Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mar Drugs ; 19(11)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34822459

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a devastating digestive system carcinoma with high incidence and death rates. PDAC cells are dependent on the Gln metabolism, which can preferentially utilize glutamic oxaloacetate transaminase 1 (GOT1) to maintain the redox homeostasis of cancer cells. Therefore, small molecule inhibitors targeting GOT1 can be used as a new strategy for developing cancer therapies. In this study, 18 butyrolactone derivatives (1-18) were isolated from a marine-derived Aspergillus terreus, and asperteretone B (5), aspulvinone H (AH, 6), and (+)-3',3'-di-(dimethylallyl)-butyrolactone II (12) were discovered to possess significant GOT1-inhibitory activities in vitro, with IC50 values of (19.16 ± 0.15), (5.91 ± 0.04), and (26.38 ± 0.1) µM, respectively. Significantly, the molecular mechanism of the crystal structure of GOT1-AH was elucidated, wherein AH and the cofactor pyrido-aldehyde 5-phosphate competitively bound to the active sites of GOT1. More importantly, although the crystal structure of GOT1 has been discovered, the complex structure of GOT1 and its inhibitors has never been obtained, and the crystal structure of GOT1-AH is the first reported complex structure of GOT1/inhibitor. Further in vitro biological study indicated that AH could suppress glutamine metabolism, making PDAC cells sensitive to oxidative stress and inhibiting cell proliferation. More significantly, AH exhibited potent in vivo antitumor activity in an SW1990-cell-induced xenograft model. These findings suggest that AH could be considered as a promising lead molecule for the development of anti-PDAC agents.


Assuntos
Antineoplásicos/farmacologia , Aspartato Aminotransferase Citoplasmática/antagonistas & inibidores , Aspergillus , Inibidores Enzimáticos/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Organismos Aquáticos , Carcinoma Ductal Pancreático/tratamento farmacológico , Linhagem Celular Tumoral/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/uso terapêutico , Humanos , Concentração Inibidora 50 , Neoplasias Pancreáticas/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Nat Commun ; 12(1): 4860, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34381026

RESUMO

Cancer metabolism is rewired to support cell survival in response to intrinsic and environmental stressors. Identification of strategies to target these adaptions is an area of active research. We previously described a cytosolic aspartate aminotransaminase (GOT1)-driven pathway in pancreatic cancer used to maintain redox balance. Here, we sought to identify metabolic dependencies following GOT1 inhibition to exploit this feature of pancreatic cancer and to provide additional insight into regulation of redox metabolism. Using pharmacological methods, we identify cysteine, glutathione, and lipid antioxidant function as metabolic vulnerabilities following GOT1 withdrawal. We demonstrate that targeting any of these pathways triggers ferroptosis, an oxidative, iron-dependent form of cell death, in GOT1 knockdown cells. Mechanistically, we reveal that GOT1 inhibition represses mitochondrial metabolism and promotes a catabolic state. Consequently, we find that this enhances labile iron availability through autophagy, which potentiates the activity of ferroptotic stimuli. Overall, our study identifies a biochemical connection between GOT1, iron regulation, and ferroptosis.


Assuntos
Aspartato Aminotransferase Citoplasmática/antagonistas & inibidores , Ferroptose , Neoplasias Pancreáticas/metabolismo , Animais , Antioxidantes/farmacologia , Aspartato Aminotransferase Citoplasmática/genética , Aspartato Aminotransferase Citoplasmática/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular/efeitos dos fármacos , Cistina/metabolismo , Ferroptose/efeitos dos fármacos , Glutationa/biossíntese , Humanos , Ferro/metabolismo , Camundongos , Mitocôndrias/metabolismo , Neoplasias Pancreáticas/patologia
3.
Transl Res ; 230: 68-81, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33132087

RESUMO

Glutamate oxaloacetate transaminase 1 (GOT1) enzyme plays a critical role in the cell metabolism by participating in the carbohydrate and amino acid metabolism. In ischemic stroke, we have demonstrated that recombinant GOT1 acts as a novel neuroprotective treatment against the excess of extracellular glutamate that accumulates in the brain following ischemic stroke. In this study, we investigated the inhibitory effect of GOT1 on brain metabolism and on the ischemic damage in a rat model of ischemic stroke by means of a specific antibody developed against this enzyme. Inhibition of GOT1 caused higher brain glutamate and lactate levels and this response was associated with larger ischemic lesion. This study represents the first demonstration that the inhibition of the blood GOT1 activity leads to more severe ischemic damage and poorer outcome and supports the protective role of GOT1 against ischemic insults.


Assuntos
Aspartato Aminotransferase Citoplasmática/antagonistas & inibidores , Aspartato Aminotransferase Citoplasmática/metabolismo , Isquemia Encefálica/enzimologia , Isquemia Encefálica/patologia , Animais , Anticorpos , Aspartato Aminotransferase Citoplasmática/líquido cefalorraquidiano , Encéfalo/enzimologia , Clonagem Molecular , Relação Dose-Resposta Imunológica , Ácido Glutâmico/sangue , Células Hep G2 , Humanos , Imunoglobulina G , Ácido Láctico/sangue , Masculino , Ratos , Ratos Sprague-Dawley
4.
Biochem Biophys Res Commun ; 522(3): 633-638, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-31787239

RESUMO

Metabolic programs are rewired in cancer cells to support survival and tumor growth. Among these, recent studies have demonstrated that glutamate-oxaloacetate transaminase 1 (GOT1) plays key roles in maintaining redox homeostasis and proliferation of pancreatic ductal adenocarcinomas (PDA). This suggests that small molecule inhibitors of GOT1 could have utility for the treatment of PDA. However, the development of GOT1 inhibitors has been challenging, and no compound has yet demonstrated selectivity for GOT1-dependent cell metabolism or selective growth inhibition of PDA cell lines. In contrast, potent inhibitors that covalently bind to the transaminase cofactor pyridoxal-5'-phosphate (PLP), within the active site of the enzyme, have been reported for kynurenine aminotransferase (KAT) and gamma-aminobutyric acid aminotransferase (GABA-AT). Given the drug discovery successes with these transaminases, we aimed to identify PLP-dependent suicide substrate-type GOT1 inhibitors. Here, we demonstrate that PF-04859989, a known KAT2 inhibitor, has PLP-dependent inhibitory activity against GOT1 and shows selective growth inhibition of PDA cell lines.


Assuntos
Aspartato Aminotransferase Citoplasmática/antagonistas & inibidores , Carcinoma Ductal Pancreático/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Pirazóis/farmacologia , Aspartato Aminotransferase Citoplasmática/metabolismo , Carcinoma Ductal Pancreático/enzimologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Descoberta de Drogas , Humanos , Neoplasias Pancreáticas/enzimologia
5.
Bioorg Chem ; 93: 103315, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31605927

RESUMO

Glutamic-oxaloacetic transaminase 1 (GOT1) regulates cellular metabolism through coordinating the utilization of carbohydrates and amino acids to meet nutrient requirements for sustained proliferation. As such, the GOT1 inhibitor may provide a new strategy for the treatment of various cancers. Adapalene has been approved by FDA for the treatment of acne, pimples and pustules, and it may also contribute to the adjunctive therapy for advanced stages of liver and colorectal cancers. In this work, we first examined the enzyme inhibition of over 500 compounds against GOT1 in vitro. As a result, Adapalene effectively inhibited GOT1 enzyme in a non-competitive manner. MST and DARTS assay further confirmed the high affinity between Adapalene and GOT1. Furthermore, the growth and migration of ovarian cancer ES-2 cells were obviously inhibited by the treatment of Adapalene. And it induced the apoptosis of ES-2 cells according to Western blot and Hoechst 33258 straining. In addition, molecular docking demonstrated that Adapalene coordinated in an allosteric site of GOT1 with low binding energy. Furthermore, knockdown of GOT1 in ES-2 cells decreased their anti-proliferative sensitivity to Adapalene. Together, our data strongly suggest Adapalene, as a GOT1 inhibitor, could be regarded as a potential drug candidate for ovarian cancer therapy.


Assuntos
Adapaleno/química , Aspartato Aminotransferase Citoplasmática/antagonistas & inibidores , Adapaleno/metabolismo , Adapaleno/farmacologia , Sítio Alostérico , Aspartato Aminotransferase Citoplasmática/genética , Aspartato Aminotransferase Citoplasmática/metabolismo , Sítios de Ligação , Domínio Catalítico , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Cinética , Simulação de Acoplamento Molecular , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Ligação Proteica , Interferência de RNA , RNA Interferente Pequeno/metabolismo
6.
Biochemistry ; 57(47): 6604-6614, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30365304

RESUMO

Pancreatic cancer cells are characterized by deregulated metabolic programs that facilitate growth and resistance to oxidative stress. Among these programs, pancreatic cancers preferentially utilize a metabolic pathway through the enzyme aspartate aminotransferase 1 [also known as glutamate oxaloacetate transaminase 1 (GOT1)] to support cellular redox homeostasis. As such, small molecule inhibitors that target GOT1 could serve as starting points for the development of new therapies for pancreatic cancer. We ran a high-throughput screen for inhibitors of GOT1 and identified a small molecule, iGOT1-01, with in vitro GOT1 inhibitor activity. Application in pancreatic cancer cells revealed metabolic and growth inhibitory activity reflecting a promiscuous inhibitory profile. We then performed an in silico docking analysis to study inhibitor-GOT1 interactions with iGOT1-01 analogues that possess improved solubility and potency properties. These results suggested that the GOT1 inhibitor competed for binding to the pyridoxal 5-phosphate (PLP) cofactor site of GOT1. To analyze how the GOT1 inhibitor bound to GOT1, a series of GOT1 mutant enzymes that abolished PLP binding were generated. Application of the mutants in X-ray crystallography and thermal shift assays again suggested but were unable to formally conclude that the GOT1 inhibitor bound to the PLP site. Mutational studies revealed the relationship between PLP binding and the thermal stability of GOT1 while highlighting the essential nature of several residues for GOT1 catalytic activity. Insight into the mode of action of GOT1 inhibitors may provide leads to the development of drugs that target redox balance in pancreatic cancer.


Assuntos
Aspartato Aminotransferase Citoplasmática/antagonistas & inibidores , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/patologia , Inibidores Enzimáticos/farmacologia , Mutação , Neoplasias Pancreáticas/patologia , Aspartato Aminotransferase Citoplasmática/genética , Aspartato Aminotransferase Citoplasmática/metabolismo , Sítios de Ligação , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Cristalografia por Raios X , Inibidores Enzimáticos/química , Ensaios de Triagem em Larga Escala , Humanos , Metabolômica , Modelos Moleculares , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Conformação Proteica , Relação Estrutura-Atividade , Células Tumorais Cultivadas
7.
Cancer Chemother Pharmacol ; 79(4): 835-840, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28314989

RESUMO

PURPOSE: Almost all colorectal cancer (CRC) cell lines are known to overexpress aspartate aminotransferase (GOT1), which potentially regulates the intracellular levels of reactive oxygen species (ROS) via the production of NADPH, and supports tumor growth. In our study, the role of GOT1 in the anticancer efficacy of 5-fluorouracil (5-FU) was examined. METHODS: HCT116, SW480, and HT-29 cells were transfected with lentiviral vectors expressing short hairpin RNA (shRNA) against GOT1. Following 5-FU treatment, cellular proliferation was evaluated, the NADP+/NADPH ratio was monitored, ROS was measured, and intracellular levels of glutamine (Gln), Aspartate (Asp), oxaloacetate (OAA), malate, and pyruvate were investigated using liquid chromatography-mass spectrometry (LC-MS). A CRC subcutaneous tumor model was performed to determine the impact of GOT1 inhibition on 5-FU efficacy in vivo. RESULTS: In response to 5-FU administration, CRC cells undergo metabolic adaptation, resulting in increased glutamine flux for the synthesis of aspartate. GOT1 is responsible for the conversion of glutamine-derived aspartate into OAA, which subsequently can be converted into malate and pyruvate. The GOT1-mediated metabolic process is able to maintain the NADP+/NADPH ratio, which counteracts 5-FU-induced oxidative stress. Inhibition of GOT1 impaired the defense against 5-FU-induced ROS, thereby sensitizing cells to 5-FU. The importance of GOT1 in supporting tumor growth during 5-FU treatment was also indicated in an in vivo tumor model of CRC. CONCLUSION: These findings show that GOT1 could serve as a promising target for increasing the anticancer efficacy of the conventional therapy in patients with CRC.


Assuntos
Antimetabólitos Antineoplásicos/uso terapêutico , Aspartato Aminotransferase Citoplasmática/antagonistas & inibidores , Neoplasias Colorretais/tratamento farmacológico , Fluoruracila/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células HT29 , Humanos , Lentivirus/genética , NADP/metabolismo , Estresse Oxidativo/efeitos dos fármacos , RNA Interferente Pequeno/genética , Espécies Reativas de Oxigênio/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA