Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 486
Filtrar
1.
ChemMedChem ; 19(13): e202300688, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38602859

RESUMO

Aspartate transcarbamoylase (ATC) is the first committed step in de novo pyrimidine biosynthesis in eukaryotes and plants. A potent transition state analog of human ATCase (PALA) has previously been assessed in clinical trials for the treatment of cancer, but was ultimately unsuccessful. Additionally, inhibition of this pathway has been proposed to be a target to suppress cell proliferation in E. coli, the malarial parasite and tuberculosis. In this manuscript we screened a 70-member library of ATC inhibitors developed against the malarial and tubercular ATCases for inhibitors of the human ATC. Four compounds showed low nanomolar inhibition (IC50 30-120 nM) in an in vitro activity assay. These compounds significantly outperform PALA, which has a triphasic inhibition response under identical conditions, in which significant activity remains at PALA concentrations above 10 µM. Evidence for a druggable allosteric pocket in human ATC is provided by both in vitro enzyme kinetic, homology modeling and in silico docking. These compounds also suppress the proliferation of U2OS osteoblastoma cells by promoting cell cycle arrest in G0/G1 phase. This report provides the first evidence for an allosteric pocket in human ATC, which greatly enhances its druggability and demonstrates the potential of this series in cancer therapy.


Assuntos
Aspartato Carbamoiltransferase , Proliferação de Células , Inibidores Enzimáticos , Osteossarcoma , Humanos , Proliferação de Células/efeitos dos fármacos , Osteossarcoma/tratamento farmacológico , Osteossarcoma/patologia , Osteossarcoma/metabolismo , Aspartato Carbamoiltransferase/antagonistas & inibidores , Aspartato Carbamoiltransferase/metabolismo , Aspartato Carbamoiltransferase/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/síntese química , Regulação Alostérica/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Relação Estrutura-Atividade , Relação Dose-Resposta a Droga , Simulação de Acoplamento Molecular , Estrutura Molecular , Ensaios de Seleção de Medicamentos Antitumorais , Linhagem Celular Tumoral , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/patologia , Neoplasias Ósseas/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo
2.
Molecules ; 28(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36677714

RESUMO

CAD is a 1.5 MDa hexameric protein with four enzymatic domains responsible for initiating de novo biosynthesis of pyrimidines nucleotides: glutaminase, carbamoyl phosphate synthetase, aspartate transcarbamoylase (ATC), and dihydroorotase. Despite its central metabolic role and implication in cancer and other diseases, our understanding of CAD is poor, and structural characterization has been frustrated by its large size and sensitivity to proteolytic cleavage. Recently, we succeeded in isolating intact CAD-like particles from the fungus Chaetomium thermophilum with high yield and purity, but their study by cryo-electron microscopy is hampered by the dissociation of the complex during sample grid preparation. Here we devised a specific crosslinking strategy to enhance the stability of this mega-enzyme. Based on the structure of the isolated C. thermophilum ATC domain, we inserted by site-directed mutagenesis two cysteines at specific locations that favored the formation of disulfide bridges and covalent oligomers. We further proved that this covalent linkage increases the stability of the ATC domain without damaging the structure or enzymatic activity. Thus, we propose that this cysteine crosslinking is a suitable strategy to strengthen the contacts between subunits in the CAD particle and facilitate its structural characterization.


Assuntos
Aspartato Carbamoiltransferase , Ácido Aspártico , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/química , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/metabolismo , Microscopia Crioeletrônica , Proteínas , Di-Hidro-Orotase/química , Aspartato Carbamoiltransferase/genética , Aspartato Carbamoiltransferase/química , Aspartato Carbamoiltransferase/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(26): e2122897119, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35700355

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) evolves rapidly under the pressure of host immunity, as evidenced by waves of emerging variants despite effective vaccinations, highlighting the need for complementing antivirals. We report that targeting a pyrimidine synthesis enzyme restores inflammatory response and depletes the nucleotide pool to impede SARS-CoV-2 infection. SARS-CoV-2 deploys Nsp9 to activate carbamoyl-phosphate synthetase, aspartate transcarbamoylase, and dihydroorotase (CAD) that catalyzes the rate-limiting steps of the de novo pyrimidine synthesis. Activated CAD not only fuels de novo nucleotide synthesis but also deamidates RelA. While RelA deamidation shuts down NF-κB activation and subsequent inflammatory response, it up-regulates key glycolytic enzymes to promote aerobic glycolysis that provides metabolites for de novo nucleotide synthesis. A newly synthesized small-molecule inhibitor of CAD restores antiviral inflammatory response and depletes the pyrimidine pool, thus effectively impeding SARS-CoV-2 replication. Targeting an essential cellular metabolic enzyme thus offers an antiviral strategy that would be more refractory to SARS-CoV-2 genetic changes.


Assuntos
Antivirais , Aspartato Carbamoiltransferase , Tratamento Farmacológico da COVID-19 , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante) , Di-Hidro-Orotase , Inibidores Enzimáticos , Pirimidinas , SARS-CoV-2 , Replicação Viral , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Aspartato Carbamoiltransferase/antagonistas & inibidores , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/antagonistas & inibidores , Di-Hidro-Orotase/antagonistas & inibidores , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Humanos , Inflamação/tratamento farmacológico , Camundongos , Pirimidinas/antagonistas & inibidores , Pirimidinas/biossíntese , Proteínas de Ligação a RNA/metabolismo , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/fisiologia , Fator de Transcrição RelA/metabolismo , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/efeitos dos fármacos
4.
J Mol Biol ; 434(17): 167644, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35644497

RESUMO

Allostery is a key biological control mechanism, and dynamic information flow provides a perspective to describe allosteric interactions in causal relationships. Here, as a novel implementation of the Gaussian Network Model (GNM) based Transfer Entropy (TE) calculations, we show that the dissection of dynamic information into subsets of slow dynamic modes discloses different layers of multi-directional allosteric pathways inherent in a given protein structure. In these subsets of slow modes, the degree of collectivity (Col) in the information transfer of residues with their TE values (TECol score) identifies distinct residues as powerful effectors, global information sources; showing themselves with a high dynamic capacity to collectively disseminate information to others. As exemplified on aspartate transcarbamoylase (ATCase), Na+/K+-adenosine triphosphatase (Na+/K+-ATPase), and human transient receptor potential melastatin 2 (TRPM2) along with a dataset of 20 proteins, these specific residues are associated with known active and allosteric sites. These information source residues, which collectively control others and lead allosteric communication pathways, hint at plausible binding sites for structure-based rational drug design.


Assuntos
Regulação Alostérica , Sítio Alostérico , Simulação de Dinâmica Molecular , Proteínas , Aspartato Carbamoiltransferase/química , Sítios de Ligação , Desenho de Fármacos , Entropia , Humanos , Proteínas/química
5.
Front Cell Infect Microbiol ; 12: 841833, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35310840

RESUMO

Malaria remains one of the most prominent and dangerous tropical diseases. While artemisinin and analogs have been used as first-line drugs for the past decades, due to the high mutational rate and rapid adaptation to the environment of the parasite, it remains urgent to develop new antimalarials. The pyrimidine biosynthesis pathway plays an important role in cell growth and proliferation. Unlike human host cells, the malarial parasite lacks a functional pyrimidine salvage pathway, meaning that RNA and DNA synthesis is highly dependent on the de novo synthesis pathway. Thus, direct or indirect blockage of the pyrimidine biosynthesis pathway can be lethal to the parasite. Aspartate transcarbamoylase (ATCase), catalyzes the second step of the pyrimidine biosynthesis pathway, the condensation of L-aspartate and carbamoyl phosphate to form N-carbamoyl aspartate and inorganic phosphate, and has been demonstrated to be a promising target both for anti-malaria and anti-cancer drug development. This is highlighted by the discovery that at least one of the targets of Torin2 - a potent, yet unselective, antimalarial - is the activity of the parasite transcarbamoylase. Additionally, the recent discovery of an allosteric pocket of the human homology raises the intriguing possibility of species selective ATCase inhibitors. We recently exploited the available crystal structures of the malarial aspartate transcarbamoylase to perform a fragment-based screening to identify hits. In this review, we summarize studies on the structure of Plasmodium falciparum ATCase by focusing on an allosteric pocket that supports the catalytic mechanisms.


Assuntos
Antimaláricos , Aspartato Carbamoiltransferase , Antimaláricos/química , Aspartato Carbamoiltransferase/antagonistas & inibidores , Aspartato Carbamoiltransferase/química , Ácido Aspártico/química , Cristalografia por Raios X , Descoberta de Drogas , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/química
6.
Int J Mol Sci ; 22(19)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34638594

RESUMO

CAD (Carbamoyl-phosphate synthetase 2, Aspartate transcarbamoylase, and Dihydroorotase) is a multifunctional protein that participates in the initial three speed-limiting steps of pyrimidine nucleotide synthesis. Over the past two decades, extensive investigations have been conducted to unmask CAD as a central player for the synthesis of nucleic acids, active intermediates, and cell membranes. Meanwhile, the important role of CAD in various physiopathological processes has also been emphasized. Deregulation of CAD-related pathways or CAD mutations cause cancer, neurological disorders, and inherited metabolic diseases. Here, we review the structure, function, and regulation of CAD in mammalian physiology as well as human diseases, and provide insights into the potential to target CAD in future clinical applications.


Assuntos
Aspartato Carbamoiltransferase/metabolismo , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/metabolismo , Di-Hidro-Orotase/metabolismo , Pirimidinas/biossíntese , Animais , Humanos , Mamíferos/metabolismo
7.
J Biomol Struct Dyn ; 39(9): 3144-3157, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32338152

RESUMO

Pyrimidine biosynthetic pathway enzymes constitute an important target for the development of antitumor drugs. To understand the role of binding mechanisms underlying the inborn errors of pyrimidine biosynthetic pathway, structure and function of enzymes have been analyzed. Pyrimidine biosynthetic pathway is initiated by CAD enzymes that harbor the first three enzymatic activities facilitated by Carbamoyl Phosphate Synthetase (CPSase), Aspartate Transcarbamoylase (ATCase) and Dihydroorotase (DHOase). While being an attractive therapeutic target, the lack of data driven us to study the CPSase (CarA and CarB) and its mode of binding to ATCase and DHOase which are the major limitation for its structural optimization. Understanding the binding mode of CPSase, ATCase and DHOase could help to identify the potential interface hotspot residues that favor the mechanism behind it. The mechanistic insight into the CAD complexes were achieved through Molecular modeling, Protein-Protein docking, Alanine scanning and Molecular dynamics (MD) Studies. The hotspot residues present in the CarB region of carboxy phosphate and carbamoyl phosphate synthetic domains are responsible for the assembly of CAD (CPSase-ATCase-DHOase) complexes. Overall analysis suggests that the identified hotspot residues were confirmed by alanine scanning and important for the regulation of pyrimidine biosynthesis. MD simulations analysis provided the prolonged stability of the interacting complexes. The present study reveals the novel hotspot residues such as Glu134, Glu147, Glu154, Asp266, Lys269, Glu274, Asp333, Trp459, Asp526, Asp528, Glu533, Glu544, Glu546, Glu800, Val855, Asp877, Tyr884 and Gln919 which could be targeted for structure-based inhibitor design to potentiate the CAD mediated regulation of aggressive tumors.Communicated by Ramaswamy H. Sarma.


Assuntos
Aspartato Carbamoiltransferase , Di-Hidro-Orotase , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/genética , Di-Hidro-Orotase/genética , Modelos Moleculares , Proteínas
8.
FEBS J ; 287(16): 3579-3599, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31967710

RESUMO

Aspartate transcarbamoylase (ATCase) is a key enzyme which regulates and catalyzes the second step of de novo pyrimidine synthesis in all organisms. Escherichia coli ATCase is a prototypic enzyme regulated by both product feedback and substrate cooperativity, whereas human ATCase is a potential anticancer target. Through structural and biochemical analyses, we revealed that R167/130's loop region in ATCase serves as a gatekeeper for the active site, playing a new and unappreciated regulatory role in the catalytic cycle of ATCase. Based on virtual compound screening simultaneously targeting the new regulatory region and active site of human ATCase, two compounds were identified to exhibit strong inhibition of ATCase activity, proliferation of multiple cancer cell lines, and growth of xenograft tumors. Our work has not only revealed a previously unknown regulatory region of ATCase that helps uncover the catalytic and regulatory mechanism of ATCase, but also successfully guided the identification of new ATCase inhibitors for anticancer drug development using a dual-targeting strategy. DATABASE: Structure data are available in Protein Data Bank under the accession numbers: 6KJ7 (G166P ecATCase), 6KJ8 (G166P ecATCase-holo), 6KJ9 (G128/130A ecATCase), and 6KJA (G128/130A ecATCase-holo).


Assuntos
Aspartato Carbamoiltransferase/antagonistas & inibidores , Domínio Catalítico , Inibidores Enzimáticos/farmacologia , Simulação de Dinâmica Molecular , Regulação Alostérica , Sequência de Aminoácidos , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Aspartato Carbamoiltransferase/química , Aspartato Carbamoiltransferase/metabolismo , Biocatálise/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cristalografia por Raios X , Inibidores Enzimáticos/química , Feminino , Células HeLa , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Estrutura Molecular , Homologia de Sequência de Aminoácidos , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
9.
Nucleosides Nucleotides Nucleic Acids ; 39(10-12): 1320-1334, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31997698

RESUMO

CAD, the multienzymatic protein that initiates and controls the de novo biosynthesis of pyrimidines, plays a major role in nucleotide homeostasis, cell growth and proliferation. Despite its interest as a potential antitumoral target, there is a lack of understanding on CAD's structure and functioning mechanisms. Although mainly identified as a cytosolic complex, different studies support the translocation of CAD into the nucleus, where it could have a yet undefined function. Here, we track the subcellular localization of CAD by using fluorescent chimeras, cell fractionation and immunoblotting with specific antibodies. Contradicting previous studies, we demonstrate that CAD is exclusively localized at the cytosol and discard a possible translocation to the nucleus.


Assuntos
Aspartato Carbamoiltransferase/metabolismo , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Di-Hidro-Orotase/metabolismo , Pirimidinas/biossíntese , Transporte Ativo do Núcleo Celular , Linhagem Celular , Humanos
10.
Gut ; 69(1): 158-167, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30833451

RESUMO

OBJECTIVE: Hepatitis D virus (HDV) is a circular RNA virus coinfecting hepatocytes with hepatitis B virus. Chronic hepatitis D results in severe liver disease and an increased risk of liver cancer. Efficient therapeutic approaches against HDV are absent. DESIGN: Here, we combined an RNAi loss-of-function and small molecule screen to uncover host-dependency factors for HDV infection. RESULTS: Functional screening unravelled the hypoxia-inducible factor (HIF)-signalling and insulin-resistance pathways, RNA polymerase II, glycosaminoglycan biosynthesis and the pyrimidine metabolism as virus-hepatocyte dependency networks. Validation studies in primary human hepatocytes identified the carbamoyl-phosphatesynthetase 2, aspartate transcarbamylase and dihydroorotase (CAD) enzyme and estrogen receptor alpha (encoded by ESR1) as key host factors for HDV life cycle. Mechanistic studies revealed that the two host factors are required for viral replication. Inhibition studies using N-(phosphonoacetyl)-L-aspartic acid and fulvestrant, specific CAD and ESR1 inhibitors, respectively, uncovered their impact as antiviral targets. CONCLUSION: The discovery of HDV host-dependency factors elucidates the pathogenesis of viral disease biology and opens therapeutic strategies for HDV cure.


Assuntos
Aspartato Carbamoiltransferase/genética , Ácido Aspártico/análogos & derivados , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/genética , Di-Hidro-Orotase/genética , Receptor alfa de Estrogênio/metabolismo , Fulvestranto/farmacologia , Hepatite D Crônica/tratamento farmacológico , Ácido Fosfonoacéticos/análogos & derivados , Pirimidinas/biossíntese , Antivirais/farmacologia , Aspartato Carbamoiltransferase/antagonistas & inibidores , Aspartato Carbamoiltransferase/metabolismo , Ácido Aspártico/farmacologia , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/antagonistas & inibidores , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/metabolismo , Linhagem Celular , Di-Hidro-Orotase/antagonistas & inibidores , Di-Hidro-Orotase/metabolismo , Antagonistas do Receptor de Estrogênio/farmacologia , Receptor alfa de Estrogênio/antagonistas & inibidores , Inativação Gênica , Hepatite D Crônica/genética , Hepatite D Crônica/metabolismo , Vírus Delta da Hepatite/fisiologia , Hepatócitos , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Resistência à Insulina , Estágios do Ciclo de Vida , Mutação com Perda de Função , Ácido Fosfonoacéticos/farmacologia , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Viral/metabolismo , Transdução de Sinais , Replicação Viral
11.
Cell ; 174(6): 1559-1570.e22, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30100185

RESUMO

The urea cycle (UC) is the main pathway by which mammals dispose of waste nitrogen. We find that specific alterations in the expression of most UC enzymes occur in many tumors, leading to a general metabolic hallmark termed "UC dysregulation" (UCD). UCD elicits nitrogen diversion toward carbamoyl-phosphate synthetase2, aspartate transcarbamylase, and dihydrooratase (CAD) activation and enhances pyrimidine synthesis, resulting in detectable changes in nitrogen metabolites in both patient tumors and their bio-fluids. The accompanying excess of pyrimidine versus purine nucleotides results in a genomic signature consisting of transversion mutations at the DNA, RNA, and protein levels. This mutational bias is associated with increased numbers of hydrophobic tumor antigens and a better response to immune checkpoint inhibitors independent of mutational load. Taken together, our findings demonstrate that UCD is a common feature of tumors that profoundly affects carcinogenesis, mutagenesis, and immunotherapy response.


Assuntos
Genômica , Metabolômica , Neoplasias/patologia , Ureia/metabolismo , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Animais , Aspartato Carbamoiltransferase/genética , Aspartato Carbamoiltransferase/metabolismo , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/genética , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/metabolismo , Linhagem Celular Tumoral , Di-Hidro-Orotase/genética , Di-Hidro-Orotase/metabolismo , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos SCID , Proteínas de Transporte da Membrana Mitocondrial , Neoplasias/metabolismo , Ornitina Carbamoiltransferase/antagonistas & inibidores , Ornitina Carbamoiltransferase/genética , Ornitina Carbamoiltransferase/metabolismo , Fosforilação/efeitos dos fármacos , Pirimidinas/biossíntese , Pirimidinas/química , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo
12.
Sci Rep ; 8(1): 11079, 2018 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-30038211

RESUMO

Aspartate carbamoyltransferase (ATCase) is a large dodecameric enzyme with six active sites that exhibits allostery: its catalytic rate is modulated by the binding of various substrates at distal points from the active sites. A recently developed method, bond-to-bond propensity analysis, has proven capable of predicting allosteric sites in a wide range of proteins using an energy-weighted atomistic graph obtained from the protein structure and given knowledge only of the location of the active site. Bond-to-bond propensity establishes if energy fluctuations at given bonds have significant effects on any other bond in the protein, by considering their propagation through the protein graph. In this work, we use bond-to-bond propensity analysis to study different aspects of ATCase activity using three different protein structures and sources of fluctuations. First, we predict key residues and bonds involved in the transition between inactive (T) and active (R) states of ATCase by analysing allosteric substrate binding as a source of energy perturbations in the protein graph. Our computational results also indicate that the effect of multiple allosteric binding is non linear: a switching effect is observed after a particular number and arrangement of substrates is bound suggesting a form of long range communication between the distantly arranged allosteric sites. Second, cooperativity is explored by considering a bisubstrate analogue as the source of energy fluctuations at the active site, also leading to the identification of highly significant residues to the T ↔ R transition that enhance cooperativity across active sites. Finally, the inactive (T) structure is shown to exhibit a strong, non linear communication between the allosteric sites and the interface between catalytic subunits, rather than the active site. Bond-to-bond propensity thus offers an alternative route to explain allosteric and cooperative effects in terms of detailed atomistic changes to individual bonds within the protein, rather than through phenomenological, global thermodynamic arguments.


Assuntos
Aspartato Carbamoiltransferase/metabolismo , Multimerização Proteica , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Sítio Alostérico , Aspartato Carbamoiltransferase/química , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Domínio Catalítico , Citidina Trifosfato/metabolismo , Estabilidade Enzimática , Modelos Moleculares , Ácido Fosfonoacéticos/análogos & derivados , Ácido Fosfonoacéticos/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Especificidade por Substrato
13.
Artigo em Inglês | MEDLINE | ID: mdl-29723133

RESUMO

The pyrimidine de novo nucleotide synthesis consists of 6 sequential steps. Various inhibitors against these enzymes have been developed and evaluated in the clinic for their potential anticancer activity: acivicin inhibits carbamoyl-phosphate-synthase-II, N-(phosphonacetyl)-L- aspartate (PALA) inhibits aspartate-transcarbamylase, Brequinar sodium and dichloroallyl-lawsone (DCL) inhibit dihydroorotate-dehydrogenase, and pyrazofurin (PF) inhibits orotate-phosphoribosyltransferase. We compared their growth inhibition against 3 cell lines from head-and-neck-cancer (HEP-2, UMSCC-14B and UMSCC-14C) and related the sensitivity to their effects on nucleotide pools. In all cell lines Brequinar and PF were the most active compounds with IC50 (50% growth inhibition) values between 0.06-0.37 µM, Acivicin was as potent (IC50s 0.26-1 µM), but DCL was 20-31-fold less active. PALA was most inactive (24-128 µM). At equitoxic concentrations, all pure antipyrimidine de novo inhibitors depleted UTP and CTP after 24 hr exposure, which was most pronounced for Brequinar (between 6-10% of UTP left, and 12-36% CTP), followed by DCL and PF, which were almost similar (6-16% UTP and 12-27% CTP), while PALA was the least active compound (10-70% UTP and 13-68% CTP). Acivicin is a multi-target inhibitor of more glutamine requiring enzymes (including GMP synthetase) and no decrease of UTP was found, but a pronounced decrease in GTP (31-72% left). In conclusion, these 5 inhibitors of the pyrimidine de novo nucleotide synthesis varied considerably in their efficacy and effect on pyrimidine nucleotide pools. Inhibitors of DHO-DH were most effective suggesting a primary role of this enzyme in controlling pyrimidine nucleotide pools.


Assuntos
Antineoplásicos/farmacologia , Compostos de Bifenilo/farmacologia , Carcinoma de Células Escamosas/metabolismo , Neoplasias de Cabeça e Pescoço/metabolismo , Nucleotídeos de Purina/antagonistas & inibidores , Nucleotídeos de Pirimidina/antagonistas & inibidores , Ribonucleosídeos/farmacologia , Amidas , Aspartato Carbamoiltransferase/antagonistas & inibidores , Ácido Aspártico/análogos & derivados , Ácido Aspártico/farmacologia , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/antagonistas & inibidores , Linhagem Celular Tumoral , Di-Hidro-Orotato Desidrogenase , Humanos , Isoxazóis/farmacologia , Naftoquinonas/farmacologia , Orotato Fosforribosiltransferase/antagonistas & inibidores , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Ácido Fosfonoacéticos/análogos & derivados , Ácido Fosfonoacéticos/farmacologia , Nucleotídeos de Purina/biossíntese , Pirazóis , Nucleotídeos de Pirimidina/biossíntese , Ribose
14.
Cell Death Dis ; 8(10): e3062, 2017 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-28981092

RESUMO

Chemotherapy drugs interfere with cellular processes to generate genotoxic lesions that activate cell death pathways. Sustained DNA damage induced by these drugs can provoke mutations in surviving non-cancerous cells, potentially increasing the risk of therapy-related cancers. Ligation of death receptors by ligands such as TRAIL, and subsequent activation of extrinsic apoptotic pathways, also provokes mutations. In this study, we show that executioner caspase activation of the apoptotic nuclease CAD/DFF40 is essential for TRAIL-induced mutations in surviving cells. As exposure to chemotherapy drugs also activates apoptotic caspases and presumably CAD, we hypothesized that these pathways may also contribute to the mutagenesis induced by conventional chemotherapy drugs, perhaps augmenting the mutations that arise from direct DNA damage provoked by these agents. Interestingly, vincristine-mediated mutations were caspase and CAD dependent. Executioner caspases accounted for some of the mutations caused by the topoisomerase poisons doxorubicin and SN38, but were dispensable for mutagenesis following treatment with cisplatin or temozolomide. These data highlight a non-apoptotic role of caspases in mutagenesis mediated by death receptor agonists, microtubule poisons and topoisomerase inhibitors, and provide further evidence for a potential carcinogenic consequence of sublethal apoptotic signaling stimulated by anticancer therapies.


Assuntos
Aspartato Carbamoiltransferase/genética , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/genética , Caspases/genética , Di-Hidro-Orotase/genética , Neoplasias/genética , Ligante Indutor de Apoptose Relacionado a TNF/genética , Apoptose/efeitos dos fármacos , Camptotecina/administração & dosagem , Camptotecina/efeitos adversos , Camptotecina/análogos & derivados , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/administração & dosagem , Cisplatino/efeitos adversos , Dano ao DNA/efeitos dos fármacos , Dacarbazina/administração & dosagem , Dacarbazina/efeitos adversos , Dacarbazina/análogos & derivados , Doxorrubicina/administração & dosagem , Doxorrubicina/efeitos adversos , Ativação Enzimática/efeitos dos fármacos , Humanos , Irinotecano , Mutagênese/efeitos dos fármacos , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Transdução de Sinais/efeitos dos fármacos , Temozolomida , Vincristina/administração & dosagem , Vincristina/efeitos adversos
16.
Ann Oncol ; 28(6): 1302-1308, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28368455

RESUMO

BACKGROUND: Monitoring response and resistance to kinase inhibitors is essential to precision cancer medicine, and is usually investigated by molecular profiling of a tissue biopsy obtained at progression. However, tumor heterogeneity and tissue sampling bias limit the effectiveness of this strategy. In addition, tissue biopsies are not always feasible and are associated with risks due to the invasiveness of the procedure. To overcome these limitations, blood-based liquid biopsy analysis has proven effective to non-invasively follow tumor clonal evolution. PATIENTS AND METHODS: We exploited urine cell-free, trans-renal DNA (tr-DNA) and matched plasma circulating tumor DNA (ctDNA) to monitor a metastatic colorectal cancer patient carrying a CAD-ALK translocation during treatment with an ALK inhibitor. RESULTS: Using a custom next generation sequencing panel we identified the genomic CAD-ALK rearrangement and a TP53 mutation in plasma ctDNA. Sensitive assays were developed to detect both alterations in urine tr-DNA. The dynamics of the CAD-ALK rearrangement in plasma and urine were concordant and paralleled the patient's clinical course. Detection of the CAD-ALK gene fusion in urine tr-DNA anticipated radiological confirmation of disease progression. Analysis of plasma ctDNA identified ALK kinase mutations that emerged during treatment with the ALK inhibitor entrectinib. CONCLUSION: We find that urine-based genetic testing allows tracing of tumor-specific oncogenic rearrangements. This strategy could be effectively applied to non-invasively monitor tumor evolution during therapy. The same approach could be exploited to monitor minimal residual disease after surgery with curative intent in patients whose tumors carry gene fusions. The latter could be implemented without the need of patient hospitalization since urine tr-DNA can be self-collected, is stable over time and can be shipped at specified time-points to central labs for testing.


Assuntos
Aspartato Carbamoiltransferase/genética , Benzamidas/uso terapêutico , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Di-Hidro-Orotase/genética , Rearranjo Gênico , Indazóis/uso terapêutico , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Quinase do Linfoma Anaplásico , Biomarcadores Tumorais , Neoplasias Colorretais/sangue , Neoplasias Colorretais/urina , Resistencia a Medicamentos Antineoplásicos , Feminino , Fusão Gênica , Humanos , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase/métodos , Receptores Proteína Tirosina Quinases/genética
17.
Structure ; 24(7): 1081-94, 2016 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-27265852

RESUMO

CAD, the multienzymatic protein that initiates and controls de novo synthesis of pyrimidines in animals, associates through its aspartate transcarbamoylase (ATCase) domain into particles of 1.5 MDa. Despite numerous structures of prokaryotic ATCases, we lack structural information on the ATCase domain of CAD. Here, we report the structure and functional characterization of human ATCase, confirming the overall similarity with bacterial homologs. Unexpectedly, human ATCase exhibits cooperativity effects that reduce the affinity for the anti-tumoral drug PALA. Combining structural, mutagenic, and biochemical analysis, we identified key elements for the necessary regulation and transmission of conformational changes leading to cooperativity between subunits. Mutation of one of these elements, R2024, was recently found to cause the first non-lethal CAD deficit. We reproduced this mutation in human ATCase and measured its effect, demonstrating that this arginine is part of a molecular switch that regulates the equilibrium between low- and high-affinity states for the ligands.


Assuntos
Aspartato Carbamoiltransferase/química , Antineoplásicos/farmacologia , Aspartato Carbamoiltransferase/antagonistas & inibidores , Aspartato Carbamoiltransferase/metabolismo , Ácido Aspártico/análogos & derivados , Ácido Aspártico/farmacologia , Domínio Catalítico , Inibidores Enzimáticos/farmacologia , Humanos , Ácido Fosfonoacéticos/análogos & derivados , Ácido Fosfonoacéticos/farmacologia
18.
Br J Cancer ; 113(12): 1730-4, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26633560

RESUMO

BACKGROUND: Activated anaplastic lymphoma kinase (ALK) gene fusions are recurrent events in a small fraction of colorectal cancers (CRCs), although these events have not yet been exploited as in other malignancies. METHODS: We detected ALK protein expression by immunohistochemistry and gene rearrangements by fluorescence in situ hybridisation in the ALKA-372-001 phase I study of the pan-Trk, ROS1, and ALK inhibitor entrectinib. One out of 487 CRCs showed ALK positivity with a peculiar pattern that prompted further characterisation by targeted sequencing using anchored multiplex PCR. RESULTS: A novel ALK fusion with the carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase (CAD) gene (CAD-ALK fusion gene) was identified. It resulted from inversion within chromosome 2 and the fusion of exons 1-35 of CAD with exons 20-29 of ALK. After failure of previous standard therapies, treatment of this patient with the ALK inhibitor entrectinib resulted in a durable objective tumour response. CONCLUSIONS: We describe the novel CAD-ALK rearrangement as an oncogene and provide the first evidence of its drugability as a new molecular target in CRC.


Assuntos
Antineoplásicos/uso terapêutico , Aspartato Carbamoiltransferase/genética , Benzamidas/uso terapêutico , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/genética , Neoplasias Colorretais/tratamento farmacológico , Di-Hidro-Orotase/genética , Rearranjo Gênico , Indazóis/uso terapêutico , Receptores Proteína Tirosina Quinases/genética , Quinase do Linfoma Anaplásico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Feminino , Humanos , Pessoa de Meia-Idade
19.
Nature ; 527(7578): 379-383, 2015 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-26560030

RESUMO

Cancer cells hijack and remodel existing metabolic pathways for their benefit. Argininosuccinate synthase (ASS1) is a urea cycle enzyme that is essential in the conversion of nitrogen from ammonia and aspartate to urea. A decrease in nitrogen flux through ASS1 in the liver causes the urea cycle disorder citrullinaemia. In contrast to the well-studied consequences of loss of ASS1 activity on ureagenesis, the purpose of its somatic silencing in multiple cancers is largely unknown. Here we show that decreased activity of ASS1 in cancers supports proliferation by facilitating pyrimidine synthesis via CAD (carbamoyl-phosphate synthase 2, aspartate transcarbamylase, and dihydroorotase complex) activation. Our studies were initiated by delineating the consequences of loss of ASS1 activity in humans with two types of citrullinaemia. We find that in citrullinaemia type I (CTLN I), which is caused by deficiency of ASS1, there is increased pyrimidine synthesis and proliferation compared with citrullinaemia type II (CTLN II), in which there is decreased substrate availability for ASS1 caused by deficiency of the aspartate transporter citrin. Building on these results, we demonstrate that ASS1 deficiency in cancer increases cytosolic aspartate levels, which increases CAD activation by upregulating its substrate availability and by increasing its phosphorylation by S6K1 through the mammalian target of rapamycin (mTOR) pathway. Decreasing CAD activity by blocking citrin, the mTOR signalling, or pyrimidine synthesis decreases proliferation and thus may serve as a therapeutic strategy in multiple cancers where ASS1 is downregulated. Our results demonstrate that ASS1 downregulation is a novel mechanism supporting cancerous proliferation, and they provide a metabolic link between the urea cycle enzymes and pyrimidine synthesis.


Assuntos
Argininossuccinato Sintase/deficiência , Ácido Aspártico/metabolismo , Neoplasias/metabolismo , Pirimidinas/biossíntese , Animais , Argininossuccinato Sintase/metabolismo , Aspartato Carbamoiltransferase/metabolismo , Proteínas de Ligação ao Cálcio/antagonistas & inibidores , Proteínas de Ligação ao Cálcio/metabolismo , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Citrulinemia/metabolismo , Citosol/metabolismo , Di-Hidro-Orotase/metabolismo , Regulação para Baixo , Ativação Enzimática , Humanos , Masculino , Camundongos , Camundongos SCID , Neoplasias/enzimologia , Neoplasias/patologia , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Transportadores de Ânions Orgânicos/metabolismo , Fosforilação , Serina-Treonina Quinases TOR/metabolismo
20.
PLoS Genet ; 11(5): e1005217, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25941824

RESUMO

Mutations in genomes of species are frequently distributed non-randomly, resulting in mutation clusters, including recently discovered kataegis in tumors. DNA editing deaminases play the prominent role in the etiology of these mutations. To gain insight into the enigmatic mechanisms of localized hypermutagenesis that lead to cluster formation, we analyzed the mutational single nucleotide variations (SNV) data obtained by whole-genome sequencing of drug-resistant mutants induced in yeast diploids by AID/APOBEC deaminase and base analog 6-HAP. Deaminase from sea lamprey, PmCDA1, induced robust clusters, while 6-HAP induced a few weak ones. We found that PmCDA1, AID, and APOBEC1 deaminases preferentially mutate the beginning of the actively transcribed genes. Inactivation of transcription initiation factor Sub1 strongly reduced deaminase-induced can1 mutation frequency, but, surprisingly, did not decrease the total SNV load in genomes. However, the SNVs in the genomes of the sub1 clones were re-distributed, and the effect of mutation clustering in the regions of transcription initiation was even more pronounced. At the same time, the mutation density in the protein-coding regions was reduced, resulting in the decrease of phenotypically detected mutants. We propose that the induction of clustered mutations by deaminases involves: a) the exposure of ssDNA strands during transcription and loss of protection of ssDNA due to the depletion of ssDNA-binding proteins, such as Sub1, and b) attainment of conditions favorable for APOBEC action in subpopulation of cells, leading to enzymatic deamination within the currently expressed genes. This model is applicable to both the initial and the later stages of oncogenic transformation and explains variations in the distribution of mutations and kataegis events in different tumor cells.


Assuntos
Proteínas de Ligação a DNA/genética , Regulação Fúngica da Expressão Gênica , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Ativação Transcricional , Desaminase APOBEC-1 , Alelos , Sistemas de Transporte de Aminoácidos Básicos/genética , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Aspartato Carbamoiltransferase/genética , Aspartato Carbamoiltransferase/metabolismo , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/genética , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , DNA de Cadeia Simples , Proteínas de Ligação a DNA/metabolismo , Genes Reporter , Estudos de Associação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Mutação , Taxa de Mutação , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae/metabolismo , Análise de Sequência de DNA , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA