Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 258
Filtrar
1.
ChemMedChem ; 19(13): e202300688, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38602859

RESUMO

Aspartate transcarbamoylase (ATC) is the first committed step in de novo pyrimidine biosynthesis in eukaryotes and plants. A potent transition state analog of human ATCase (PALA) has previously been assessed in clinical trials for the treatment of cancer, but was ultimately unsuccessful. Additionally, inhibition of this pathway has been proposed to be a target to suppress cell proliferation in E. coli, the malarial parasite and tuberculosis. In this manuscript we screened a 70-member library of ATC inhibitors developed against the malarial and tubercular ATCases for inhibitors of the human ATC. Four compounds showed low nanomolar inhibition (IC50 30-120 nM) in an in vitro activity assay. These compounds significantly outperform PALA, which has a triphasic inhibition response under identical conditions, in which significant activity remains at PALA concentrations above 10 µM. Evidence for a druggable allosteric pocket in human ATC is provided by both in vitro enzyme kinetic, homology modeling and in silico docking. These compounds also suppress the proliferation of U2OS osteoblastoma cells by promoting cell cycle arrest in G0/G1 phase. This report provides the first evidence for an allosteric pocket in human ATC, which greatly enhances its druggability and demonstrates the potential of this series in cancer therapy.


Assuntos
Aspartato Carbamoiltransferase , Proliferação de Células , Inibidores Enzimáticos , Osteossarcoma , Humanos , Proliferação de Células/efeitos dos fármacos , Osteossarcoma/tratamento farmacológico , Osteossarcoma/patologia , Osteossarcoma/metabolismo , Aspartato Carbamoiltransferase/antagonistas & inibidores , Aspartato Carbamoiltransferase/metabolismo , Aspartato Carbamoiltransferase/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/síntese química , Regulação Alostérica/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Relação Estrutura-Atividade , Relação Dose-Resposta a Droga , Simulação de Acoplamento Molecular , Estrutura Molecular , Ensaios de Seleção de Medicamentos Antitumorais , Linhagem Celular Tumoral , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/patologia , Neoplasias Ósseas/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo
2.
Molecules ; 28(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36677714

RESUMO

CAD is a 1.5 MDa hexameric protein with four enzymatic domains responsible for initiating de novo biosynthesis of pyrimidines nucleotides: glutaminase, carbamoyl phosphate synthetase, aspartate transcarbamoylase (ATC), and dihydroorotase. Despite its central metabolic role and implication in cancer and other diseases, our understanding of CAD is poor, and structural characterization has been frustrated by its large size and sensitivity to proteolytic cleavage. Recently, we succeeded in isolating intact CAD-like particles from the fungus Chaetomium thermophilum with high yield and purity, but their study by cryo-electron microscopy is hampered by the dissociation of the complex during sample grid preparation. Here we devised a specific crosslinking strategy to enhance the stability of this mega-enzyme. Based on the structure of the isolated C. thermophilum ATC domain, we inserted by site-directed mutagenesis two cysteines at specific locations that favored the formation of disulfide bridges and covalent oligomers. We further proved that this covalent linkage increases the stability of the ATC domain without damaging the structure or enzymatic activity. Thus, we propose that this cysteine crosslinking is a suitable strategy to strengthen the contacts between subunits in the CAD particle and facilitate its structural characterization.


Assuntos
Aspartato Carbamoiltransferase , Ácido Aspártico , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/química , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/metabolismo , Microscopia Crioeletrônica , Proteínas , Di-Hidro-Orotase/química , Aspartato Carbamoiltransferase/genética , Aspartato Carbamoiltransferase/química , Aspartato Carbamoiltransferase/metabolismo
3.
Int J Mol Sci ; 22(19)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34638594

RESUMO

CAD (Carbamoyl-phosphate synthetase 2, Aspartate transcarbamoylase, and Dihydroorotase) is a multifunctional protein that participates in the initial three speed-limiting steps of pyrimidine nucleotide synthesis. Over the past two decades, extensive investigations have been conducted to unmask CAD as a central player for the synthesis of nucleic acids, active intermediates, and cell membranes. Meanwhile, the important role of CAD in various physiopathological processes has also been emphasized. Deregulation of CAD-related pathways or CAD mutations cause cancer, neurological disorders, and inherited metabolic diseases. Here, we review the structure, function, and regulation of CAD in mammalian physiology as well as human diseases, and provide insights into the potential to target CAD in future clinical applications.


Assuntos
Aspartato Carbamoiltransferase/metabolismo , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/metabolismo , Di-Hidro-Orotase/metabolismo , Pirimidinas/biossíntese , Animais , Humanos , Mamíferos/metabolismo
4.
Nucleosides Nucleotides Nucleic Acids ; 39(10-12): 1320-1334, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31997698

RESUMO

CAD, the multienzymatic protein that initiates and controls the de novo biosynthesis of pyrimidines, plays a major role in nucleotide homeostasis, cell growth and proliferation. Despite its interest as a potential antitumoral target, there is a lack of understanding on CAD's structure and functioning mechanisms. Although mainly identified as a cytosolic complex, different studies support the translocation of CAD into the nucleus, where it could have a yet undefined function. Here, we track the subcellular localization of CAD by using fluorescent chimeras, cell fractionation and immunoblotting with specific antibodies. Contradicting previous studies, we demonstrate that CAD is exclusively localized at the cytosol and discard a possible translocation to the nucleus.


Assuntos
Aspartato Carbamoiltransferase/metabolismo , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Di-Hidro-Orotase/metabolismo , Pirimidinas/biossíntese , Transporte Ativo do Núcleo Celular , Linhagem Celular , Humanos
5.
FEBS J ; 287(16): 3579-3599, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31967710

RESUMO

Aspartate transcarbamoylase (ATCase) is a key enzyme which regulates and catalyzes the second step of de novo pyrimidine synthesis in all organisms. Escherichia coli ATCase is a prototypic enzyme regulated by both product feedback and substrate cooperativity, whereas human ATCase is a potential anticancer target. Through structural and biochemical analyses, we revealed that R167/130's loop region in ATCase serves as a gatekeeper for the active site, playing a new and unappreciated regulatory role in the catalytic cycle of ATCase. Based on virtual compound screening simultaneously targeting the new regulatory region and active site of human ATCase, two compounds were identified to exhibit strong inhibition of ATCase activity, proliferation of multiple cancer cell lines, and growth of xenograft tumors. Our work has not only revealed a previously unknown regulatory region of ATCase that helps uncover the catalytic and regulatory mechanism of ATCase, but also successfully guided the identification of new ATCase inhibitors for anticancer drug development using a dual-targeting strategy. DATABASE: Structure data are available in Protein Data Bank under the accession numbers: 6KJ7 (G166P ecATCase), 6KJ8 (G166P ecATCase-holo), 6KJ9 (G128/130A ecATCase), and 6KJA (G128/130A ecATCase-holo).


Assuntos
Aspartato Carbamoiltransferase/antagonistas & inibidores , Domínio Catalítico , Inibidores Enzimáticos/farmacologia , Simulação de Dinâmica Molecular , Regulação Alostérica , Sequência de Aminoácidos , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Aspartato Carbamoiltransferase/química , Aspartato Carbamoiltransferase/metabolismo , Biocatálise/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cristalografia por Raios X , Inibidores Enzimáticos/química , Feminino , Células HeLa , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Estrutura Molecular , Homologia de Sequência de Aminoácidos , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
6.
Gut ; 69(1): 158-167, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30833451

RESUMO

OBJECTIVE: Hepatitis D virus (HDV) is a circular RNA virus coinfecting hepatocytes with hepatitis B virus. Chronic hepatitis D results in severe liver disease and an increased risk of liver cancer. Efficient therapeutic approaches against HDV are absent. DESIGN: Here, we combined an RNAi loss-of-function and small molecule screen to uncover host-dependency factors for HDV infection. RESULTS: Functional screening unravelled the hypoxia-inducible factor (HIF)-signalling and insulin-resistance pathways, RNA polymerase II, glycosaminoglycan biosynthesis and the pyrimidine metabolism as virus-hepatocyte dependency networks. Validation studies in primary human hepatocytes identified the carbamoyl-phosphatesynthetase 2, aspartate transcarbamylase and dihydroorotase (CAD) enzyme and estrogen receptor alpha (encoded by ESR1) as key host factors for HDV life cycle. Mechanistic studies revealed that the two host factors are required for viral replication. Inhibition studies using N-(phosphonoacetyl)-L-aspartic acid and fulvestrant, specific CAD and ESR1 inhibitors, respectively, uncovered their impact as antiviral targets. CONCLUSION: The discovery of HDV host-dependency factors elucidates the pathogenesis of viral disease biology and opens therapeutic strategies for HDV cure.


Assuntos
Aspartato Carbamoiltransferase/genética , Ácido Aspártico/análogos & derivados , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/genética , Di-Hidro-Orotase/genética , Receptor alfa de Estrogênio/metabolismo , Fulvestranto/farmacologia , Hepatite D Crônica/tratamento farmacológico , Ácido Fosfonoacéticos/análogos & derivados , Pirimidinas/biossíntese , Antivirais/farmacologia , Aspartato Carbamoiltransferase/antagonistas & inibidores , Aspartato Carbamoiltransferase/metabolismo , Ácido Aspártico/farmacologia , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/antagonistas & inibidores , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/metabolismo , Linhagem Celular , Di-Hidro-Orotase/antagonistas & inibidores , Di-Hidro-Orotase/metabolismo , Antagonistas do Receptor de Estrogênio/farmacologia , Receptor alfa de Estrogênio/antagonistas & inibidores , Inativação Gênica , Hepatite D Crônica/genética , Hepatite D Crônica/metabolismo , Vírus Delta da Hepatite/fisiologia , Hepatócitos , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Resistência à Insulina , Estágios do Ciclo de Vida , Mutação com Perda de Função , Ácido Fosfonoacéticos/farmacologia , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Viral/metabolismo , Transdução de Sinais , Replicação Viral
7.
Cell ; 174(6): 1559-1570.e22, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30100185

RESUMO

The urea cycle (UC) is the main pathway by which mammals dispose of waste nitrogen. We find that specific alterations in the expression of most UC enzymes occur in many tumors, leading to a general metabolic hallmark termed "UC dysregulation" (UCD). UCD elicits nitrogen diversion toward carbamoyl-phosphate synthetase2, aspartate transcarbamylase, and dihydrooratase (CAD) activation and enhances pyrimidine synthesis, resulting in detectable changes in nitrogen metabolites in both patient tumors and their bio-fluids. The accompanying excess of pyrimidine versus purine nucleotides results in a genomic signature consisting of transversion mutations at the DNA, RNA, and protein levels. This mutational bias is associated with increased numbers of hydrophobic tumor antigens and a better response to immune checkpoint inhibitors independent of mutational load. Taken together, our findings demonstrate that UCD is a common feature of tumors that profoundly affects carcinogenesis, mutagenesis, and immunotherapy response.


Assuntos
Genômica , Metabolômica , Neoplasias/patologia , Ureia/metabolismo , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Animais , Aspartato Carbamoiltransferase/genética , Aspartato Carbamoiltransferase/metabolismo , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/genética , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/metabolismo , Linhagem Celular Tumoral , Di-Hidro-Orotase/genética , Di-Hidro-Orotase/metabolismo , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos SCID , Proteínas de Transporte da Membrana Mitocondrial , Neoplasias/metabolismo , Ornitina Carbamoiltransferase/antagonistas & inibidores , Ornitina Carbamoiltransferase/genética , Ornitina Carbamoiltransferase/metabolismo , Fosforilação/efeitos dos fármacos , Pirimidinas/biossíntese , Pirimidinas/química , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo
8.
Sci Rep ; 8(1): 11079, 2018 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-30038211

RESUMO

Aspartate carbamoyltransferase (ATCase) is a large dodecameric enzyme with six active sites that exhibits allostery: its catalytic rate is modulated by the binding of various substrates at distal points from the active sites. A recently developed method, bond-to-bond propensity analysis, has proven capable of predicting allosteric sites in a wide range of proteins using an energy-weighted atomistic graph obtained from the protein structure and given knowledge only of the location of the active site. Bond-to-bond propensity establishes if energy fluctuations at given bonds have significant effects on any other bond in the protein, by considering their propagation through the protein graph. In this work, we use bond-to-bond propensity analysis to study different aspects of ATCase activity using three different protein structures and sources of fluctuations. First, we predict key residues and bonds involved in the transition between inactive (T) and active (R) states of ATCase by analysing allosteric substrate binding as a source of energy perturbations in the protein graph. Our computational results also indicate that the effect of multiple allosteric binding is non linear: a switching effect is observed after a particular number and arrangement of substrates is bound suggesting a form of long range communication between the distantly arranged allosteric sites. Second, cooperativity is explored by considering a bisubstrate analogue as the source of energy fluctuations at the active site, also leading to the identification of highly significant residues to the T ↔ R transition that enhance cooperativity across active sites. Finally, the inactive (T) structure is shown to exhibit a strong, non linear communication between the allosteric sites and the interface between catalytic subunits, rather than the active site. Bond-to-bond propensity thus offers an alternative route to explain allosteric and cooperative effects in terms of detailed atomistic changes to individual bonds within the protein, rather than through phenomenological, global thermodynamic arguments.


Assuntos
Aspartato Carbamoiltransferase/metabolismo , Multimerização Proteica , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Sítio Alostérico , Aspartato Carbamoiltransferase/química , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Domínio Catalítico , Citidina Trifosfato/metabolismo , Estabilidade Enzimática , Modelos Moleculares , Ácido Fosfonoacéticos/análogos & derivados , Ácido Fosfonoacéticos/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Especificidade por Substrato
9.
Structure ; 24(7): 1081-94, 2016 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-27265852

RESUMO

CAD, the multienzymatic protein that initiates and controls de novo synthesis of pyrimidines in animals, associates through its aspartate transcarbamoylase (ATCase) domain into particles of 1.5 MDa. Despite numerous structures of prokaryotic ATCases, we lack structural information on the ATCase domain of CAD. Here, we report the structure and functional characterization of human ATCase, confirming the overall similarity with bacterial homologs. Unexpectedly, human ATCase exhibits cooperativity effects that reduce the affinity for the anti-tumoral drug PALA. Combining structural, mutagenic, and biochemical analysis, we identified key elements for the necessary regulation and transmission of conformational changes leading to cooperativity between subunits. Mutation of one of these elements, R2024, was recently found to cause the first non-lethal CAD deficit. We reproduced this mutation in human ATCase and measured its effect, demonstrating that this arginine is part of a molecular switch that regulates the equilibrium between low- and high-affinity states for the ligands.


Assuntos
Aspartato Carbamoiltransferase/química , Antineoplásicos/farmacologia , Aspartato Carbamoiltransferase/antagonistas & inibidores , Aspartato Carbamoiltransferase/metabolismo , Ácido Aspártico/análogos & derivados , Ácido Aspártico/farmacologia , Domínio Catalítico , Inibidores Enzimáticos/farmacologia , Humanos , Ácido Fosfonoacéticos/análogos & derivados , Ácido Fosfonoacéticos/farmacologia
10.
Nature ; 527(7578): 379-383, 2015 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-26560030

RESUMO

Cancer cells hijack and remodel existing metabolic pathways for their benefit. Argininosuccinate synthase (ASS1) is a urea cycle enzyme that is essential in the conversion of nitrogen from ammonia and aspartate to urea. A decrease in nitrogen flux through ASS1 in the liver causes the urea cycle disorder citrullinaemia. In contrast to the well-studied consequences of loss of ASS1 activity on ureagenesis, the purpose of its somatic silencing in multiple cancers is largely unknown. Here we show that decreased activity of ASS1 in cancers supports proliferation by facilitating pyrimidine synthesis via CAD (carbamoyl-phosphate synthase 2, aspartate transcarbamylase, and dihydroorotase complex) activation. Our studies were initiated by delineating the consequences of loss of ASS1 activity in humans with two types of citrullinaemia. We find that in citrullinaemia type I (CTLN I), which is caused by deficiency of ASS1, there is increased pyrimidine synthesis and proliferation compared with citrullinaemia type II (CTLN II), in which there is decreased substrate availability for ASS1 caused by deficiency of the aspartate transporter citrin. Building on these results, we demonstrate that ASS1 deficiency in cancer increases cytosolic aspartate levels, which increases CAD activation by upregulating its substrate availability and by increasing its phosphorylation by S6K1 through the mammalian target of rapamycin (mTOR) pathway. Decreasing CAD activity by blocking citrin, the mTOR signalling, or pyrimidine synthesis decreases proliferation and thus may serve as a therapeutic strategy in multiple cancers where ASS1 is downregulated. Our results demonstrate that ASS1 downregulation is a novel mechanism supporting cancerous proliferation, and they provide a metabolic link between the urea cycle enzymes and pyrimidine synthesis.


Assuntos
Argininossuccinato Sintase/deficiência , Ácido Aspártico/metabolismo , Neoplasias/metabolismo , Pirimidinas/biossíntese , Animais , Argininossuccinato Sintase/metabolismo , Aspartato Carbamoiltransferase/metabolismo , Proteínas de Ligação ao Cálcio/antagonistas & inibidores , Proteínas de Ligação ao Cálcio/metabolismo , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Citrulinemia/metabolismo , Citosol/metabolismo , Di-Hidro-Orotase/metabolismo , Regulação para Baixo , Ativação Enzimática , Humanos , Masculino , Camundongos , Camundongos SCID , Neoplasias/enzimologia , Neoplasias/patologia , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Transportadores de Ânions Orgânicos/metabolismo , Fosforilação , Serina-Treonina Quinases TOR/metabolismo
11.
PLoS Genet ; 11(5): e1005217, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25941824

RESUMO

Mutations in genomes of species are frequently distributed non-randomly, resulting in mutation clusters, including recently discovered kataegis in tumors. DNA editing deaminases play the prominent role in the etiology of these mutations. To gain insight into the enigmatic mechanisms of localized hypermutagenesis that lead to cluster formation, we analyzed the mutational single nucleotide variations (SNV) data obtained by whole-genome sequencing of drug-resistant mutants induced in yeast diploids by AID/APOBEC deaminase and base analog 6-HAP. Deaminase from sea lamprey, PmCDA1, induced robust clusters, while 6-HAP induced a few weak ones. We found that PmCDA1, AID, and APOBEC1 deaminases preferentially mutate the beginning of the actively transcribed genes. Inactivation of transcription initiation factor Sub1 strongly reduced deaminase-induced can1 mutation frequency, but, surprisingly, did not decrease the total SNV load in genomes. However, the SNVs in the genomes of the sub1 clones were re-distributed, and the effect of mutation clustering in the regions of transcription initiation was even more pronounced. At the same time, the mutation density in the protein-coding regions was reduced, resulting in the decrease of phenotypically detected mutants. We propose that the induction of clustered mutations by deaminases involves: a) the exposure of ssDNA strands during transcription and loss of protection of ssDNA due to the depletion of ssDNA-binding proteins, such as Sub1, and b) attainment of conditions favorable for APOBEC action in subpopulation of cells, leading to enzymatic deamination within the currently expressed genes. This model is applicable to both the initial and the later stages of oncogenic transformation and explains variations in the distribution of mutations and kataegis events in different tumor cells.


Assuntos
Proteínas de Ligação a DNA/genética , Regulação Fúngica da Expressão Gênica , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Ativação Transcricional , Desaminase APOBEC-1 , Alelos , Sistemas de Transporte de Aminoácidos Básicos/genética , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Aspartato Carbamoiltransferase/genética , Aspartato Carbamoiltransferase/metabolismo , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/genética , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , DNA de Cadeia Simples , Proteínas de Ligação a DNA/metabolismo , Genes Reporter , Estudos de Associação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Mutação , Taxa de Mutação , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae/metabolismo , Análise de Sequência de DNA , Fatores de Transcrição/metabolismo
12.
Dev Dyn ; 244(1): 1-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25294789

RESUMO

BACKGROUND: The interplay between Notch and Vegf signaling regulates angiogenesis in the embryo. Notch signaling limits the responsiveness of endothelial cells to Vegf to control sprouting. Despite the importance of this regulatory relationship, much remains to be understood about extrinsic factors that modulate the pathway. RESULTS: During a forward genetic screen for novel regulators of lymphangiogenesis, we isolated a mutant with reduced lymphatic vessel development. This mutant also exhibited hyperbranching arteries, reminiscent of Notch pathway mutants. Positional cloning identified a missense mutation in the carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase (cad) gene. Cad is essential for UDP biosynthesis, which is necessary for protein glycosylation and de novo biosynthesis of pyrimidine-based nucleotides. Using a transgenic reporter of Notch activity, we demonstrate that Notch signaling is significantly reduced in cad(hu10125) mutants. In this context, genetic epistasis showed that increased endothelial cell responsiveness to Vegfc/Vegfr3 signaling drives excessive artery branching. CONCLUSIONS: These findings suggest important posttranslational modifications requiring Cad as an unappreciated mechanism that regulates Notch/Vegf signaling during angiogenesis.


Assuntos
Aspartato Carbamoiltransferase/metabolismo , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/metabolismo , Di-Hidro-Orotase/metabolismo , Neovascularização Fisiológica/fisiologia , Receptores Notch/metabolismo , Transdução de Sinais/fisiologia , Peixe-Zebra/embriologia , Animais , Aspartato Carbamoiltransferase/genética , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/genética , Di-Hidro-Orotase/genética , Glicosilação , Receptores Notch/genética , Fator C de Crescimento do Endotélio Vascular/genética , Fator C de Crescimento do Endotélio Vascular/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
13.
J Biol Chem ; 289(30): 20813-23, 2014 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-24928511

RESUMO

Genetic mutations in tumor cells cause several unique metabolic phenotypes that are critical for cancer cell proliferation. Mutations in the tyrosine kinase epidermal growth factor receptor (EGFR) induce oncogenic addiction in lung adenocarcinoma (LAD). However, the linkage between oncogenic mutated EGFR and cancer cell metabolism has not yet been clearly elucidated. Here we show that EGFR signaling plays an important role in aerobic glycolysis in EGFR-mutated LAD cells. EGFR-tyrosine kinase inhibitors (TKIs) decreased lactate production, glucose consumption, and the glucose-induced extracellular acidification rate (ECAR), indicating that EGFR signaling maintained aerobic glycolysis in LAD cells. Metabolomic analysis revealed that metabolites in the glycolysis, pentose phosphate pathway (PPP), pyrimidine biosynthesis, and redox metabolism were significantly decreased after treatment of LAD cells with EGFRTKI. On a molecular basis, the glucose transport carried out by glucose transporter 3 (GLUT3) was downregulated in TKI-sensitive LAD cells. Moreover, EGFR signaling activated carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase (CAD), which catalyzes the first step in de novo pyrimidine synthesis. We conclude that EGFR signaling regulates the global metabolic pathway in EGFR-mutated LAD cells. Our data provide evidence that may link therapeutic response to the regulation of metabolism, which is an attractive target for the development of more effective targeted therapies to treat patients with EGFR-mutated LAD.


Assuntos
Adenocarcinoma/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas de Neoplasias/metabolismo , Transdução de Sinais , Adenocarcinoma/genética , Adenocarcinoma/patologia , Aspartato Carbamoiltransferase/genética , Aspartato Carbamoiltransferase/metabolismo , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/genética , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/metabolismo , Linhagem Celular Tumoral , Di-Hidro-Orotase/genética , Di-Hidro-Orotase/metabolismo , Fator de Crescimento Epidérmico/genética , Receptores ErbB/genética , Glucose/genética , Glucose/metabolismo , Transportador de Glucose Tipo 3 , Glicólise/genética , Humanos , Ácido Láctico/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteínas de Neoplasias/genética , Via de Pentose Fosfato/genética
14.
Artigo em Inglês | MEDLINE | ID: mdl-24316846

RESUMO

Aspartate transcarbamoylase (ATCase) catalyzes the synthesis of N-carbamoyl-L-aspartate from carbamoyl phosphate and aspartate in the second step of the de novo biosynthesis of pyrimidines. In prokaryotes, the first three activities of the pathway, namely carbamoyl phosphate synthetase (CPSase), ATCase and dihydroorotase (DHOase), are encoded as distinct proteins that function independently or in noncovalent association. In animals, CPSase, ATCase and DHOase are part of a 243 kDa multifunctional polypeptide named CAD. Up-regulation of CAD is essential for normal and tumour cell proliferation. Although the structures of numerous prokaryotic ATCases have been determined, there is no structural information about any eukaryotic ATCase. In fact, the only detailed structural information about CAD is that it self-assembles into hexamers and trimers through interactions of the ATCase domains. Here, the expression, purification and crystallization of the ATCase domain of human CAD is reported. The recombinant protein, which was expressed in bacteria and purified with good yield, formed homotrimers in solution. Crystallization experiments both in the absence and in the presence of the inhibitor PALA yielded small crystals that diffracted X-rays to 2.1 Å resolution using synchrotron radiation. The crystals appeared to belong to the hexagonal space group P6(3)22, and Matthews coefficient calculation indicated the presence of one ATCase subunit per asymmetric unit, with a solvent content of 48%. However, analysis of the intensity statistics suggests a special case of the P21 lattice with pseudo-symmetry and possibly twinning.


Assuntos
Aspartato Carbamoiltransferase/química , Ácido Aspártico/análogos & derivados , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/química , Di-Hidro-Orotase/química , Inibidores Enzimáticos/química , Ácido Fosfonoacéticos/análogos & derivados , Aspartato Carbamoiltransferase/genética , Aspartato Carbamoiltransferase/metabolismo , Ácido Aspártico/química , Ácido Aspártico/metabolismo , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/genética , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/metabolismo , Cristalização , Cristalografia por Raios X , Di-Hidro-Orotase/genética , Di-Hidro-Orotase/metabolismo , Inibidores Enzimáticos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Modelos Moleculares , Ácido Fosfonoacéticos/química , Ácido Fosfonoacéticos/metabolismo , Multimerização Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Síncrotrons
15.
PLoS One ; 8(10): e52094, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24124444

RESUMO

5-Fluorouracil (5-FU) is an anticancer drug and pyrimidine analogue. A problem in 5-FU therapy is acquired resistance to the drug. To find out more about the mechanisms of resistance, we screened a plasmid library in yeast for genes that confer 5-FU resistance when overexpressed. We cloned five genes: CPA1, CPA2, HMS1, HAM1 and YJL055W. CPA1 and CPA2 encode a carbamoyl phosphate synthase involved in arginine biosynthesis and HMS1 a helix-loop-helix transcription factor. Our results suggest that CPA1, CPA2, and HMS1 confer 5-FU resistance by stimulating pyrimidine biosynthesis. Thus, they are unable to confer 5-FU resistance in a ura2 mutant, and inhibit the uptake and incorporation into RNA of both uracil and 5-FU. In contrast, HAM1 and YJL055W confer 5-FU resistance in a ura2 mutant, and selectively inhibit incorporation into RNA of 5-FU but not uracil. HAM1 is the strongest resistance gene, but it partially depends on YJL055W for its function. This suggests that HAM1 and YJL055W function together in mediating resistance to 5-FU. Ham1p encodes an inosine triphosphate pyrophosphatase that has been implicated in resistance to purine analogues. Our results suggest that Ham1p could have a broader specificity that includes 5-FUTP and other pyrimidine analogoue triphosphates.


Assuntos
Fluoruracila/farmacologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Leveduras/efeitos dos fármacos , Leveduras/metabolismo , Aspartato Carbamoiltransferase/genética , Aspartato Carbamoiltransferase/metabolismo , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/genética , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
16.
J Biomed Sci ; 20: 24, 2013 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-23594158

RESUMO

BACKGROUND: mTOR is a genetically conserved serine/threonine protein kinase, which controls cell growth, proliferation, and survival. A multifunctional protein CAD, catalyzing the initial three steps in de novo pyrimidine synthesis, is regulated by the phosphorylation reaction with different protein kinases, but the relationship with mTOR protein kinase has not been known. RESULTS: CAD was recovered as a binding protein with mLST8, a component of the mTOR complexes, from HEK293 cells transfected with the FLAG-mLST8 vector. Association of these two proteins was confirmed by the co-immuoprecipitaiton followed by immunoblot analysis of transfected myc-CAD and FLAG-mLST8 as well as that of the endogenous proteins in the cells. Analysis using mutant constructs suggested that CAD has more than one region for the binding with mLST8, and that mLST8 recognizes CAD and mTOR in distinct ways. The CAD enzymatic activity decreased in the cells depleted of amino acids and serum, in which the mTOR activity is suppressed. CONCLUSION: The results obtained indicate that mLST8 bridges between CAD and mTOR, and plays a role in the signaling mechanism where CAD is regulated in the mTOR pathway through the association with mLST8.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Aspartato Carbamoiltransferase/metabolismo , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/metabolismo , Di-Hidro-Orotase/metabolismo , Regulação Enzimológica da Expressão Gênica , Serina-Treonina Quinases TOR/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Aminoácidos/metabolismo , Aspartato Carbamoiltransferase/genética , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/genética , Di-Hidro-Orotase/genética , Células HEK293 , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Complexos Multiproteicos , Fosforilação , Ligação Proteica , Pirimidinas/biossíntese , Pirimidinas/metabolismo , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/genética , Homólogo LST8 da Proteína Associada a mTOR
17.
Science ; 339(6125): 1323-8, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23429703

RESUMO

Cellular growth signals stimulate anabolic processes. The mechanistic target of rapamycin complex 1 (mTORC1) is a protein kinase that senses growth signals to regulate anabolic growth and proliferation. Activation of mTORC1 led to the acute stimulation of metabolic flux through the de novo pyrimidine synthesis pathway. mTORC1 signaling posttranslationally regulated this metabolic pathway via its downstream target ribosomal protein S6 kinase 1 (S6K1), which directly phosphorylates S1859 on CAD (carbamoyl-phosphate synthetase 2, aspartate transcarbamoylase, dihydroorotase), the enzyme that catalyzes the first three steps of de novo pyrimidine synthesis. Growth signaling through mTORC1 thus stimulates the production of new nucleotides to accommodate an increase in RNA and DNA synthesis needed for ribosome biogenesis and anabolic growth.


Assuntos
Aspartato Carbamoiltransferase/metabolismo , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/metabolismo , Di-Hidro-Orotase/metabolismo , Complexos Multiproteicos/metabolismo , Pirimidinas/biossíntese , Proteínas Quinases S6 Ribossômicas/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Células 3T3-L1 , Animais , Células HeLa , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Transdução de Sinais , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
18.
FASEB J ; 26(1): 460-7, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21982950

RESUMO

Markers of prostate tumor recurrence after radical prostatectomy are lacking and highly demanded. The androgen receptor (AR) is a nuclear receptor that plays a pivotal role in normal and cancerous prostate tissue. AR interacts with a number of proteins modulating its stability, localization, and activity. To test the hypothesis that an increased expression of AR partners might foster tumor development, we immunopurified AR partners in human tumors xenografted into mice. One of the identified AR partners was the multifunctional enzyme carbamoyl-phosphate synthetase II, aspartate transcarbamylase, and dihydroorotase (CAD), which catalyzes the 3 initial steps of pyrimidine biosynthesis. We combined experiments in C4-2, LNCaP, 22RV1, and PC3 human prostate cell lines and analysis of frozen radical prostatectomy samples to study the CAD-AR interaction. We show here that in prostate tumor cells, CAD fosters AR translocation into the nucleus and stimulates its transcriptional activity. Notably, in radical prostatectomy specimens, CAD expression was not correlated with proliferation markers, but a higher CAD mRNA level was associated with local tumor extension (P=0.049) and cancer relapse (P=0.017). These results demonstrate an unsuspected function for a key metabolic enzyme and identify CAD as a potential predictive marker of cancer relapse.


Assuntos
Aspartato Carbamoiltransferase/metabolismo , Biomarcadores Tumorais/metabolismo , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/metabolismo , Di-Hidro-Orotase/metabolismo , Recidiva Local de Neoplasia/diagnóstico , Neoplasias da Próstata/diagnóstico , Receptores Androgênicos/metabolismo , Androgênios/metabolismo , Animais , Aspartato Carbamoiltransferase/genética , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/genética , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Citosol/metabolismo , Di-Hidro-Orotase/genética , Humanos , Masculino , Camundongos , Recidiva Local de Neoplasia/metabolismo , Transplante de Neoplasias , Valor Preditivo dos Testes , Neoplasias da Próstata/metabolismo , Pirimidinas/biossíntese , RNA Interferente Pequeno/farmacologia , Receptores Androgênicos/genética , Transcrição Gênica/fisiologia , Transplante Heterólogo
19.
Oncol Res ; 18(7): 293-304, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20377130

RESUMO

A number of previous investigations have reported that physical exercise renders immunopotentiating and antitumor therapeutic benefits to the tumor-bearing host. As these effects of physical exercise are mainly mediated through the modulation of hormonal and cytokine repertoire, it remains unclear if male and female tumor-bearing hosts show a gender-dependent differential response to the therapeutic action of physical exercise in tumor growth retardation. In the present investigation tumor growth retardation, following physical exercise was investigated in a gender-specific manner in a murine tumor model of a T-cell lymphoma designated as Dalton's lymphoma (DL). The results of the present investigation show that physical exercise of a tumor-bearing host on a treadmill results in a better retardation of tumor progression along with prolongation of survival time in male compared to female tumor-bearing host. Such gender dimorphism of the therapeutic benefits of physical exercise in tumor-bearing host was found to be associated with a gender-dependent variation in cell survival and induction of apoptosis in tumor cells. Moreover, expression of cell growth regulatory proteins-selectin, Hsp70, p53, CAD, SOCS, and IL-2 receptor-was found to vary in a gender-specific manner following physical exercise. The investigation also indicates the role of cytokines and macrophages in manifestation of gender dimorphism in the response of tumor-bearing mice to physical exercise. Thus, the observations of the present investigation suggest for the first time that the beneficial effects of physical exercise in a tumor-bearing host may be variable depending on the gender of the host.


Assuntos
Terapia por Exercício/métodos , Linfoma de Células T/terapia , Condicionamento Físico Animal , Animais , Apoptose , Aspartato Carbamoiltransferase/metabolismo , Western Blotting , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/metabolismo , Proliferação de Células , Di-Hidro-Orotase/metabolismo , Modelos Animais de Doenças , Feminino , Proteínas de Choque Térmico HSP70/metabolismo , Linfoma de Células T/metabolismo , Linfoma de Células T/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Receptores de Interleucina-2/metabolismo , Selectinas/metabolismo , Fatores Sexuais , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Taxa de Sobrevida , Proteína Supressora de Tumor p53/metabolismo
20.
J Mol Biol ; 387(3): 540-7, 2009 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-19302799

RESUMO

Aspartate transcarbamoylase has emerged as a textbook example of an allosteric enzyme whose binding of active-site substrates can be explained on the basis of the classical Monod-Wyman-Changeux (MWC) model of allostery. There is still debate, however, regarding the mode of action of ATP and cytidine triphosphate (CTP)--allosteric effectors that bind at regulatory sites 60 A away from the nearest active site. A large body of data for nucleotide binding is consistent with the MWC model, including a previous NMR study showing a shift in the allosteric equilibrium between R and T states that is predicted by this scheme. The possibility of binding-promoted changes to the structures of the active sites, while not within the framework of the MWC model, cannot be excluded, however. Here, the effects of binding of nucleotides are monitored in a series of (1)H-(13)C methyl transverse relaxation optimized spectroscopy spectra recorded on the 300-kDa aspartate transcarbamoylase holoenzyme in both the absence and the presence of saturating amounts of ATP or CTP. No changes in shifts of methyl probes of the catalytic chains (c-chains) that include the active sites are observed, consistent with a lack of structural changes. In addition, methyl (1)H-(13)C residual dipolar couplings are measured that are exquisitely sensitive to methyl axis orientations, and correlations between couplings measured on samples with and without nucleotide show no changes in structure of the c-chains. These results indicate that the mechanism of action of ATP and CTP can be explained fully by the MWC model and that any scheme invoking structural changes of the c-chains is not correct.


Assuntos
Aspartato Carbamoiltransferase/química , Aspartato Carbamoiltransferase/metabolismo , Ressonância Magnética Nuclear Biomolecular/métodos , Nucleotídeos/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Aspartato Carbamoiltransferase/genética , Sítios de Ligação , Citidina Trifosfato/química , Citidina Trifosfato/metabolismo , Modelos Moleculares , Nucleotídeos/química , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA