Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Curr Pharm Biotechnol ; 22(15): 2031-2037, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33970842

RESUMO

BACKGROUND: L-Asparaginase is an antineoplastic agent used in the treatment of acute myeloid and acute lymphoblastic leukemia. The present study deals with the production of this chemotherapeutic enzyme drug from Aspergillus flavus NCIM 526. The production of enzymes was carried out using oil-extracted cakes in a shake flask culture. Process parameters like carbon and nitrogen sources were also taken into account. METHODS: A total of six isolates were used to screen out efficient microorganisms for enzyme production. Aspergillus flavus NCIM 526 exhibited 138 IU/ml of enzyme activity in oil extracted mix cake after 96 hours of the incubation period. Molasses and l-asparagine were proved to be the best carbon and nitrogen sources for enzyme production. The enzyme was purified by column chromatography and the finest enzyme exhibited specific activity of 28 IU/mg. RESULTS AND DISCUSSION: The fungal enzyme exhibited low Km values as compared with standard E. coli L-asparaginase, proving more substrate affinity of fungal enzyme than bacterial enzymes. CONCLUSION: The study explored the Aspergillus flavus NCIM 526 as a potential fungal source for high yield production of antileukemic enzyme drugs.


Assuntos
Asparaginase , Aspergillus flavus/enzimologia , Antineoplásicos/metabolismo , Asparaginase/biossíntese , Escherichia coli
2.
Front Cell Infect Microbiol ; 11: 777266, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34976860

RESUMO

Aspergillus flavus is one of the important human and plant pathogens causing not only invasive aspergillosis in immunocompromised patients but also crop contamination resulting from carcinogenic aflatoxins (AFs). Investigation of the targeting factors that are involved in pathogenicity is of unmet need to dismiss the hazard. Phosphoglucose isomerase (PGI) catalyzes the reversible conversion between glucose-6-phosphate and fructose-6-phosphate, thus acting as a key node for glycolysis, pentose phosphate pathway, and cell wall biosynthesis in fungi. In this study, we constructed an A. flavus pgi deletion mutant, which exhibited specific carbon requirement for survival, reduced conidiation, and slowed germination even under optimal experimental conditions. The Δpgi mutant lost the ability to form sclerotium and displayed hypersusceptibility to osmotic, oxidative, and temperature stresses. Furthermore, significant attenuated virulence of the Δpgi mutant was documented in the Caenorhabditis elegans infection model, Galleria mellonella larval model, and crop seeds. Our results indicate that PGI in A. flavus is a key enzyme in maintaining sugar homeostasis, stress response, and pathogenicity of A. flavus. Therefore, PGI is a potential target for controlling infection and AF contamination caused by A. flavus.


Assuntos
Aflatoxinas , Aspergillus flavus , Glucose-6-Fosfato Isomerase , Aspergillus flavus/enzimologia , Aspergillus flavus/patogenicidade , Proteínas Fúngicas/genética , Glucose-6-Fosfato Isomerase/genética , Homeostase , Açúcares , Virulência
3.
Proteins ; 89(2): 185-192, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32875607

RESUMO

S-adenosyl-L-methionine (SAM)-dependent methyltransferases (MTases) are widely distributed among almost all organisms and often characterized with conserved Rossmann fold, TIM barrel, and D×G×G×G motif. However, some MTases show no methyltransferase activity. In the present study, the crystal structure of LepI, one MTase-like enzyme isolated from A. flavus that catalyzes pericyclic reactions, was investigated to determine its structure-function relationship. The overall structure of LepI in complex with the SAM mimic S-adenosyl-L-homocysteine (SAH) (PDB ID: 6IV7) indicated that LepI is a tetramer in solution. The residues His133, Arg197, Arg295, and Asp296 located near the active site can form hydrogen bonds with the substrate, thus participating in catalytic reactions. The binding of SAH in LepI is almost identical to that in other resolved MTases; however, the location of catalytic residues differs significantly. Phylogenetic trials suggest that LepI proteins share a common ancestor in plants and algae, which may explain the conserved SAM-binding site. However, the accelerated evolution of A. flavus has introduced both functional and structural changes in LepI. More importantly, the residue Arg295, which is unique to LepI, might be a key determinant for the altered enzymatic behavior. Collectively, the differences in the composition of catalytic residues, as well as the unique tetrameric form of LepI, define its unique enzymatic behavior. The present work provides an additional understanding of the structure-function relationship of MTases and MTase-like enzymes.


Assuntos
Aspergillus flavus/enzimologia , Proteínas Fúngicas/química , Metiltransferases/química , S-Adenosil-Homocisteína/química , S-Adenosilmetionina/química , Sequência de Aminoácidos , Aspergillus flavus/química , Aspergillus flavus/classificação , Domínio Catalítico , Cristalografia por Raios X , Evolução Molecular , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Expressão Gênica , Ligação de Hidrogênio , Metiltransferases/genética , Metiltransferases/metabolismo , Modelos Moleculares , Filogenia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , S-Adenosil-Homocisteína/metabolismo , S-Adenosilmetionina/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade , Especificidade por Substrato
4.
Virulence ; 12(1): 96-113, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33315533

RESUMO

Aspergillus flavus (A. flavus) is one of the most important model environmental fungi which can produce a potent toxin and carcinogen known as aflatoxin. Aflatoxin contamination causes massive agricultural economic loss and a critical human health issue each year. Although a functional vacuole has been highlighted for its fundamental importance in fungal virulence, the molecular mechanisms of the vacuole in regulating the virulence of A. flavus remain largely unknown. Here, we identified a novel vacuole-related protein in A. flavus, the ortholog of phosphatidylinositol-3-phosphate-5-kinase (Fab1) in Saccharomyces cerevisiae. This kinase was located at the vacuolar membrane, and loss of fab1 function was found to affect the growth, conidia and sclerotial development, cellular acidification and metal ion homeostasis, aflatoxin production and pathogenicity of A. flavus. Further functional analysis revealed that Fab1 was required to maintain the vacuole size and cell morphology. Additional quantitative proteomic analysis suggested that Fab1 was likely to play an important role in maintaining vacuolar/cellular homeostasis, with vacuolar dysregulation upon fab1 deletion leading to impaired aflatoxin synthesis in this fungus. Together, these results provide insight into the molecular mechanisms by which this pathogen produces aflatoxin and mediates its pathogenicity, and may facilitate dissection of the vacuole-mediated regulatory network in A. flavus.


Assuntos
1-Fosfatidilinositol 4-Quinase/genética , Aflatoxinas/biossíntese , Aspergillus flavus/enzimologia , Aspergillus flavus/genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Aflatoxinas/genética , Aspergillus flavus/patogenicidade , Proteínas Fúngicas/metabolismo , Homeostase , Sementes/microbiologia , Zea mays/microbiologia
5.
Mol Plant Microbe Interact ; 33(4): 680-692, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31922927

RESUMO

Aspergillus flavus represents an important fungal pathogen, causing severe economic losses in crops. The mitogen-activated protein (MAP) kinase signaling pathway contributes to many physiological processes, but its precise role in A. flavus is not yet fully understood. In this study, we focused on the AflBck1 gene, which encodes a MAP kinase kinase kinase of the Slt2-MAPK pathway. Targeted deletion of AflBck1 led to a significant defect in growth and development, and a AflBck1-deleted mutant (∆AflBck1) showed higher sensitivity to cell-wall stress than wild type (WT). Importantly, we observed that ∆AflBck1 displayed an enhanced ability to produce aflatoxin, a potential carcinogenic mycotoxin. However, the pathogenicity of the ∆AflBck1 mutant was markedly reduced in peanut seeds. We also presented evidence that AflBck1 was genetically epistatic to AflMkk2 in the Slt2-MAPK pathway. Finally, we found that loss of the proline-rich region at the N terminus of AflBck1 affected the reproduction of A. flavus. Collectively, this study not only extended the understanding that the MAPK pathway regulated A. flavus pathogenicity but also provided a possible strategy to control A. flavus contamination.


Assuntos
Aspergillus flavus , Parede Celular , Proteínas Fúngicas , Virulência , Aspergillus flavus/enzimologia , Aspergillus flavus/genética , Aspergillus flavus/crescimento & desenvolvimento , Aspergillus flavus/patogenicidade , Parede Celular/enzimologia , MAP Quinase Quinase Quinases/genética , Virulência/genética
6.
J Gen Appl Microbiol ; 65(6): 284-292, 2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-31130583

RESUMO

The aim of this work was to purify L-glutaminase from Aspergillus flavus. The enzyme was purified 12.47-fold from a cell-free extract with a final specific activity of 613.3 U/mg and the yield was 51.11%. The molecular weight of the enzyme, as estimated by SDS-PAGE, was found to be 69 kDa. The maximal activity of L-glutaminase was recorded at pH 8 and 40°C. The highest activity was reported towards L-glutamine as substrate, with an apparent Km value of 4.5 mmol and Vmax was 20 Uml-1. The enzyme was activated by Na+ and Co2+, while it was greatly suppressed by iodoacetate, NEM, Zn2+ and Hg2+ at 10 mM. L-glutaminase activity increased with a gradual increase of sodium chloride concentration up to 15%. In vivo, the median lethal dose (LD50) was approximately 39.4 mg/kg body weight after intraperitoneal injection in Sprague Dawley rats. Also, L-glutaminase showed no observed changes in liver and kidney functions and hematological parameters on rates. Purified A. flavus L-glutaminase had neither a cognizable effect on human platelet aggregation nor hemolytic activity. In addition, MTT assay showed that the purified L-glutaminase has a high toxic impact on Hela and Hep G2 cell lines with an IC50 value 18 and 12 µg/ml, respectively, and a moderate cytotoxic effect on HCT-116 and MCF7 cells, with an IC50 value 44 and 58 µg/ml, respectively.


Assuntos
Antineoplásicos/farmacologia , Aspergillus flavus/enzimologia , Glutaminase/farmacologia , Animais , Antineoplásicos/isolamento & purificação , Plaquetas/efeitos dos fármacos , Estabilidade Enzimática , Glutaminase/isolamento & purificação , Células HeLa , Células Hep G2 , Humanos , Concentração de Íons de Hidrogênio , Concentração Inibidora 50 , Cinética , Dose Letal Mediana , Peso Molecular , Ratos , Ratos Sprague-Dawley , Especificidade por Substrato
7.
Environ Microbiol ; 21(12): 4792-4807, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31608565

RESUMO

Aspergillus flavus is a pathogenic fungus that produces carcinogenic aflatoxins, posing a great threat to crops, animals and humans. Lysine acetylation is one of the most important reversible post-translational modifications and plays a vital regulatory role in various cellular processes. However, current information on the extent and function of lysine acetylation and aflatoxin biosynthesis in A. flavus is limited. Here, a global acetylome analysis of A. flavus was performed by peptide pre-fractionation, pan-acetylation antibody enrichment and liquid chromatography-mass spectrometry. A total of 1313 high-confidence acetylation sites in 727 acetylated proteins were identified in A. flavus. These acetylation proteins are widely involved in glycolysis/gluconeogenesis, pentose phosphate pathway, citric acid cycle and aflatoxin biosynthesis. AflO (O-methyltransferase), a key enzyme in aflatoxin biosynthesis, was found to be acetylated at K241 and K384. Deletion of aflO not only impaired conidial and sclerotial developments, but also dramatically suppressed aflatoxin production and pathogenicity of A. flavus. Further site-specific mutations showed that lysine acetylation of AflO could also result in defects in development, aflatoxin production and pathogenicity, suggesting that acetylation plays a vital role in the regulation of the enzymatic activity of AflO in A. flavus. Our findings provide evidence for the involvement of lysine acetylation in various biological processes in A. flavus and facilitating in the elucidation of metabolic networks.


Assuntos
Aflatoxinas/biossíntese , Aspergillus flavus/enzimologia , Aspergillus flavus/patogenicidade , Proteínas Fúngicas/metabolismo , Lisina/metabolismo , Metiltransferases/metabolismo , Esporos Fúngicos/crescimento & desenvolvimento , Acetilação , Arachis/microbiologia , Aspergillus flavus/genética , Aspergillus flavus/metabolismo , Ciclo do Ácido Cítrico , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Espectrometria de Massas , Redes e Vias Metabólicas , Metiltransferases/química , Metiltransferases/genética , Via de Pentose Fosfato , Doenças das Plantas/microbiologia , Processamento de Proteína Pós-Traducional , Esporos Fúngicos/genética , Esporos Fúngicos/metabolismo , Esporos Fúngicos/patogenicidade , Virulência
8.
J Control Release ; 309: 181-189, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31356840

RESUMO

Therapeutic proteins are indispensable in the treatment of various human diseases. Despite the many benefits of therapeutic proteins, they also exhibit diverse side effects. Therefore, reducing unwanted side effects of therapeutic proteins as well as enhancing their therapeutic efficacy are very important in developing therapeutic proteins. Urate oxidase (UOX) is a therapeutic enzyme that catalyzes the conversion of uric acid (UA) into a soluble metabolite, and it is used clinically for the treatment of hyperuricemia. Since UA degradation by UOX generates H2O2 (a cytotoxic side product), UOX was co-delivered with catalase-mimic nanoparticles (AuNPs) using biocompatible pluronic-based nanocarriers (NCs) to effectively reduce H2O2-associated toxicity in cultured cells and to enhance UA degradation efficiency in vivo. Simple temperature-dependent size changes of NCs allowed co-encapsulation of both UOX and AuNPs at a high loading efficiency without compromising critical properties, resulting in efficient modulation of a mixing ratio of UOX and AuNPs encapsulated in NCs. Co-localizing UOX and AuNPs in the NCs led to enhanced UA degradation and H2O2 removal in vitro, leading to a great reduction in H2O2-associated cytotoxicity compared with UOX alone or a free mixture of UOX and AuNPs. Furthermore, we demonstrated that co-delivery of UOX and AuNPs using NCs significantly improves in vivo UA degradation compared to simple co-injection of free UOX and AuNPs. More broadly, we showed that biocompatible pluronic-based nanocarriers can be used to deliver a target therapeutic protein along with its toxicity-eliminating agent in order to reduce side effects and enhance efficacy.


Assuntos
Catalase/administração & dosagem , Ouro/administração & dosagem , Hiperuricemia/tratamento farmacológico , Nanopartículas Metálicas/administração & dosagem , Urato Oxidase/administração & dosagem , Animais , Aspergillus flavus/enzimologia , Materiais Biomiméticos/administração & dosagem , Materiais Biomiméticos/uso terapêutico , Catalase/uso terapêutico , Linhagem Celular Tumoral , Portadores de Fármacos/química , Feminino , Ouro/uso terapêutico , Humanos , Peróxido de Hidrogênio/metabolismo , Hiperuricemia/metabolismo , Nanopartículas Metálicas/uso terapêutico , Camundongos Endogâmicos C57BL , Poloxâmero/química , Urato Oxidase/uso terapêutico , Ácido Úrico/metabolismo
9.
Appl Microbiol Biotechnol ; 103(12): 4889-4897, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31037381

RESUMO

Conidia are asexual spores and play a crucial role in fungal dissemination. Conidial pigmentation is important for tolerance against UV radiation and contributes to survival of fungi. The molecular basis of conidial pigmentation has been studied in several fungal species. In spite of sharing the initial common step of polyketide formation, other steps for pigment biosynthesis appear to be species-dependent. In this study, we isolated an Aspergillus flavus spontaneous mutant that produced yellow conidia. The underlying genetic defect, a three-nucleotide in-frame deletion in the gene, AFLA_051390, that encodes a copper-transporting ATPase, was identified by a comparative genomics approach. This genetic association was confirmed by disruption of the wild-type gene. When yellow mutants were grown on medium supplemented with copper ions or chloride ions, green conidial color was partially and nearly completely restored, respectively. Further disruption of AFLA_045660, an orthologue of Aspergillus nidulans yA (yellow pigment) that encodes a multicopper oxidase, in wild type and a derived strain producing dark green conidia showed that it yielded mutants that produced gold conidia. The results placed formation of the gold pigment after that of the yellow pigment and before that of the dark green pigment. Using reported inhibitors of DHN-melanin (tricyclazole and phthalide) and DOPA-melanin (tropolone and kojic acid) pathways on a set of conidial color mutants, we investigated the involvement of melanin biosynthesis in A. flavus conidial pigment formation. Results imply that both pathways have no bearing on conidial pigment biosynthesis of A. flavus.


Assuntos
Aspergillus flavus/enzimologia , ATPases Transportadoras de Cobre/metabolismo , Proteínas Fúngicas/metabolismo , Pigmentos Biológicos/biossíntese , Esporos Fúngicos/enzimologia , Aspergillus flavus/genética , ATPases Transportadoras de Cobre/genética , Proteínas Fúngicas/genética , Deleção de Genes , Genômica , Melaninas/biossíntese , Mutação , Oxirredutases/metabolismo , Pigmentação/genética , Esporos Fúngicos/genética
10.
Int J Mol Sci ; 20(9)2019 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-31060313

RESUMO

Aspergillus flavus, a ubiquitous filamentous fungus found in soil, plants and other substrates has been reported not only as a pathogen for plants, but also a carcinogen producing fungus for human. Peptidyl-Prolyl Isomerase (PPIases) plays an important role in cell process such as protein secretion cell cycle control and RNA processing. However, the function of PPIase has not yet been identified in A. flavus. In this study, the PPIases gene from A. flavus named ppci1 was cloned into expression vector and the protein was expressed in prokaryotic expression system. Activity of recombinant ppci1 protein was particularly inhibited by FK506, CsA and rapamycin. 3D-Homology model of ppci1 has been constructed with the template, based on 59.7% amino acid similarity. The homologous recombination method was used to construct the single ppci1 gene deletion strain Δppci1. We found that, the ppci1 gene plays important roles in A. flavus growth, conidiation, and sclerotia formation, all of which showed reduction in Δppci1 and increased in conidiation compared with the wild-type and complementary strains in A. flavus. Furthermore, aflatoxin and peanut seeds infection assays indicated that ppci1 contributes to virulence of A. flavus. Furthermore, we evaluated the effect of PPIase inhibitors on A. flavus growth, whereby these were used to treat wild-type strains. We found that the growths were inhibited under every inhibitor. All, these results may provide valuable information for designing inhibitors in the controlling infections of A. flavus.


Assuntos
Aspergillus flavus/enzimologia , Aspergillus flavus/genética , Peptidilprolil Isomerase/genética , Sequência de Aminoácidos , Biologia Computacional/métodos , Espectrometria de Massas , Simulação de Dinâmica Molecular , Peptídeos , Peptidilprolil Isomerase/química , Peptidilprolil Isomerase/isolamento & purificação , Peptidilprolil Isomerase/metabolismo , Filogenia , Conformação Proteica , Análise de Sequência de DNA , Relação Estrutura-Atividade , Especificidade por Substrato
11.
Mol Plant Microbe Interact ; 32(9): 1210-1228, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30986121

RESUMO

Histone deacetylases (HDACs) always function as corepressors and sometimes as coactivators in the regulation of fungal development and secondary metabolite production. However, the mechanism through which HDACs play positive roles in secondary metabolite production is still unknown. Here, classical HDAC enzymes were identified and analyzed in Aspergillus flavus, a fungus that produces one of the most carcinogenic secondary metabolites, aflatoxin B1 (AFB1). Characterization of the HDACs revealed that a class I family HDAC, HosA, played crucial roles in growth, reproduction, the oxidative stress response, AFB1 biosynthesis, and pathogenicity. To a lesser extent, a class II family HDAC, HdaA, was also involved in sclerotia formation and AFB1 biosynthesis. An in vitro analysis of HosA revealed that its HDAC activity was considerably diminished at nanomolar concentrations of trichostatin A. Notably, chromatin immunoprecipitation experiments indicated that HosA bound directly to AFB1 biosynthesis cluster genes to regulate their expression. Finally, we found that a transcriptional regulator, SinA, interacts with HosA to regulate fungal development and AFB1 biosynthesis. Overall, our results reveal a novel mechanism by which classical HDACs mediate the induction of secondary metabolite genes in fungi.


Assuntos
Aflatoxinas , Aspergillus flavus , Regulação Fúngica da Expressão Gênica , Histona Desacetilases , Aflatoxinas/biossíntese , Aflatoxinas/genética , Aspergillus flavus/enzimologia , Aspergillus flavus/genética , Aspergillus flavus/patogenicidade , Regulação Fúngica da Expressão Gênica/genética , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Ligação Proteica , Virulência/genética
12.
J Agric Food Chem ; 67(15): 4200-4213, 2019 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-30916945

RESUMO

In Aspergillus, the cyclic adenosine monophosphate (cAMP) signaling modulates asexual development and mycotoxin biosynthesis. Here, we characterize the cyclase-associated protein Cap in the pathogenic fungus Aspergillus flauvs. The cap disruption mutant exhibited dramatic reduction in hyphal growth, conidiation, and spore germination, while an enhanced production of the sclerotia was observed in this mutant. Importantly, the cap gene was found to be important for mycotoxin biosynthesis and virulence. The domain deletion study demonstrated that each domain played an important role for the Cap protein in regulating cAMP/protein kinase A (PKA) signaling, while only P1 and CARP domains were essential for the full function of Cap. The phosphorylation of Cap at S35 was identified in A. flavus, which was found to play a negligible role for the function of Cap. Overall, our results indicated that Cap with multiple domains engages in mycotoxin production and fungal pathogenicity, which could be designed as potential control targets for preventing this fungal pathogen.


Assuntos
Aflatoxinas/biossíntese , Aspergillus flavus/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Aspergillus flavus/enzimologia , Aspergillus flavus/genética , Aspergillus flavus/patogenicidade , AMP Cíclico/metabolismo , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Doenças das Plantas/microbiologia , Domínios Proteicos , Esporos Fúngicos/enzimologia , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/metabolismo , Virulência , Zea mays/microbiologia
13.
Biochem Biophys Res Commun ; 512(3): 517-523, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30904161

RESUMO

Invasive aspergillosis (IA) is a life-threatening disease impacting immunocompromised individuals. Standard treatments of IA, including polyenes and azoles, suffer from high toxicity and emerging resistance, leading to the need to develop new antifungal agents with novel mechanisms of action. Ergosterol biosynthesis is a classic target for antifungals, and squalene synthase (SQS) catalyzes the first committed step in ergosterol biosynthesis in Aspergillus spp. making SQS of interest in the context of antifungal development. Here, we cloned, expressed, purified and characterized SQS from the pathogen Aspergillus flavus (AfSQS), confirming that it produced squalene. To identify potential leads targeting AfSQS, we tested known squalene synthase inhibitors, zaragozic acid and the phosphonosulfonate BPH-652, finding that they were potent inhibitors. We then screened a library of 744 compounds from the National Cancer Institute (NCI) Diversity Set V for inhibition activity. 20 hits were identified and IC50 values were determined using dose-response curves. 14 compounds that interfered with the assay were excluded and the remaining 6 compounds were analyzed for drug-likeness, resulting in one compound, celastrol, which had an AfSQS IC50 value of 830 nM. Enzyme inhibition kinetics revealed that celastrol binds to AfSQS in a noncompetitive manner, but did not bind covalently. Since celastrol is also known to inhibit growth of the highly virulent Aspergillus fumigatus by inhibiting flavin-dependent monooxygenase siderophore A (SidA, under iron starvation conditions), it may be a promising multi-target lead for antifungal development.


Assuntos
Antifúngicos/farmacologia , Aspergillus flavus/enzimologia , Inibidores Enzimáticos/farmacologia , Farnesil-Difosfato Farnesiltransferase/antagonistas & inibidores , Farnesil-Difosfato Farnesiltransferase/metabolismo , Aspergilose/tratamento farmacológico , Aspergilose/microbiologia , Aspergillus flavus/genética , Aspergillus flavus/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Clonagem Molecular , Farnesil-Difosfato Farnesiltransferase/genética , Humanos , Modelos Moleculares , Terapia de Alvo Molecular , Triterpenos Pentacíclicos , Ácidos Tricarboxílicos/farmacologia , Triterpenos/farmacologia
14.
Toxins (Basel) ; 10(12)2018 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-30563144

RESUMO

Aflatoxins are carcinogenic mycotoxins that are produced by the filamentous fungus Aspergillus flavus, a contaminant of numerous food crops. Aflatoxins are synthesised via the aflatoxin biosynthesis pathway, with the enzymes involved encoded by the aflatoxin biosynthesis gene cluster. MoxY is a type I Baeyer⁻Villiger monooxygenase (BVMO), responsible for the conversion of hydroxyversicolorone (HVN) and versicolorone (VN) to versiconal hemiacetal acetate (VHA) and versiconol acetate (VOAc), respectively. Using mRNA data, an intron near the C-terminus was identified that is alternatively spliced, creating two possible MoxY isoforms which exist in vivo, while analysis of the genomic DNA suggests an alternative start codon leading to possible elongation of the N-terminus. These four variants of the moxY gene were recombinantly expressed in Escherichia coli, and their activity evaluated with respect to their natural substrates HVN and VN, as well as surrogate ketone substrates. Activity of the enzyme is absolutely dependent on the additional 22 amino acid residues at the N-terminus. Two MoxY isoforms with alternative C-termini, MoxYAltN and MoxYAltNC, converted HVN and VN, in addition to a range of ketone substrates. Stability and flavin-binding data suggest that MoxYAltN is, most likely, the dominant isoform. MoxYAltNC is generated by intron splicing, in contrast to intron retention, which is the most prevalent type of alternative splicing in ascomycetes. The alternative C-termini did not alter the substrate acceptance profile, or regio- or enantioselectivity of the enzyme, but did significantly affect the solubility and stability.


Assuntos
Proteínas Fúngicas/genética , Oxigenases/genética , Aflatoxinas/metabolismo , Processamento Alternativo , Antraquinonas/metabolismo , Aspergillus flavus/enzimologia , Aspergillus flavus/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas Fúngicas/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Oxigenases/metabolismo
15.
Microbiologyopen ; 6(4)2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28612469

RESUMO

Aflatoxin is a toxic, carcinogenic mycotoxin primarily produced by Aspergillus parasiticus and Aspergillus flavus. Previous studies have predicted the existence of more than 20 genes in the gene cluster involved in aflatoxin biosynthesis. Among these genes, aflK encodes versicolorin B synthase, which converts versiconal to versicolorin B. Past research has investigated aflK in A. parasiticus, but few studies have characterized aflK in the animal, plant, and human pathogen A. flavus. To understand the potential role of aflK in A. flavus, its function was investigated here for the first time using gene replacement and gene complementation strategies. The aflK deletion-mutant ΔaflK exhibited a significant decrease in sclerotial production and aflatoxin biosynthesis compared with wild-type and the complementation strain ΔaflK::aflK. ΔaflK did not affect the ability of A. flavus to infect seeds, but downregulated aflatoxin production after seed infection. This is the first report of a relationship between aflK and sclerotial production in A. flavus, and our findings indicate that aflK regulates aflatoxin formation.


Assuntos
Antraquinonas/metabolismo , Aspergillus flavus/enzimologia , Aspergillus flavus/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Aspergillus flavus/genética , Hidrolases de Éster Carboxílico/genética , Técnicas de Inativação de Genes , Teste de Complementação Genética
16.
Enzyme Microb Technol ; 93-94: 92-98, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27702489

RESUMO

Uric acid, a side product of nucleotide metabolism, should be cleared from blood stream since its accumulation can cause cardiovascular diseases and gout. Uricase (urate oxidase) converts uric acid to 5-hydroxyisourate, but it is absent in human and other higher apes. Yet, the recombinant form of uricase, Rasburicase, is now commercially available to cure tumor lysis syndrome by lowering serum uric acid level. Developing new methods to efficiently purify pharmaceutical proteins like uricase has attracted researchers' attention. Self-cleaving intein mediated single column purification is one of these novel approaches. Self-cleaving inteins are modified forms of natural inteins that can excise and join only at one junction site. In this study, the synthetic gene of Aspergillus flavus uricase, a homotetrameric protein, was cloned into pTXB1 vector as a fusion with the N-terminal of Mxe GyrA intein and chitin-binding domain (CBD) for simple purification. Expression was confirmed by western blot analysis. The fusion protein containing uricase-intein-CBD was purified on a chitin column. The cleavage was induced by adding DTT,1 as a reducing agent to release uricase. The purity of uricase and complete excision of the intein and CBD were confirmed by SDS-PAGE2 while its proper folding was proved by circular dichroism and fluorescent emission studies. Isoelectric focusing further confirmed its homogeneity when a single protein band was observed at the predicted pI value. This is the first report of successful purification of a multimeric therapeutic enzyme by intein-mediated protein cleaving using a well-established and facile system.


Assuntos
Inteínas , Urato Oxidase/isolamento & purificação , Aspergillus flavus/enzimologia , Aspergillus flavus/genética , Estabilidade Enzimática , Escherichia coli/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Genes Sintéticos , Humanos , Estrutura Quaternária de Proteína , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Espectrometria de Fluorescência , Urato Oxidase/genética , Urato Oxidase/metabolismo
17.
Artigo em Inglês | MEDLINE | ID: mdl-28066725

RESUMO

Aspergillus flavus is one of the most important opportunistic pathogens of crops and animals. The carcinogenic mycotoxin, aflatoxins produced by this pathogen cause a health problem to human and animals. Since cyclic AMP signaling controls a range of physiological processes, like fungal development and infection when responding to extracellular stimuli in fungal pathogens, in this study, we investigated the function of adenylate cyclase, a core component of cAMP signaling, in aflatoxins biosynthesis and virulence on plant seeds in A. flavus. A gene replacement strategy was used to generate the deletion mutant of acyA that encodes the adenylate cyclase. Severe defects in fungal growth, sporulation and sclerotia formation were observed in the acyA deletion mutant. The defect in radical growth could be partially rescued by exogenous cAMP analog. The acyA mutant was also significantly reduced in aflatoxins production and virulence. Similar to the former studies in other fungi, The acyA mutant showed enhancing tolerance to oxidative stress, but more sensitive to heat stress. Overall, the pleiotropic defects of the acyA deletion mutant indicates that the cAMP-PKA pathway is involved in fungal development, aflatoxins biosynthesis and plant seed invasion in A. flavus.


Assuntos
Adenilil Ciclases/metabolismo , Aflatoxinas/biossíntese , Aspergillus flavus/enzimologia , Aspergillus flavus/fisiologia , Regulação Fúngica da Expressão Gênica , Sementes/microbiologia , Adenilil Ciclases/genética , Aspergillus flavus/metabolismo , Aspergillus flavus/patogenicidade , Deleção de Genes , Esporos Fúngicos/crescimento & desenvolvimento , Virulência
18.
Fungal Genet Biol ; 81: 88-97, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26051490

RESUMO

The genome of the filamentous fungus, Aspergillus flavus, has been shown to harbor as many as 56 putative secondary metabolic gene clusters including the one responsible for production of the toxic and carcinogenic, polyketide synthase (PKS)-derived aflatoxins. Except for the production of aflatoxins, cyclopiazonic acid and several other metabolites the capability for metabolite production of most of these putative clusters is unknown. We investigated the regulation of expression of the PKS-non-ribosomal peptide synthetase (NRPS) containing cluster 23 and determined that it produces homologs of the known 2-pyridone leporin A. Inactivation and overexpression of a cluster 23 gene encoding a putative Zn(2)-Cys(6) transcription factor (AFLA_066900, lepE) resulted in downregulation of nine and up-regulation of 8, respectively, of the fifteen SMURF-predicted cluster 23 genes thus allowing delineation of the cluster. Overexpression of lepE (OE::lepE) resulted in transformants displaying orange-red pigmented hyphae. Mass spectral analysis of A. flavus OE::lepE extracts identified the known 2-pyridone metabolite, leporin B, as well as the previously unreported dehydroxy-precursor, leporin C. We provide strong evidence that leporin B forms a unique trimeric complex with iron, not found previously for other 2-pyridones. This iron complex demonstrated antiinsectan and antifeedant properties similar to those previously found for leporin A. The OE::lepE strain showed reduced levels of conidia and sclerotia suggesting that unscheduled leporin production affects fungal developmental programs.


Assuntos
Aspergillus flavus/enzimologia , Aspergillus flavus/metabolismo , Família Multigênica , Peptídeo Sintases/metabolismo , Policetídeo Sintases/metabolismo , Piridonas/metabolismo , Aspergillus flavus/genética , Regulação Fúngica da Expressão Gênica , Peptídeo Sintases/genética , Pigmentos Biológicos/análise , Policetídeo Sintases/genética , Metabolismo Secundário
19.
Braz. j. microbiol ; 46(1): 285-292, 05/2015. tab, graf
Artigo em Inglês | LILACS | ID: lil-748256

RESUMO

Aspergillus flavus was isolated from soil and exhibited laccase activity under both constitutive and copper induced conditions. Spiking the medium with 1 mM copper sulfate resulted in an increase in the activity which reached 51.84 U/mL, a distinctive protein band was detected at 60 kDa. The extracellular enzyme was purified 81 fold using gel filtration chromatography and resulted in two different laccase fractions L1 and L2, the latter had a higher enzymatic activity which reached 79.57 U/mL and specific activity of 64.17 U/μg protein. The analysis of the spectrum of the L2 fraction showed a shoulder at 330 nm which is characteristic for T2/T3 copper centers; both copper and zinc were detected suggesting that this is an unconventional white laccase. Primers of laccase gene were designed and synthesized to recover specific gene from A. flavus. Sequence analysis indicated putative laccase (Genbank ID: JF683612) at the amino acid level suggesting a close identity to laccases from other genera containing the copper binding site. Decolorization of textile waste water under different conditions showed possible application in bioremediation within a short period of time. The effect of copper on A. flavus was concentration dependent.


Assuntos
Aspergillus flavus/efeitos dos fármacos , Aspergillus flavus/enzimologia , Cobre/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Lacase/biossíntese , Ativação Transcricional/efeitos dos fármacos , Aspergillus flavus/genética , Aspergillus flavus/isolamento & purificação , Cromatografia em Gel , Meios de Cultura/química , DNA Fúngico/genética , Eletroforese em Gel de Poliacrilamida , Resíduos Industriais , Lacase/química , Lacase/isolamento & purificação , Dados de Sequência Molecular , Peso Molecular , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Microbiologia do Solo , Análise Espectral , Purificação da Água
20.
Toxins (Basel) ; 6(11): 3187-207, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25421810

RESUMO

Aspergillus flavus is one of the most important producers of carcinogenic aflatoxins in crops, and the effect of water activity (a(w)) on growth and aflatoxin production of A. flavus has been previously studied. Here we found the strains under 0.93 a(w) exhibited decreased conidiation and aflatoxin biosynthesis compared to that under 0.99 a(w). When RNA-Seq was used to delineate gene expression profile under different water activities, 23,320 non-redundant unigenes, with an average length of 1297 bp, were yielded. By database comparisons, 19,838 unigenes were matched well (e-value < 10⁻5) with known gene sequences, and another 6767 novel unigenes were obtained by comparison to the current genome annotation of A. flavus. Based on the RPKM equation, 5362 differentially expressed unigenes (with |log2Ratio| ≥ 1) were identified between 0.99 a(w) and 0.93 a(w) treatments, including 3156 up-regulated and 2206 down-regulated unigenes, suggesting that A. flavus underwent an extensive transcriptome response during water activity variation. Furthermore, we found that the expression of 16 aflatoxin producing-related genes decreased obviously when water activity decreased, and the expression of 11 development-related genes increased after 0.99 a(w) treatment. Our data corroborate a model where water activity affects aflatoxin biosynthesis through increasing the expression of aflatoxin producing-related genes and regulating development-related genes.


Assuntos
Aflatoxinas/biossíntese , Aspergillus flavus/metabolismo , Carcinógenos Ambientais/metabolismo , Regulação Fúngica da Expressão Gênica , Modelos Biológicos , Estresse Fisiológico , Transcriptoma , Aspergillus flavus/enzimologia , Aspergillus flavus/crescimento & desenvolvimento , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Perfilação da Expressão Gênica , Concentração de Íons de Hidrogênio , Especificidade da Espécie , Temperatura , Pressão de Vapor
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA