Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
1.
Food Res Int ; 186: 114333, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729693

RESUMO

Acrylamide is an amide formed in the Maillard reaction, with asparagine as the primary amino acid precursor. The intake of large amounts of acrylamide has induced genotoxic and carcinogenic effects in hormone-sensitive tissues of animals. The enzime asparaginase is one of the most effective methods for lowering the formation of acrylamide in foods such as potatoes. However, the reported sensory outcomes for coffee have been unsatisfactory so far. This study aimed to produce coffees with reduced levels of acrylamide by treating them with asparaginase while retaining their original sensory and bioactive profiles. Three raw samples of Coffea arabica, including two specialty coffees, and one of Coffea canephora were treated with 1000, 2000, and 3000 ASNU of the enzyme. Asparagine and bioactive compounds (chlorogenic acids-CGA, caffeine, and trigonelline) were quantified in raw and roasted beans by HPLC and LC-MS, while the determination of acrylamide and volatile organic compounds was performed in roasted beans by CG-MS. Soluble solids, titratable acidity, and pH were also determined. Professional cupping by Q-graders and consumer sensory tests were also conducted. Results were analyzed by ANOVA-Fisher, MFA, PCA and Cluster analyses, with significance levels set at p ≤ 0.05. Steam treatment alone decreased acrylamide content by 18.4%, on average, and 6.1% in medium roasted arabica and canefora coffees. Average reductions of 32.5-56.0% in acrylamide formation were observed in medium roasted arabica beans when 1000-3000 ASNU were applied. In the canefora sample, 59.4-60.7% reductions were observed. However, steam treatment primarily caused 17.1-26.7% reduction of total CGA and lactones in medium roasted arabica samples and 13.9-22.0% in canefora sample, while changes in trigonelline, caffeine, and other evaluated chemical parameters, including the volatile profiles were minimal. Increasing enzyme loads slightly elevated acidity. The only sensory changes observed by Q-graders and or consumers in treated samples were a modest increase in acidity when 3000 ASNU was used in the sample with lower acidity, loss of mild off-notes in control samples, and increased perception of sensory descriptors. The former was selected given the similarity in chemical outcomes among beans treated with 2000 and 3000 ASNU loads.


Assuntos
Acrilamida , Asparaginase , Asparagina , Coffea , Café , Paladar , Acrilamida/análise , Asparagina/análise , Coffea/química , Café/química , Humanos , Compostos Orgânicos Voláteis/análise , Culinária/métodos , Alcaloides/análise , Ácido Clorogênico/análise , Cafeína/análise , Masculino , Manipulação de Alimentos/métodos , Reação de Maillard , Temperatura Alta , Cromatografia Líquida de Alta Pressão , Sementes/química , Feminino
2.
Plant Signal Behav ; 18(1): 2287883, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38019725

RESUMO

Soybean, a vital protein-rich crop, offers bioactivity that can mitigate various chronic human diseases. Nonetheless, soybean breeding poses a challenge due to the negative correlation between enhanced protein levels and overall productivity. Our previous studies demonstrated that applying gaseous phytohormone, ethylene, to soybean leaves significantly boosts the accumulation of free amino acids, particularly asparagine (Asn). Current studies also revealed that ethylene application to soybeans significantly enhanced both essential and non-essential amino acid contents in leaves and stems. Asn plays a crucial role in ammonia detoxification and reducing fatigue. However, the molecular evidence supporting this phenomenon remains elusive. This study explores the molecular mechanisms behind enhanced Asn accumulation in ethylene-treated soybean leaves. Transcriptional analysis revealed that ethylene treatments to soybean leaves enhance the transcriptional levels of key genes involved in Asn biosynthesis, such as aspartate aminotransferase (AspAT) and Asn synthetase (ASN), which aligns with our previous observations of elevated Asn levels. These findings shed light on the role of ethylene in upregulating Asn biosynthetic genes, subsequently enhancing Asn concentrations. This molecular insight into amino acid metabolism regulation provides valuable knowledge for the metabolic farming of crops, especially in elevating nutraceutical ingredients with non-genetic modification (GM) approach for improved protein content.


Assuntos
Asparagina , Glycine max , Aminoácidos/metabolismo , Asparagina/genética , Asparagina/análise , Asparagina/metabolismo , Etilenos/metabolismo , Sementes/metabolismo , Glycine max/genética , Glycine max/metabolismo
3.
Reprod Sci ; 30(11): 3285-3295, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37264261

RESUMO

Identifying the metabolome of human seminal plasma (HSP) is a new research area to screen putative biomarkers of infertility. This case-control study was performed on HSP specimens of 15 infertile patients with teratozoospermia (defined as normal sperm morphology < 4%) and 12 confirmed fertile normozoospermic men as the control group to investigate the seminal metabolic signature and whether there are differences in the metabolome between two groups. HSPs were subjected to LC-MS-MS analysis. MetaboAnalyst5.0 software was utilized for statistical analysis. Different univariate and multivariate analyses were used, including T-tests, fold change analysis, random forest (RF), and metabolite set enrichment analysis (MSEA). Teratozoospermic samples contained seventeen significantly different amino acids. Upregulated metabolites include glutamine, asparagine, and glycylproline, whereas downregulated metabolites include cysteine, γ-aminobutyric acid, histidine, hydroxylysine, hydroxyproline, glycine, proline, methionine, ornithine, tryptophan, aspartic acid, argininosuccinic acid, α-aminoadipic acid, and ß-aminoisobutyric acid. RF algorithm defined a set of 15 metabolites that constitute the significant features of teratozoospermia. In particular, increased glutamine, asparagine, and decreased cysteine, tryptophan, glycine, and valine were strong predictors of teratozoospemia. The most affected metabolic pathways in teratozoospermic men are the aminoacyl-tRNA, arginine, valine-leucine, and isoleucine biosynthesis. Altered metabolites detected in teratozoospermia were responsible for various roles in sperm functions that classified into four subgroups as follows: related metabolites to antioxidant function, energy production, sperm function, and spermatogenesis. The altered amino acid metabolome identified in this study may be related to the etiology of teratozoospermia, and may provide novel insight into potential biomarkers of male infertility for therapeutic targets.


Assuntos
Aminoácidos , Teratozoospermia , Humanos , Masculino , Aminoácidos/análise , Aminoácidos/metabolismo , Sêmen/metabolismo , Teratozoospermia/metabolismo , Triptofano/análise , Triptofano/metabolismo , Asparagina/análise , Asparagina/metabolismo , Cromatografia Líquida , Cisteína/metabolismo , Glutamina/análise , Glutamina/metabolismo , Estudos de Casos e Controles , Espectrometria de Massas em Tandem , Glicina/análise , Glicina/metabolismo , Valina/análise , Valina/metabolismo , Biomarcadores/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-36919530

RESUMO

Maximum levels of acrylamide have been set by the European Commission (EU) 2017/2158 for several food products due to its carcinogenic properties. Although not regulated yet, European buyers are requesting maximum levels of 0.8 mg kg-1 in artisanal panela (raw cane sugar) from northern Peru. Panela in this area is produced by 600 small holder farmers and exportation guarantees a respectable price in an area with a high index of poverty. The objective here was to determine the cause of high acrylamide concentrations in panela to inform cost effective minimisation strategies. We monitored panela production from field to final product to understand the scale of the problem, identify the cause of acrylamide formation, as well as the effect of storage on its concentration. We also determined the utility of rapid kits for asparagine quantification. Our results indicate that high acrylamide levels are a widespread problem (85% of samples analysed) and there was a correlation between acrylamide and asparagine of R2 = 0.58 (p < 0.001), but not with any post-harvest processing variable. We estimate that with a concentration of asparagine of <0.1 g l-1 in sugarcane juice, the threshold set by buyers for acrylamide can be met. Potential solutions to reduce asparagine include varietal selection, improved agronomic practices and the use of asparaginase during panela production. However, any proposed measure should be applicable in the context of the rural Peru. Additionally, we confirm the utility of rapid and low-cost kits for measuring asparagine. This pioneering study provides a baseline for effective management for acrylamide minimization in panela.


Assuntos
Acrilamida , Asparagina , Asparagina/análise , Peru , Acrilamida/análise , Açúcares , Carcinógenos/análise , Temperatura Alta
5.
Genes (Basel) ; 11(11)2020 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-33114541

RESUMO

In fish, sperm motility activation is one of the most essential procedures for fertilization. Previous studies have mainly focused on the external environmental effects and intracellular signals in sperm activation; however, little is known about the metabolic process of sperm motility activation in fish. In the present study, using ricefield eel (Monopterus albus) sperm as a model, metabonomics was used to analyze the metabolic mechanism of the sperm motility activation in fish. Firstly, 529 metabolites were identified in the sperm of ricefield eel, which were clustered into the organic acids, amino acids, nucleotides, benzene, and carbohydrates, respectively. Among them, the most abundant metabolites in sperm were L-phenylalanine, DL-leucine, L-leucine, lysolecithin choline 18:0, L-tryptophan, adenine, hypoxanthine, 7-Methylguanine, shikimic acid, and L-tyrosine. Secondly, compared to pre-activated sperm, the level of S-sulfo-L-cysteine and L-asparagine were both increased in the post-activated sperm. Ninety-two metabolites were decreased in the post-activated sperm, including quinic acid, acetylsalicylic acid, 7,8-dihydro L-biopterin, citric acid, glycylphenylalanine, and dihydrotachysterol (DHT). Finally, basing on the pathway analysis, we found that the changed metabolites in sperm motility activation were mainly clustered into energy metabolism and anti-oxidative stress. Fish sperm motility activation would be accompanied by the release of a large amount of energy, which might damage the genetic material of sperm. Thus, the anti-oxidative stress function is a critical process to maintain the normal physiological function of sperm.


Assuntos
Enguias/metabolismo , Metabolismo Energético/fisiologia , Estresse Oxidativo/fisiologia , Motilidade dos Espermatozoides/fisiologia , Espermatozoides/metabolismo , Animais , Asparagina/análise , China , Cisteína/análogos & derivados , Cisteína/análise , Enguias/genética , Fertilização/fisiologia , Masculino , Metaboloma/fisiologia , Metabolômica/métodos , Espécies Reativas de Oxigênio/metabolismo
6.
Biomolecules ; 10(1)2020 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-31968674

RESUMO

The N-degron pathway is a proteolytic system in which a single N-terminal amino acid acts as a determinant of protein degradation. Especially, degradation signaling of N-terminal asparagine (Nt-Asn) in eukaryotes is initiated from its deamidation by N-terminal asparagine amidohydrolase 1 (NTAN1) into aspartate. Here, we have elucidated structural principles of deamidation by human NTAN1. NTAN1 adopts the characteristic scaffold of CNF1/YfiH-like cysteine hydrolases that features an α-ß-ß sandwich structure and a catalytic triad comprising Cys, His, and Ser. In vitro deamidation assays using model peptide substrates with varying lengths and sequences showed that NTAN1 prefers hydrophobic residues at the second-position. The structures of NTAN1-peptide complexes further revealed that the recognition of Nt-Asn is sufficiently organized to produce high specificity, and the side chain of the second-position residue is accommodated in a hydrophobic pocket adjacent to the active site of NTAN1. Collectively, our structural and biochemical analyses of the substrate specificity of NTAN1 contribute to understanding the structural basis of all three amidases in the eukaryotic N-degron pathway.


Assuntos
Amidoidrolases/metabolismo , Asparagina/metabolismo , Peptídeos/metabolismo , Proteólise , Amidoidrolases/química , Asparagina/análise , Domínio Catalítico , Cristalografia por Raios X , Humanos , Modelos Moleculares , Peptídeos/química , Especificidade por Substrato
7.
Biosci Rep ; 39(2)2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30760632

RESUMO

G protein-coupled receptor 30 (GPR30), or G protein-coupled estrogen receptor (GPER), is a G protein-coupled receptor (GPCR) that is currently attracting considerable attention in breast cancer and cardiometabolic regulation. The receptor was reported to be a novel membrane estrogen receptor mediating rapid non-genomic responses. However, questions remain about both the cognate ligand and the subcellular localization of receptor activity. Here, we used human embryonic kidney (HEK) 293 (HEK293) cells ectopically expressing N-terminally FLAG-tagged human GPR30 and three unique antibodies (Ab) specifically targetting the receptor N-terminal domain (N-domain) to investigate the role of N-glycosylation in receptor maturation and activity, the latter assayed by constitutive receptor-stimulated extracellular-regulated protein kinase (ERK) 1/2 (ERK1/2) activity. GPR30 expression was complex with receptor species spanning from approximately 40 kDa to higher molecular masses and localized in the endoplasmatic reticulum (ER), the plasma membrane (PM), and endocytic vesicles. The receptor contains three conserved asparagines, Asn25, Asn32, and Asn44, in consensus N-glycosylation motifs, all in the N-domain, and PNGase F treatment showed that at least one of them is N-glycosylated. Mutating Asn44 to isoleucine inactivated the receptor, yielding a unique receptor species at approximately 20 kDa that was recognized by Ab only in a denatured state. On the other hand, mutating Asn25 or Asn32 either individually or in combination, or truncating successively N-domain residues 1-42, had no significant effect either on receptor structure, maturation, or activity. Thus, Asn44 in the GPR30 N-domain is required for receptor structure and activity, whereas N-domain residues 1-42, including specifically Asn25 and Asn32, do not play any major structural or functional role(s).


Assuntos
Asparagina/metabolismo , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Sequência de Aminoácidos , Asparagina/análise , Glicosilação , Células HEK293 , Humanos , Proteína Quinase 1 Ativada por Mitógeno/análise , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/análise , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Conformação Proteica , Domínios Proteicos , Receptores de Estrogênio/análise , Receptores Acoplados a Proteínas G/análise
8.
Theor Appl Genet ; 131(11): 2427-2437, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30128740

RESUMO

KEY MESSAGE: A large genetic variation, moderately high heritability, and promising prediction ability for genomic selection show that wheat breeding can substantially reduce the acrylamide forming potential in bread wheat by a reduction in its precursor asparagine. Acrylamide is a potentially carcinogenic substance that is formed in baked products of wheat via the Maillard reaction from carbonyl sources and asparagine. In bread, the acrylamide content increases almost linearly with the asparagine content of the wheat grains. Our objective was, therefore, to investigate the potential of wheat breeding to contribute to a reduction in acrylamide by decreasing the asparagine content in wheat grains. To this end, we evaluated 149 wheat varieties from Central Europe at three locations for asparagine content, as well as for sulfur content, and five important quality traits regularly assessed in bread wheat breeding. The mean asparagine content ranged from 143.25 to 392.75 mg/kg for the different wheat varieties, thus underlining the possibility to reduce the acrylamide content of baked wheat products considerably by selecting appropriate varieties. Furthermore, a moderately high heritability of 0.65 and no negative correlations with quality traits like protein content, sedimentation volume and falling number show that breeding of quality wheat with low asparagine content is feasible. Genome-wide association mapping identified few QTL for asparagine content, the largest explaining 18% of the genotypic variance. Combining these QTL with a genome-wide prediction approach yielded a mean cross-validated prediction ability of 0.62. As we observed a high genotype-by-environment interaction for asparagine content, we recommend the costly and slow laboratory analysis only for late breeding generations, while selection in early generations could be based on marker-assisted or genomic selection.


Assuntos
Acrilamida , Asparagina/análise , Mapeamento Cromossômico , Triticum/química , Triticum/genética , Pão , Grão Comestível/genética , Estudos de Associação Genética , Genótipo , Fenótipo , Melhoramento Vegetal , Locos de Características Quantitativas , Enxofre/análise
9.
Cancer Sci ; 109(5): 1672-1681, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29575390

RESUMO

Discovery of a high-risk group for pancreatic cancer is important for prevention of pancreatic cancer. The present study was conducted as a nested case-control study including 170 pancreatic cancer cases and 340 matched controls of our population-based cohort study involving 30 239 subjects who answered a baseline questionnaire and supplied blood samples. Twelve targeted metabolites were quantitatively analyzed by gas chromatography/tandem mass spectrometry. Odds ratios (OR) and their corresponding 95% confidence intervals (CI) were calculated using conditional logistic regression models. Statistically significant P-value was defined as P < .05. Increasing 1,5-anhydro-d-glucitol (1,5-AG) levels were associated with a decreasing trend in pancreatic cancer risk (OR of quartile 4 [Q4], 0.50; 95% CI, 0.27-0.93; P = .02). Increasing methionine levels were also associated with an increasing trend of pancreatic cancer risk (OR of Q4, 1.79; 95% CI, 0.94-3.40: P = .03). Additional adjustment for potential confounders attenuated the observed associations of 1,5-AG and methionine (P for trend = .06 and .07, respectively). Comparing subjects diagnosed in the first 0-6 years, higher levels of 1,5-AG, asparagine, tyrosine and uric acid showed a decreasing trend for pancreatic cancer risk (P for trend = .04, .04, .04 and .02, respectively), even after adjustment for potential confounders. We found that the 12 target metabolites were not associated with pancreatic cancer risk. However, metabolic changes in the subjects diagnosed in the first 0-6 years showed a similar tendency to our previous reports. These results might suggest that these metabolites are useful for early detection but not for prediction of pancreatic cancer.


Assuntos
Metaboloma , Neoplasias Pancreáticas/metabolismo , Adulto , Idoso , Asparagina/análise , Estudos de Casos e Controles , Desoxiglucose/análise , Feminino , Humanos , Modelos Logísticos , Masculino , Metionina/análise , Pessoa de Meia-Idade , Neoplasias Pancreáticas/etiologia , Estudos Prospectivos , Risco
10.
J Pharm Sci ; 106(6): 1528-1537, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28263844

RESUMO

Since the introduction of Herceptin and Rituximab in 1986, therapeutic antibodies have gained tremendous momentum in the treatment of broad range of several diseases such as cancer and inflammation. Selection of the clinical candidate mAb usually starts with large-scale in vitro screening and profiling of multiple mAbs to identify candidates that show high in vitro or in vivo activity, and thus it is necessarily to identify and eliminate potentially unstable mAbs during the lead selection process. Antibodies undergo a variety of degradation reactions that may result in compromised bioactivity and safety profile. The nonenzymatic post-translational modification of both deamidation of asparagine and isomerization of aspartate residues is one of the major chemical reactions occurring in proteins during production and storage resulting in formation of protein variants that may affect the quality, safety, and functionality of the therapeutic proteins. Current methods (HPLC and liquid chromatography and mass spectrometry) for monitoring isoaspartate (isoAsp) formation are time consuming, require specialized equipment and trained personnel, and are not amenable to high-throughput scaling. We have developed a robust, homogenous, high-throughput formatted, and sensitive assay to accurately monitor the formation of isoAsp under several conditions, such as new formulations, storage periods, and temperature.


Assuntos
Amidas/análise , Asparagina/análise , Ácido Aspártico/análise , Proteínas/química , Animais , Antineoplásicos Imunológicos/química , Bevacizumab/química , Calmodulina/química , Bovinos , Ensaios de Triagem em Larga Escala/métodos , Humanos , Isomerismo , Medições Luminescentes/métodos , Mioglobina/química
11.
J Am Soc Mass Spectrom ; 28(5): 818-826, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28050869

RESUMO

Peptides with deamidated asparagine residues and oxidized methionine residues are often not resolved sufficiently to allow quantitation of their native and modified forms using reversed phase (RP) chromatography. The accurate quantitation of these modifications is vital in protein biotherapeutic analysis because they can affect a protein's function, activity, and stability. We demonstrate here that hydrophilic interaction liquid chromatography (HILIC) adequately and predictably separates peptides with these modifications from their native counterparts. Furthermore, coefficients describing the extent of the hydrophilicity of these modifications have been derived and were incorporated into a previously made peptide retention prediction model that is capable of predicting the retention times of peptides with and without these modifications. Graphical Abstract ᅟ.


Assuntos
Cromatografia Líquida/métodos , Imunoglobulina G/química , Espectrometria de Massas/métodos , Peptídeos/análise , Amidas/análise , Sequência de Aminoácidos , Asparagina/análise , Humanos , Interações Hidrofóbicas e Hidrofílicas , Metionina/análise , Oxirredução
12.
Artigo em Inglês | MEDLINE | ID: mdl-27237733

RESUMO

An etanercept biosimilar, TuNEX(®), was compared to the innovator drug, Enbrel(®), for its reaction to stress-induced oxidation and deamidation, which may affect drug efficacy. A tryptic peptide map of both etanercept products was generated by liquid chromatography (LC) using mass spectrometry (MS) and ultraviolet (UV) spectrophotometry detection methods. The sequence of each modified or non-modified peptide peak was assigned based on accurate measurement of the mass of the protein and analysis utilizing tandem MS. Similar profiles of intrinsic oxidation on methionine (M) and deamidation on asparagine (N) were obtained for the two products, regardless of a two-amino acid (AA) residue variance in the heavy chain (Fc) between them. The level of oxidative stress exerted by tert-butyl hydroperoxide (tBHP), and alkaline stress exerted by a pH 10.4 solution, was examined using an LC-UV method. The results indicated that TuNEX(®) demonstrated a similar stress-induced modification profile compared to that of Enbrel(®). For both products, oxidative stress increased the oxidation from an intrinsically low (0-6.9%) to moderate or high (42-100%) level for almost all M residues (M30, M174, M187, M223, M272, and M448); alkaline stress increased the deamidation level of N404 from a low (0.0 or 1.7%) to moderate (19-26%) level. Based the results of a cell-based bioactivity assay, TuNEX(®) also exhibited a similar level of bioactivity as Enbrel(®) in unstressed, oxidative-stressed, or alkaline-stressed conditions. The bioactivity of both products remained unaltered by oxidative stress but was reduced by alkali stress. In conclusion, our data indicated that TuNEX(®) exhibits a similar chemical stress profile as that of Enbrel(®) in terms of oxidation and deamidation as well as bioactivity.


Assuntos
Anti-Inflamatórios não Esteroides/química , Medicamentos Biossimilares/química , Etanercepte/química , Imunoglobulina G/química , Receptores do Fator de Necrose Tumoral/química , Proteínas Recombinantes de Fusão/química , Amidas/análise , Sequência de Aminoácidos , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Asparagina/análise , Medicamentos Biossimilares/farmacologia , Linhagem Celular , Estabilidade de Medicamentos , Etanercepte/farmacologia , Imunoglobulina G/farmacologia , Metionina/análise , Camundongos , Oxirredução , Estresse Oxidativo , Proteínas Recombinantes de Fusão/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
13.
J Sci Food Agric ; 96(2): 548-54, 2016 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-25656956

RESUMO

BACKGROUND: Acrylamide (AA) is a potential carcinogen which widely exists in heat-processed foods. The addition of glycine (Gly) has been shown to reduce the formation of AA. The objective of this work was to investigate the kinetics of the inhibition of AA by Gly in both asparagine (Asn)/glucose (Glc) and Asn/Glc/Gly potato model systems during heating at 160 °C, 180 °C, and 200 °C. RESULTS: The simplified two consecutive first-order kinetic model fitted well to the changes of AA in both systems. No significant difference in rate constant (kF) and apparent activation energy (EaF) was observed for AA formation between the two systems (P > 0.05). Whereas EaE and only kE at 200 °C for AA elimination in the Asn/Glc/Gly system was significantly higher than Asn/Glc system (P < 0.05). The elimination reaction between Gly and AA was confirmed by the identification of their major reaction product 2-((3-amino-3-oxopropyl)amino)acetic acid in the Asn/Glc/(15) N-Gly system. CONCLUSION: The reduction of AA by Gly is predominantly attributed to the elimination reaction between Gly and AA.


Assuntos
Acrilamida/antagonistas & inibidores , Glicina/farmacologia , Solanum tuberosum/química , Acrilamida/análise , Acrilamida/química , Asparagina/análise , Asparagina/química , Carcinógenos/antagonistas & inibidores , Carcinógenos/química , Cromatografia Líquida de Alta Pressão , Glucose/análise , Glucose/química , Glicina/análise , Glicina/química , Temperatura Alta , Cinética , Espectrometria de Massas em Tandem , Termodinâmica
14.
Biochem Biophys Res Commun ; 457(4): 526-31, 2015 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-25597996

RESUMO

XRCC4 is one of the crucial proteins in the repair of DNA double-strand break (DSB) through non-homologous end-joining (NHEJ). As XRCC4 consists of 336 amino acids, N-terminal 200 amino acids include domains for dimerization and for association with DNA ligase IV and XLF and shown to be essential for XRCC4 function in DSB repair and V(D)J recombination. On the other hand, the role of the remaining C-terminal region of XRCC4 is not well understood. In the present study, we noticed that a stretch of ∼20 amino acids located at the extreme C-terminus of XRCC4 is highly conserved among vertebrate species. To explore its possible importance, series of mutants in this region were constructed and assessed for the functionality in terms of ability to rescue radiosensitivity of M10 cells lacking XRCC4. Among 13 mutants, M10 transfectant with N326L mutant (M10-XRCC4(N326L)) showed elevated radiosensitivity. N326L protein showed defective nuclear localization. N326L sequence matched the consensus sequence of nuclear export signal. Leptomycin B treatment accumulated XRCC4(N326L) in the nucleus but only partially rescued radiosensitivity of M10-XRCC4(N326L). These results collectively indicated that the functional defects of XRCC4(N326L) might be partially, but not solely, due to its exclusion from nucleus by synthetic nuclear export signal. Further mutation of XRCC4 Asn326 to other amino acids, i.e., alanine, aspartic acid or glutamine did not affect the nuclear localization but still exhibited radiosensitivity. The present results indicated the importance of the extremely C-terminal region of XRCC4 and, especially, Asn326 therein.


Assuntos
Asparagina/genética , Sobrevivência Celular/efeitos da radiação , Proteínas de Ligação a DNA/genética , Mutação Puntual , Sequência de Aminoácidos , Animais , Antibióticos Antineoplásicos/farmacologia , Asparagina/análise , Asparagina/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Reparo do DNA por Junção de Extremidades/efeitos dos fármacos , Reparo do DNA por Junção de Extremidades/efeitos da radiação , Proteínas de Ligação a DNA/análise , Proteínas de Ligação a DNA/metabolismo , Ácidos Graxos Insaturados/farmacologia , Células HeLa , Humanos , Camundongos , Dados de Sequência Molecular , Alinhamento de Sequência
15.
Food Funct ; 6(1): 109-14, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25468219

RESUMO

This study investigated the fate of acrylamide in thermally processed foods after ingestion. An in vitro multistep enzymatic digestion system simulating gastric, duodenal and colon phases was used to understand the fate of acrylamide in bakery and fried potato products. Acrylamide levels gradually decreased through gastric, duodenal and colon phases during in vitro digestion of biscuits. At the end of digestion, acrylamide reduction was between 49.2% and 73.4% in biscuits. Binary model systems composed of acrylamide and amino acids were used to understand the mechanism of acrylamide reduction. High-resolution mass spectrometry analyses confirmed Michael addition of amino acids to acrylamide during digestion. In contrast to bakery products, acrylamide levels increased significantly during gastric digestion of fried potatoes. The Schiff base formed between reducing sugars and asparagine disappeared rapidly, whereas the acrylamide level increased during the gastric phase. This suggests that intermediates like the Schiff base that accumulate in potatoes during frying are potential precursors of acrylamide under gastric conditions.


Assuntos
Acrilamida/química , Pão/análise , Culinária , Digestão , Modelos Moleculares , Raízes de Plantas/química , Solanum tuberosum/química , Acrilamida/análise , Acrilamida/metabolismo , Asparagina/análise , Asparagina/química , Asparagina/metabolismo , Carcinógenos/análise , Carcinógenos/química , Carcinógenos/metabolismo , Cistina/análise , Cistina/química , Cistina/metabolismo , Carboidratos da Dieta/análise , Carboidratos da Dieta/metabolismo , Contaminação de Alimentos , Suco Gástrico/química , Suco Gástrico/enzimologia , Suco Gástrico/metabolismo , Temperatura Alta/efeitos adversos , Humanos , Secreções Intestinais/química , Secreções Intestinais/enzimologia , Secreções Intestinais/metabolismo , Lisina/análise , Lisina/química , Lisina/metabolismo , Estrutura Molecular , Bases de Schiff/análise , Bases de Schiff/química , Bases de Schiff/metabolismo
18.
J Sci Food Agric ; 93(10): 2556-61, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23580468

RESUMO

BACKGROUND: Acrylamide as a possible carcinogen is known to form in heated carbohydrate-rich food such as potato chips. In this study, the effect of three potato varieties (Agria, Sante and Savalan) and two blanching conditions (75 °C for 9 min and 83 °C for 2.5 min) on the concentration of precursors and acrylamide reduction in potato chips was investigated. RESULTS: Results revealed that potato variety and blanching time-temperature were important parameters for acrylamide formation in potato chips. Acrylamide content in Sante variety potatoes, which contained the highest amount of reducing sugars, was found to be the highest (8825 µg kg(-1)). However, Savalan, containing the highest asparagine concentration, showed the lowest amount of acrylamide due to its lower reducing sugar content. Blanching reduced acrylamide formation; it was more efficient at 75 °C for 9 min, with an average reduction of 74%. The effect of three frying temperatures (170, 180 and 190 °C) on acrylamide formation was also studied just for the Agria potato variety. Increasing frying temperature led to a significant increase in acrylamide formation. CONCLUSION: Potato variety and processing conditions were important parameters for acrylamide formation in potato chips. The combination of a suitable variety and appropriate processing conditions could considerably reduce acrylamide content.


Assuntos
Acrilamida , Culinária , Temperatura Alta , Tubérculos/química , Solanum tuberosum/química , Acrilamida/efeitos adversos , Asparagina/análise , Sacarose Alimentar/análise , Irã (Geográfico) , Solanum tuberosum/classificação , Especificidade da Espécie
19.
Pediatr Blood Cancer ; 60(2): 258-61, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22961784

RESUMO

BACKGROUND: Mesenchymal cells (MSCs) in bone marrow (BM) may produce asparagine and form protective niches for leukemic cells. In vitro, this led to high levels of asparagine and conferred asparaginase resistance to acute lymphoblastic leukemia (ALL) cells. The aim of this study was to investigate whether MSCs or other cells in BM indeed produce such significant amounts of asparagine in vivo as to result in clinical asparaginase resistance. PROCEDURE: Twenty-six patients with newly diagnosed ALL were enrolled. All children received induction chemotherapy according to the Dutch Childhood Oncology Group (DCOG) ALL-10 protocol. Asparaginase was administered from days 12-33. Asparaginase, asparagine, aspartic acid, glutamine, and glutamic acid levels were measured in BM and blood at diagnosis, days 15, 33, and 79. RESULTS: Median asparaginase trough levels were not significantly different at days 15 and 33. Only at diagnosis, asparagine level was significantly higher in BM than in blood (P = 0.001). Asparagine levels were all below the lower limit of quantification in BM and blood at days 15 and 33. However, aspartic acid level in BM was significantly higher than in blood (P < 0.001) at diagnosis, and also at days 15, 33, and 79. CONCLUSIONS: We demonstrate higher aspartic acid levels in BM compared to blood; however, no increased asparagine levels were seen during induction therapy containing asparaginase in BM when compared to blood. Therefore, increased asparagine synthesis by MSCs is of relevance for resistance to asparaginase of leukemic cells in vitro, but it is questionable whether this leads to asparaginase resistance in childhood ALL patients.


Assuntos
Asparaginase/uso terapêutico , Asparagina/análise , Medula Óssea/química , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Adolescente , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino
20.
J Agric Food Chem ; 60(41): 10245-55, 2012 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-23046062

RESUMO

Jujube (Ziziphus jujube) was analyzed at eight stages of ripeness (S1-8) for protein, by HPLC and mass spectroscopy for free amino acids and flavonoids, and by colorimetry for total flavonoids and antioxidative activity. The ripe fruit had lower levels of protein, flavonoids, and antioxidative activity than that of the unripe fruit. Free amino acids levels peaked at S5, due mainly to an increase in free asparagine. Extracts were also tested against four cell lines using the MTT cell viability assay. All growth stages dose-dependently inhibited HeLa cervical cancer cells, whereas the inhibition of Hel299 normal lung and A549 lung cancer cells decreased as the fruit matured and was well correlated with the flavonoid content and antioxidative activity. Chang normal liver cells were inhibited by only the S5 extract. U937 lymphoma cells were unaffected by the extracts. These results show the effect of fruit maturity on nutritional and health-promoting components.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Antioxidantes/farmacologia , Flavonoides/análise , Frutas/química , Frutas/crescimento & desenvolvimento , Ziziphus/química , Aminoácidos/análise , Asparagina/análise , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Células HeLa , Humanos , Neoplasias Pulmonares , Extratos Vegetais/farmacologia , Proteínas de Plantas/análise , Células U937
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA