway hyperresponsiveness and inflammatory responses, but also rescued airway epithelial E-cadherin expression and inhibited the release of sE-cadherin. Taken together, our data demonstrated that ferroptosis mediates airway epithelial E-cadherin dysfunction in MGA.


Assuntos
Asma , Caderinas , Modelos Animais de Doenças , Ferroptose , Quinoxalinas , Compostos de Espiro , Animais , Ferroptose/efeitos dos fármacos , Caderinas/metabolismo , Asma/metabolismo , Asma/patologia , Asma/induzido quimicamente , Camundongos , Granulócitos/metabolismo , Granulócitos/patologia , Feminino , Camundongos Endogâmicos BALB C , Ovalbumina , Fenilenodiaminas/farmacologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Células Epiteliais/efeitos dos fármacos , Cicloexilaminas/farmacologia
9.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 29-39, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38650159

RESUMO

Asthma is a chronic inflammatory disease of the airways strongly associated with interleukin-4 (IL-4), a cytokine that mediates and regulates various immune responses, including allergic reactions. This study aimed to evaluate the anti-inflammatory and antioxidant effects of an Aqueous Extract of Clove (AEC) Syzygium aromaticum on the lungs and erythrocytes of an experimental asthma model in Wistar rats. For this purpose, four groups of male rats were examined: control, sensitized with ovalbumin (OVA), treated with AEC, and treated with a combination of OVA/AEC. After treatment, the antioxidant effect was determined by measuring the malondialdehyde (MDA), glutathione peroxidase (GPx), glutathione (GSH), and catalase (CAT) levels. The anti-inflammatory effect was determined by measuring IL-4 levels by performing enzyme-linked immunosorbent assay (ELISA) using serum, lung, and bronchoalveolar lavage fluid (BALF) samples. A significant reduction (p ≤ 0.05) in the MDA levels and a significant increase (p ≤ 0.05) in the levels of GPx and CAT were observed in the lungs of rats treated with cloves. However, no statistically significant variation was observed in GSH levels. In erythrocytes, no statistically significant differences were observed between the experimental batches. Regarding the anti-inflammatory effect, the administration of S. aromaticum extract to sensitized rats resulted in a recovery in the levels of total proteins and IL-4 and a decrease in the three compartments studied (lungs, serum, and bronchoalveolar liquid). These results were confirmed by microscopic examination of lung histological sections. Overall, these findings confirmed that the AEC has anti-inflammatory and antioxidant effects.


Assuntos
Anti-Inflamatórios , Antioxidantes , Asma , Líquido da Lavagem Broncoalveolar , Modelos Animais de Doenças , Glutationa Peroxidase , Glutationa , Interleucina-4 , Pulmão , Malondialdeído , Extratos Vegetais , Ratos Wistar , Syzygium , Animais , Antioxidantes/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Syzygium/química , Masculino , Asma/tratamento farmacológico , Asma/induzido quimicamente , Asma/metabolismo , Asma/patologia , Líquido da Lavagem Broncoalveolar/química , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa/metabolismo , Interleucina-4/metabolismo , Interleucina-4/sangue , Malondialdeído/metabolismo , Ovalbumina , Catalase/metabolismo , Ratos , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Água/química
10.
Front Immunol ; 15: 1285598, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38680486

RESUMO

Significant advancements have been achieved in understanding the roles of different immune cells, as well as cytokines and chemokines, in the pathogenesis of eosinophilic airway conditions. This review examines the pathogenesis of Chronic Rhinosinusitis with Nasal Polyps (CRSwNP), marked by complex immune dysregulation, with major contributions from type 2 inflammation and dysfunctional airway epithelium. The presence of eosinophils and the role of T-cell subsets, particularly an imbalance between Treg and Th17 cells, are crucial to the disease's pathogenesis. The review also investigates the pathogenesis of eosinophilic asthma, a unique asthma subtype. It is characterized by inflammation and high eosinophil levels, with eosinophils playing a pivotal role in triggering type 2 inflammation. The immune response involves Th2 cells, eosinophils, and IgE, among others, all activated by genetic and environmental factors. The intricate interplay among these elements, chemokines, and innate lymphoid cells results in airway inflammation and hyper-responsiveness, contributing to the pathogenesis of eosinophilic asthma. Another scope of this review is the pathogenesis of Eosinophilic Granulomatosis with Polyangiitis (EGPA); a complex inflammatory disease that commonly affects the respiratory tract and small to medium-sized blood vessels. It is characterized by elevated eosinophil levels in blood and tissues. The pathogenesis involves the activation of adaptive immune responses by antigens leading to T and B cell activation and eosinophil stimulation, which causes tissue and vessel damage. On the other hand, Allergic Bronchopulmonary Aspergillosis (ABPA) is a hypersensitive response that occurs when the airways become colonized by aspergillus fungus, with the pathogenesis involving activation of Th2 immune responses, production of IgE antibodies, and eosinophilic action leading to bronchial inflammation and subsequent lung damage. This analysis scrutinizes how an imbalanced immune system contributes to these eosinophilic diseases. The understanding derived from this assessment can steer researchers toward designing new potential therapeutic targets for efficient control of these disorders.


Assuntos
Asma , Eosinófilos , Humanos , Eosinófilos/imunologia , Asma/imunologia , Asma/patologia , Pólipos Nasais/imunologia , Pólipos Nasais/patologia , Sinusite/imunologia , Sinusite/patologia , Animais , Inflamação/imunologia , Inflamação/patologia , Células Th2/imunologia , Rinite/imunologia , Rinite/patologia , Citocinas/metabolismo , Citocinas/imunologia , Doença Crônica
11.
Int Arch Allergy Immunol ; 185(5): 425-435, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38432211

RESUMO

INTRODUCTION: Clinical management of asthma remains as a prevalent challenge. Monotropein (MON) is a naturally occurring cyclic enol ether terpene glycoside with medical application potential. This study aims to evaluate the potential therapeutic effects of MON in the mouse model of chronic asthma. METHODS: An ovalbumin (OVA)-induced asthmatic mouse model was established to evaluate the therapeutic effect of MON at different doses (20, 40, and 80 mg/kg). The potential involvement of protein kinase B (AKT)/nuclear factor kappa B (NF-κB) pathway in the effect of MON was investigated by the administration of an AKT activator SC79. Histological changes in pulmonary tissues were examined by hematoxylin and eosin staining. The profiles of inflammatory cytokines (interleukin [IL]-4, IL-5, IL-13, and tumor necrosis factor [TNF]-α) in bronchoalveolar lavage fluid (BALF), and OVA-specific IgE in blood samples were analyzed by enzyme-linked immunosorbent assay (ELISA). The oxidative stress in the lung tissues was determined by measuring malondialdehyde level. The phosphorylation activation of AKT and NF-κB was examined by immunoblotting in the lung tissues. RESULTS: MON treatment suppressed the infiltration of inflammatory cells in the airways of OVA-induced asthma mice and reduced the thickness of the bronchial wall and smooth muscle layer in a dose-dependent manner. MON treatment also reduced the levels of OVA-specific IgE in serum and cytokines in BALF in asthma-induced mice, and attenuated the oxidative stress in the lung tissues. OVA induced the phosphorylation of AKT and NF-κB proteins in the lung tissues of asthmatic mice, which was significantly suppressed by MON treatment. The co-administration of AKT activator SC79 impaired the therapeutic effect of MON on asthma-induced mice. CONCLUSION: Our data demonstrated the potential therapeutic effect of MON on asthmatic mouse model, suggesting that MON attenuated the inflammatory and oxidative damages in ling tissues by dampening the AKT/NF-κB signaling pathway.


Assuntos
Asma , Citocinas , Modelos Animais de Doenças , NF-kappa B , Ovalbumina , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Animais , Asma/tratamento farmacológico , Asma/induzido quimicamente , Asma/metabolismo , Asma/patologia , NF-kappa B/metabolismo , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Citocinas/metabolismo , Feminino , Pulmão/patologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Camundongos Endogâmicos BALB C , Imunoglobulina E/sangue , Estresse Oxidativo/efeitos dos fármacos , Líquido da Lavagem Broncoalveolar/citologia
12.
Am J Physiol Lung Cell Mol Physiol ; 326(5): L618-L626, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38469627

RESUMO

Thymic stromal lymphopoietin (TSLP) is an epithelial-derived pleiotropic cytokine that regulates T-helper 2 (Th2) immune responses in the lung and plays a major role in severe uncontrolled asthma. Emerging evidence suggests a role for endoplasmic reticulum (ER) stress in the pathogenesis of asthma. In this study, we determined if ER stress and the unfolded protein response (UPR) signaling are involved in TSLP induction in the airway epithelium. For this, we treated human bronchial epithelial basal cells and differentiated primary bronchial epithelial cells with ER stress inducers and the TSLP mRNA and protein expression was determined. A series of siRNA gene knockdown experiments were conducted to determine the ER stress-induced TSLP signaling pathways. cDNA collected from asthmatic bronchial biopsies was used to determine the gene correlation between ER stress and TSLP. Our results show that ER stress signaling induces TSLP mRNA expression via the PERK-C/EBP homologous protein (CHOP) signaling pathway. AP-1 transcription factor is important in regulating this ER stress-induced TSLP mRNA induction, though ER stress alone cannot induce TSLP protein production. However, ER stress significantly enhances TLR3-induced TSLP protein secretion in the airway epithelium. TSLP and ER stress (PERK) mRNA expression positively correlates in bronchial biopsies from participants with asthma, particularly in neutrophilic asthma. In conclusion, these results suggest that ER stress primes TSLP that is then enhanced further upon TLR3 activation, which may induce severe asthma exacerbations. Targeting ER stress using pharmacological interventions may provide novel therapeutics for severe uncontrolled asthma.NEW & NOTEWORTHY TSLP is an epithelial-derived cytokine and a key regulator in the pathogenesis of severe uncontrolled asthma. We demonstrate a novel mechanism by which endoplasmic reticulum stress signaling upregulates airway epithelial TSLP mRNA expression via the PERK-CHOP signaling pathway and enhances TLR3-mediated TSLP protein secretion.


Assuntos
Asma , Citocinas , Estresse do Retículo Endoplasmático , Células Epiteliais , Linfopoietina do Estroma do Timo , Receptor 3 Toll-Like , Resposta a Proteínas não Dobradas , Humanos , Citocinas/metabolismo , Receptor 3 Toll-Like/metabolismo , Receptor 3 Toll-Like/genética , Asma/metabolismo , Asma/patologia , Asma/genética , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Fator de Transcrição CHOP/metabolismo , Fator de Transcrição CHOP/genética , Transdução de Sinais , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Brônquios/metabolismo , Brônquios/patologia , eIF-2 Quinase/metabolismo , eIF-2 Quinase/genética , Células Cultivadas , Feminino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
13.
J Leukoc Biol ; 115(5): 893-901, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38517856

RESUMO

Interleukin (IL)-33 is a key driver of T helper 2 (Th2) cell polarization. Endoplasmic reticulum (ER) stress plays a role in the skewed T cell activation. The objective of this project is to elucidate the role of IL-33 derived from macrophages in inducing Th2 polarization in the airways. In this study, bronchoalveolar lavage fluids (BALF) were collected from patients with asthma and healthy control subjects. Macrophages were isolated from the BALF by flow cytometry cell sorting. An asthmatic mouse model was established using the ovalbumin/alum protocol. The results showed that increased IL33 gene activity and ER stress-related molecules in BALF-derived M2a macrophages was observed in asthmatic patients. Levels of IL33 gene activity in M2a cells were positively correlated with levels of asthma response in asthma patients. Sensitization exacerbated the ER stress in the airway macrophages, which increased the expression of IL-33 in macrophages of airway in sensitized mice. Conditional ablation of Il33 or Perk or Atf4 genes in macrophages prevented induction of airway allergy in mice. In conclusion, asthma airway macrophages express high levels of IL-33 and at high ER stress status. Inhibition of IL-33 or ER stress in macrophages can effectively alleviate experimental asthma.


Assuntos
Asma , Estresse do Retículo Endoplasmático , Interleucina-33 , Macrófagos , Células Th2 , Adulto , Animais , Feminino , Humanos , Masculino , Camundongos , Asma/imunologia , Asma/metabolismo , Asma/patologia , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Polaridade Celular , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático/imunologia , Interleucina-33/metabolismo , Macrófagos/metabolismo , Macrófagos/imunologia , Camundongos Endogâmicos C57BL , Células Th2/imunologia , Células Th2/metabolismo , Adulto Jovem , Pessoa de Meia-Idade
14.
J Biol Chem ; 300(4): 107127, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432633

RESUMO

Regulators of G protein signaling (RGS) proteins constrain G protein-coupled receptor (GPCR)-mediated and other responses throughout the body primarily, but not exclusively, through their GTPase-activating protein activity. Asthma is a highly prevalent condition characterized by airway hyper-responsiveness (AHR) to environmental stimuli resulting in part from amplified GPCR-mediated airway smooth muscle contraction. Rgs2 or Rgs5 gene deletion in mice enhances AHR and airway smooth muscle contraction, whereas RGS4 KO mice unexpectedly have decreased AHR because of increased production of the bronchodilator prostaglandin E2 (PGE2) by lung epithelial cells. Here, we found that knockin mice harboring Rgs4 alleles encoding a point mutation (N128A) that sharply curtails RGS4 GTPase-activating protein activity had increased AHR, reduced airway PGE2 levels, and augmented GPCR-induced bronchoconstriction compared with either RGS4 KO mice or WT controls. RGS4 interacted with the p85α subunit of PI3K and inhibited PI3K-dependent PGE2 secretion elicited by transforming growth factor beta in airway epithelial cells. Together, these findings suggest that RGS4 affects asthma severity in part by regulating the airway inflammatory milieu in a G protein-independent manner.


Assuntos
Asma , Proteínas RGS , Animais , Humanos , Camundongos , Asma/metabolismo , Asma/genética , Asma/patologia , Broncoconstrição/genética , Dinoprostona/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Camundongos Knockout , Fosfatidilinositol 3-Quinases/metabolismo , Hipersensibilidade Respiratória/metabolismo , Hipersensibilidade Respiratória/genética , Hipersensibilidade Respiratória/patologia , Proteínas RGS/metabolismo , Proteínas RGS/genética , Linhagem Celular
15.
J Immunol ; 212(9): 1420-1427, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38488501

RESUMO

Allergic asthma is a chronic inflammatory disease that affects millions of individuals worldwide. Exposure to allergens produced by a variety of otherwise harmless microbes, including fungi, predisposes individuals to immunopathologic disease upon subsequent encounters with allergen. We developed a mouse model that employs a purified protease produced by Aspergillus (Asp f 13) to investigate the contributions of CD4+ Th cells to recurrent lung inflammation. Notably, memory CD4+ T cells enhanced the eosinophil response of sensitized/rechallenged animals. In addition, memory CD4+ T cells maintained allergenic features, including expression of GATA-binding protein 3 and IL-5. Th2 memory T cells persisted in the peribronchiolar interstitium of the lung and expressed markers of tissue residence, such as CD69, CCR8, and IL-33R. Lastly, we identified a peptide epitope contained within Asp f 13 and generated a peptide-MHC class II tetramer. Using these tools, we further demonstrated the durability and exquisite sensitivity of memory T cells in promoting lung eosinophilia. Our data highlight important features of memory T cells that strengthen the notion that memory T cells are principal drivers of eosinophilic disease in murine models of allergic sensitization and episodic airway inflammation.


Assuntos
Alérgenos , Asma , Camundongos , Animais , Peptídeo Hidrolases , Pulmão , Asma/patologia , Peptídeos , Endopeptidases , Células Th2
16.
Life Sci ; 342: 122538, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38428571

RESUMO

Pulmonary disorders, including asthma, chronic obstructive pulmonary disease (COPD), pulmonary fibrosis (PF), pulmonary hypertension (PH), and lung cancer, seriously impair the quality of lives of patients. A deeper understanding of the occurrence and development of the above diseases may inspire new strategies to remedy the scarcity of treatments. Type I protein arginine methyltransferases (PRMTs) can affect processes of inflammation, airway remodeling, fibroblast proliferation, mitochondrial mass, and epithelial dysfunction through substrate methylation and non-enzymatic activity, thus affecting the occurrence and development of asthma, COPD, lung cancer, PF, and PH. As potential therapeutic targets, inhibitors of type I PRMTs are developed, moreover, representative compounds such as GSK3368715 and MS023 have also been used for early research. Here, we collated structures of type I PRMTs inhibitors and compared their activity. Finally, we highlighted the physiological and pathological associations of type I PRMTs with asthma, COPD, lung cancer, PF, and PH. The developing of type I PRMTs modulators will be beneficial for the treatment of these diseases.


Assuntos
Asma , Hipertensão Pulmonar , Neoplasias Pulmonares , Doença Pulmonar Obstrutiva Crônica , Fibrose Pulmonar , Humanos , Hipertensão Pulmonar/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Asma/patologia
17.
Discov Med ; 36(181): 323-331, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38409837

RESUMO

BACKGROUND: Childhood asthma is a chronic inflammatory disease of the respiratory tract characterized by bronchial inflammation, airway hyperresponsiveness, airflow disorder, and obstruction. Secreted frizzled-related protein 5 (SFRP5) may be associated with respiratory inflammatory diseases. This study investigated the effect of SFRP5 on human airway smooth muscle cells (HASMCs) to provide new ideas for treating asthma. METHODS: A total of 30 children with asthma and 30 children who had a physical examination at the same time were selected and divided into asthma and healthy groups. Serum SFRP5 levels were determined by enzyme-linked immunosorbent assay (ELISA) and real-time quantitative polymerase chain reaction (RT-qPCR). Lipofectamine 2000™ regent was used to transfect the SFRP5 overexpression plasmid (pc-SFRP5) or corresponding negative control (pc-NC) into HASMCs. HASMCs were treated with 10 µg/L platelet-derived growth factor-BB (PDGF-BB), which is an inducer to mimic the asthma-like condition at the cellular level of childhood asthma. HASMCs were divided into control, PDGF-BB (PDGF-BB treatment), PDGF-BB+pc-NC (pc-NC transfection and PDGF-BB treatment), and PDGF-BB+pc-SFRP5 (pc-SFRP5 transfection and PDGF-BB treatment) groups. Cell proliferation was measured by 5-ethynyl-2'-deoxyuridine (EdU) and cell counting kit-8 (CCK-8) assay. Cell migration was detected by Transwell assay. The protein expression was detected by western blot. RESULTS: Serum SFRP5 expression in the asthmatic group was decreased versus the healthy group (p < 0.0001). Induction of PDGF-BB decreased SFRP5 expression in HASMCs (p < 0.01). SFRP5 expression in the pc-SFRP5 group was increased (p < 0.01). The proliferation and migration of HASMCs increased after PDGF-BB treatment (p < 0.001, p < 0.0001), indicating that the asthma model was successfully inducted in vitro. Moreover, the expression of ß-catenin, cellular-myelocytomatosis viral oncogene (c-Myc), and cyclinD1 proteins in HASMCs increased after PDGF-BB treatment (p < 0.0001). SFRP5 overexpression partly inhibited PDGF-BB-induced proliferation, migration, and expressions of ß-catenin, c-Myc, and cyclinD proteins in HASMCs (p < 0.01, p < 0.001, p < 0.0001). CONCLUSIONS: Serum SFRP5 expression decreases in children with asthma. SFRP5 overexpression partially inhibits PDGF-BB-induced HASMC proliferation and migration by regulating the wingless-type mouse mammary tumor virus (MMTV) integration site family (Wnt)/ß-catenin pathway.


Assuntos
Asma , beta Catenina , Animais , Criança , Camundongos , Humanos , Becaplermina/metabolismo , Becaplermina/farmacologia , beta Catenina/metabolismo , beta Catenina/farmacologia , Via de Sinalização Wnt/genética , Asma/genética , Asma/metabolismo , Asma/patologia , Proliferação de Células/genética , Pulmão/metabolismo , Movimento Celular , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Células Cultivadas , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
18.
Discov Med ; 36(181): 372-384, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38409842

RESUMO

BACKGROUND: Allergic asthma (AA) is a prevalent chronic airway inflammation disease. In this study, this study aims to investigate the biological functions and potential regulatory mechanisms of the insulin receptor (INSR) in the progression of AA. METHODS: BALB/c mice (n = 48) were randomly divided into the following groups: control group, AA group, AA+Lentivirus (Lv)-vector short hairpin RNA (shRNA) group, AA+Lv-vector group, AA+Lv-INSR shRNA group, and AA+Lv-INSR group. The pulmonary index was calculated. mRNA and protein expression levels of INSR, signal transducer and activator of transcription 3 (STAT3), Janus kinase 2 (JAK2), phosphorylated-STAT3 (p-STAT3), phosphorylated-JAK2 (p-JAK2), alpha-smooth muscle actin (α-SMA), febrile neutropenia (FN), mucin 5AC (MUC5AC), and mucin 5B (MUC5B) were examined using reverse-transcription quantitative PCR (RT-qPCR) and western blot assays. Positive expressions of INSR, retinoic acid-related orphan receptor gamma-t (RORγt), and forkhead box protein P3 (Foxp3) were quantified by immunohistochemistry. Fluorescence intensities of α-SMA and FN were detected by immunofluorescence. Pathological morphology was observed through hematoxylin-eosin (H&E) staining, Masson staining, and Periodic Acid-Schiff (PAS) staining. Contents of immunoglobulin E (IgE), interleukin-6 (IL-6), eotaxin, interleukin-4 (IL-4), interleukin-13 (IL-13), interferon-γ (IFN-γ), interleukin-17 (IL-17), and interleukin-10 (IL-10) were quantified using enzyme-linked immunosorbent assay (ELISA). The percentage of T helper 17 (Th17) and regulatory T (Treg) cells was determined through flow cytometry. RESULTS: Compared to the control group, expression levels of INSR, p-STAT3, p-JAK2, α-SMA, FN, MUC5AC, MUC5B, RORγt, and Foxp3, as well as IgE, IL-6, eotaxin, IL-4, IL-13, and IL-17 contents, pulmonary index, glycogen-positive area (%), and Th17 cell percentage significantly increased (p < 0.05). Additionally, pulmonary histopathological deterioration and collagen deposition were aggravated, while Treg cell percentage and IFN-γ and IL-10 contents remarkably decreased (p < 0.05). The overexpression of INSR further exacerbated the progression of allergic asthma, but the down-regulation of INSR reversed the trends of the above indicators. CONCLUSIONS: The down-regulation of INSR alleviates airway hyperviscosity, inflammatory infiltration, and airway remodeling, restoring Th17/Treg immune balance in AA mice by inactivating the STAT3 pathway.


Assuntos
Asma , Interleucina-10 , Doença Pulmonar Obstrutiva Crônica , Camundongos , Animais , Interleucina-17/genética , Interleucina-17/metabolismo , Interleucina-4/genética , Interleucina-4/metabolismo , Linfócitos T Reguladores/metabolismo , Linfócitos T Reguladores/patologia , Interleucina-13/genética , Interleucina-13/metabolismo , Interleucina-6/metabolismo , Regulação para Baixo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Asma/metabolismo , Asma/patologia , Imunoglobulina E/genética , Imunoglobulina E/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , RNA Interferente Pequeno
19.
Am J Physiol Lung Cell Mol Physiol ; 326(3): L377-L392, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38290992

RESUMO

Sphingosine kinase 1 (SPHK1) has been shown to play a key role in the pathogenesis of asthma where SPHK1-generated sphingosine-1-phosphate (S1P) is known to mediate innate and adaptive immunity while promoting mast cell degranulation. Goblet cell metaplasia (GCM) contributes to airway obstruction in asthma and has been demonstrated in animal models. We investigated the role of PF543, a SPHK1-specific inhibitor, in preventing the pathogenesis of GCM using a murine (C57BL/6) model of allergen-induced acute asthma. Treatment with PF543 before triple allergen exposure (DRA: House dust mite, Ragweed pollen, and Aspergillus) reduced inflammation, eosinophilic response, and GCM followed by reduced airway hyperreactivity to intravenous methacholine. Furthermore, DRA exposure was associated with increased expression of SPHK1 in the airway epithelium which was reduced by PF543. DRA-induced reduction of acetylated α-tubulin in airway epithelium was associated with an increased expression of NOTCH2 and SPDEF which was prevented by PF543. In vitro studies using human primary airway epithelial cells showed that inhibition of SPHK1 using PF543 prevented an allergen-induced increase of both NOTCH2 and SPDEF. siRNA silencing of SPHK1 prevented the allergen-induced increase of both NOTCH2 and SPDEF. NOTCH2 silencing was associated with a reduction of SPDEF but not that of SPHK1 upon allergen exposure. Our studies demonstrate that inhibition of SPHK1 protected allergen-challenged airways by preventing GCM and airway hyperreactivity, associated with downregulation of the NOTCH2-SPDEF signaling pathway. This suggests a potential novel link between SPHK1, GCM, and airway remodeling in asthma.NEW & NOTEWORTHY The role of SPHK1-specific inhibitor, PF543, in preventing goblet cell metaplasia (GCM) and airway hyperreactivity (AHR) is established in an allergen-induced mouse model. This protection was associated with the downregulation of NOTCH2-SPDEF signaling pathway, suggesting a novel link between SPHK1, GCM, and AHR.


Assuntos
Asma , Células Caliciformes , Lisofosfolipídeos , Fosfotransferases (Aceptor do Grupo Álcool) , Pirrolidinas , Esfingosina/análogos & derivados , Sulfonas , Animais , Humanos , Camundongos , Células Caliciformes/metabolismo , Camundongos Endogâmicos C57BL , Asma/patologia , Epitélio/metabolismo , Fatores de Transcrição/metabolismo , Metaplasia/metabolismo , Metaplasia/patologia , Alérgenos , Metanol
20.
Sci Rep ; 14(1): 1721, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38242945

RESUMO

Segmental instillation of lipopolysaccharide (LPS) by bronchoscopy safely induces transient airway inflammation in human lungs. This model enables investigation of pulmonary inflammatory mechanisms as well as pharmacodynamic analysis of investigational drugs. The aim of this work was to describe the transcriptomic profile of human segmental LPS challenge with contextualization to major respiratory diseases. Pre-challenge bronchoalveolar lavage (BAL) fluid and biopsies were sampled from 28 smoking, healthy participants, followed by segmental instillation of LPS and saline as control. Twenty-four hours post instillation, BAL and biopsies were collected from challenged lung segments. Total RNA of cells from BAL and biopsy samples were sequenced and analysed for differentially expressed genes (DEGs). After challenge with LPS compared with saline, 6316 DEGs were upregulated and 241 were downregulated in BAL, but only one DEG was downregulated in biopsy samples. Upregulated DEGs in BAL were related to molecular functions such as "Inflammatory response" or "chemokine receptor activity", and upregulated pro-inflammatory pathways such as "Wnt-"/"Ras-"/"JAK-STAT" "-signaling pathway". Furthermore, the segmental LPS challenge model resembled aspects of the five most prevalent respiratory diseases chronic obstructive pulmonary disease (COPD), asthma, pneumonia, tuberculosis and lung cancer and featured similarities with acute exacerbations in COPD (AECOPD) and community-acquired pneumonia. Overall, our study provides extensive information about the transcriptomic profile from BAL cells and mucosal biopsies following LPS challenge in healthy smokers. It expands the knowledge about the LPS challenge model providing potential overlap with respiratory diseases in general and infection-triggered respiratory insults such as AECOPD in particular.


Assuntos
Asma , Pneumonia , Doença Pulmonar Obstrutiva Crônica , Humanos , Endotoxinas , Lipopolissacarídeos/farmacologia , Pulmão/patologia , Asma/patologia , Pneumonia/patologia , Líquido da Lavagem Broncoalveolar , Perfilação da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA