Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
Viruses ; 16(8)2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39205182

RESUMO

Numerous Aspergillus fumigatus (Af) airborne spores are inhaled daily by humans and animals due to their ubiquitous presence. The interaction between the spores and the respiratory epithelium, as well as its impact on the epithelial barrier function, remains largely unknown. The epithelial barrier protects the respiratory epithelium against viral infections. However, it can be compromised by environmental contaminants such as pollen, thereby increasing susceptibility to respiratory viral infections, including alphaherpesvirus equine herpesvirus type 1 (EHV-1). To determine whether Af spores disrupt the epithelial integrity and enhance susceptibility to viral infections, equine respiratory mucosal ex vivo explants were pretreated with Af spore diffusate, followed by EHV-1 inoculation. Spore proteases were characterized by zymography and identified using mass spectrometry-based proteomics. Proteases of the serine protease, metalloprotease, and aspartic protease groups were identified. Morphological analysis of hematoxylin-eosin (HE)-stained sections of the explants revealed that Af spores induced the desquamation of epithelial cells and a significant increase in intercellular space at high and low concentrations, respectively. The increase in intercellular space in the epithelium caused by Af spore proteases correlated with an increase in EHV-1 infection. Together, our findings demonstrate that Af spore proteases disrupt epithelial integrity, potentially leading to increased viral infection of the respiratory epithelium.


Assuntos
Aspergillus fumigatus , Infecções por Herpesviridae , Herpesvirus Equídeo 1 , Peptídeo Hidrolases , Mucosa Respiratória , Esporos Fúngicos , Animais , Herpesvirus Equídeo 1/fisiologia , Herpesvirus Equídeo 1/patogenicidade , Aspergillus fumigatus/enzimologia , Cavalos , Mucosa Respiratória/virologia , Infecções por Herpesviridae/virologia , Infecções por Herpesviridae/veterinária , Peptídeo Hidrolases/metabolismo , Doenças dos Cavalos/virologia , Doenças dos Cavalos/microbiologia , Células Epiteliais/virologia , Células Epiteliais/microbiologia
2.
Appl Environ Microbiol ; 90(9): e0113824, 2024 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-39158312

RESUMO

Phosphoglucose isomerase (PGI) links glycolysis, the pentose phosphate pathway (PPP), and the synthesis of cell wall precursors in fungi by facilitating the reversible conversion between glucose-6-phosphate (Glc6p) and fructose-6-phosphate (Fru6P). In a previous study, we established the essential role of PGI in cell wall biosynthesis in the opportunistic human fungal pathogen Aspergillus fumigatus, highlighting its potential as a therapeutic target. In this study, we conducted transcriptomic analysis and discovered that the Δpgi mutant exhibited enhanced glycolysis, reduced PPP, and an upregulation of cell wall precursor biosynthesis pathways. Phenotypic analysis revealed defective protein N-glycosylation in the mutant, notably the absence of glycosylated virulence factors DPP V and catalase 1. Interestingly, the cell wall defects in the mutant were not accompanied by activation of the MpkA-dependent cell wall integrity (CWI) signaling pathway. Instead, nitrate assimilation was activated in the Δpgi mutant, stimulating glutamine synthesis and providing amino donors for chitin precursor biosynthesis. Blocking the nitrate assimilation pathway severely impaired the growth of the Δpgi mutant, highlighting the crucial role of nitrate assimilation in rescuing cell wall defects. This study unveils the connection between nitrogen assimilation and cell wall compensation in A. fumigatus.IMPORTANCEAspergillus fumigatus is a common and serious human fungal pathogen that causes a variety of diseases. Given the limited availability of antifungal drugs and increasing drug resistance, it is imperative to understand the fungus' survival mechanisms for effective control of fungal infections. Our previous study highlighted the essential role of A. fumigatus PGI in maintaining cell wall integrity, phosphate sugar homeostasis, and virulence. The present study further illuminates the involvement of PGI in protein N-glycosylation. Furthermore, this research reveals that the nitrogen assimilation pathway, rather than the canonical MpkA-dependent CWI pathway, compensates for cell wall deficiencies in the mutant. These findings offer valuable insights into a novel adaptation mechanism of A. fumigatus to address cell wall defects, which could hold promise for the treatment of infections.


Assuntos
Aspergillus fumigatus , Parede Celular , Proteínas Fúngicas , Glucose-6-Fosfato Isomerase , Nitratos , Aspergillus fumigatus/genética , Aspergillus fumigatus/enzimologia , Aspergillus fumigatus/metabolismo , Parede Celular/metabolismo , Glucose-6-Fosfato Isomerase/genética , Glucose-6-Fosfato Isomerase/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Nitratos/metabolismo , Via de Pentose Fosfato , Glicólise
3.
J Biol Chem ; 298(6): 102003, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35504355

RESUMO

Aspergillus fumigatus is the causative agent of invasive aspergillosis, an infection with mortality rates of up to 50%. The glucan-rich cell wall of A. fumigatus is a protective structure that is absent from human cells and is a potential target for antifungal treatments. Glucan is synthesized from the donor uridine diphosphate glucose, with the conversion of glucose-6-phosphate to glucose-1-phosphate by the enzyme phosphoglucomutase (PGM) representing a key step in its biosynthesis. Here, we explore the possibility of selectively targeting A. fumigatus PGM (AfPGM) as an antifungal treatment strategy. Using a promoter replacement strategy, we constructed a conditional pgm mutant and revealed that pgm is required for A. fumigatus growth and cell wall integrity. In addition, using a fragment screen, we identified the thiol-reactive compound isothiazolone fragment of PGM as targeting a cysteine residue not conserved in the human ortholog. Furthermore, through scaffold exploration, we synthesized a para-aryl derivative (ISFP10) and demonstrated that it inhibits AfPGM with an IC50 of 2 µM and exhibits 50-fold selectivity over the human enzyme. Taken together, our data provide genetic validation of PGM as a therapeutic target and suggest new avenues for inhibiting AfPGM using covalent inhibitors that could serve as tools for chemical validation.


Assuntos
Aspergilose , Aspergillus fumigatus , Antifúngicos/farmacologia , Aspergilose/tratamento farmacológico , Aspergilose/microbiologia , Aspergillus fumigatus/enzimologia , Aspergillus fumigatus/genética , Glucanos/metabolismo , Humanos , Fosfoglucomutase/genética , Fosfoglucomutase/metabolismo
4.
mBio ; 12(5): e0273521, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34663092

RESUMO

Aspergillus fumigatus is a human-pathogenic mold that extracts nutrients from the environment or from host tissues by secreting hydrolytic enzymes. The ability of A. fumigatus to adjust secretion levels in proportion to demand relies on the assistance of the unfolded protein response (UPR), an adaptive stress response pathway that regulates the unique protein-folding environment of the endoplasmic reticulum (ER). The P5-type ATPase Spf1 has recently been implicated in a novel mechanism of ER homeostasis that involves correcting errors in ER-membrane protein targeting. However, the contribution of this protein to the biology of A. fumigatus is unknown. Here, we employed a gene knockout and RNA sequencing strategy to determine the functional role of the A. fumigatus gene coding for the orthologous P5 ATPase SpfA. The data reveal that the spfA gene is induced by ER stress in a UPR-dependent manner. In the absence of spfA, the A. fumigatus transcriptome shifts toward a profile of altered redox and lipid balance, in addition to a signature of ER stress that includes srcA, encoding a second P-type ATPase in the ER. A ΔspfA deletion mutant showed increased sensitivity to ER stress, oxidative stress, and antifungal drugs that target the cell wall or plasma membrane. The combined loss of spfA and srcA exacerbated these phenotypes and attenuated virulence in two animal infection models. These findings demonstrate that the ER-resident ATPases SpfA and SrcA act jointly to support diverse adaptive functions of the ER that are necessary for fitness in the host environment. IMPORTANCE The fungal UPR is an adaptive signaling pathway in the ER that buffers fluctuations in ER stress but also serves as a virulence regulatory hub in species of pathogenic fungi that rely on secretory pathway homeostasis for pathogenicity. This study demonstrates that the gene encoding the ER-localized P5-type ATPase SpfA is a downstream target of the UPR in the pathogenic mold A. fumigatus and that it works together with a second ER-localized P-type ATPase, SrcA, to support ER homeostasis, oxidative stress resistance, susceptibility to antifungal drugs, and virulence of A. fumigatus.


Assuntos
Aspergillus fumigatus/genética , Aspergillus fumigatus/patogenicidade , Estresse do Retículo Endoplasmático , Proteínas Fúngicas/genética , Transdução de Sinais , Adenosina Trifosfatases , Animais , Aspergillus fumigatus/enzimologia , Retículo Endoplasmático/metabolismo , Feminino , Proteínas Fúngicas/metabolismo , Técnicas de Inativação de Genes , Homeostase , Larva/microbiologia , Masculino , Camundongos , Mariposas/microbiologia , Dobramento de Proteína , Análise de Sequência de RNA , Virulência/genética
5.
PLoS Biol ; 19(6): e3001247, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34061822

RESUMO

Aspergillus fumigatus is a human fungal pathogen that can cause devastating pulmonary infections, termed "aspergilloses," in individuals suffering immune imbalances or underlying lung conditions. As rapid adaptation to stress is crucial for the outcome of the host-pathogen interplay, here we investigated the role of the versatile posttranslational modification (PTM) persulfidation for both fungal virulence and antifungal host defense. We show that an A. fumigatus mutant with low persulfidation levels is more susceptible to host-mediated killing and displays reduced virulence in murine models of infection. Additionally, we found that a single nucleotide polymorphism (SNP) in the human gene encoding cystathionine γ-lyase (CTH) causes a reduction in cellular persulfidation and correlates with a predisposition of hematopoietic stem cell transplant recipients to invasive pulmonary aspergillosis (IPA), as correct levels of persulfidation are required for optimal antifungal activity of recipients' lung resident host cells. Importantly, the levels of host persulfidation determine the levels of fungal persulfidation, ultimately reflecting a host-pathogen functional correlation and highlighting a potential new therapeutic target for the treatment of aspergillosis.


Assuntos
Antifúngicos/farmacologia , Aspergillus fumigatus/patogenicidade , Proteínas Fúngicas/metabolismo , Interações Hospedeiro-Patógeno , Sulfetos/metabolismo , Células A549 , Adulto , Animais , Aspergilose/epidemiologia , Aspergilose/genética , Aspergilose/microbiologia , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/enzimologia , Cistationina gama-Liase/genética , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/microbiologia , Feminino , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Incidência , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/microbiologia , Masculino , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Polimorfismo de Nucleotídeo Único/genética , Células THP-1 , Transplantados , Virulência/efeitos dos fármacos , Adulto Jovem
6.
Nat Commun ; 12(1): 1631, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33712585

RESUMO

Nicotinamide adenine dinucleotide (NAD) is a key molecule in cellular bioenergetics and signalling. Various bacterial pathogens release NADase enzymes into the host cell that deplete the host's NAD+ pool, thereby causing rapid cell death. Here, we report the identification of NADases on the surface of fungi such as the pathogen Aspergillus fumigatus and the saprophyte Neurospora crassa. The enzymes harbour a tuberculosis necrotizing toxin (TNT) domain and are predominately present in pathogenic species. The 1.6 Å X-ray structure of the homodimeric A. fumigatus protein reveals unique properties including N-linked glycosylation and a Ca2+-binding site whose occupancy regulates activity. The structure in complex with a substrate analogue suggests a catalytic mechanism that is distinct from those of known NADases, ADP-ribosyl cyclases and transferases. We propose that fungal NADases may convey advantages during interaction with the host or competing microorganisms.


Assuntos
Proteínas Fúngicas/química , Proteínas Fúngicas/isolamento & purificação , Proteínas Fúngicas/metabolismo , NAD+ Nucleosidase/química , NAD+ Nucleosidase/isolamento & purificação , NAD+ Nucleosidase/metabolismo , ADP-Ribosil Ciclase/metabolismo , Animais , Aspergillus fumigatus/enzimologia , Aspergillus fumigatus/genética , Aspergillus fumigatus/metabolismo , Aspergillus fumigatus/patogenicidade , Cristalografia por Raios X , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Proteínas de Membrana/química , Proteínas de Membrana/isolamento & purificação , Proteínas de Membrana/metabolismo , Modelos Moleculares , NAD/metabolismo , NAD+ Nucleosidase/genética , Neurospora crassa/enzimologia , Neurospora crassa/genética , Neurospora crassa/metabolismo , Neurospora crassa/patogenicidade , Conformação Proteica , Células Sf9 , Transdução de Sinais
7.
J Microbiol ; 59(1): 64-75, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33201436

RESUMO

Aspergillus fumigatus is a well-known opportunistic pathogen that causes invasive aspergillosis (IA) infections with high mortality in immunosuppressed individuals. Morphogenesis, including hyphal growth, conidiation, and cell wall biosynthesis is crucial in A. fumigatus pathogenesis. Based on a previous random insertional mutagenesis library, we identified the putative polysaccharide synthase gene Afcps1 and its para-log Afcps2. Homologs of the cps gene are commonly found in the genomes of most fungal and some bacterial pathogens. Afcps1/cpsA is important in sporulation, cell wall composition, and virulence. However, the precise regulation patterns of cell wall integrity by Afcps1/cpsA and further effects on the immune response are poorly understood. Specifically, our in-depth study revealed that Afcps1 affects cell-wall stability, showing an increased resistance of ΔAfcps1 to the chitinmicrofibril destabilizing compound calcofluor white (CFW) and susceptibility of ΔAfcps1 to the ß-(1,3)-glucan synthase inhibitor echinocandin caspofungin (CS). Additionally, deletion of Afcps2 had a normal sporulation phenotype but caused hypersensitivity to Na+ stress, CFW, and Congo red (CR). Specifically, quantitative analysis of cell wall composition using high-performance anion exchange chromatography-pulsed amperometric detector (HPAEC-PAD) analysis revealed that depletion of Afcps1 reduced cell wall glucan and chitin contents, which was consistent with the down-regulation of expression of the corresponding biosynthesis genes. Moreover, an elevated immune response stimulated by conidia of the ΔAfcps1 mutant in marrow-derived macrophages (BMMs) during phagocytosis was observed. Thus, our study provided new insights into the function of polysaccharide synthase Cps1, which is necessary for the maintenance of cell wall stability and the adaptation of conidia to the immune response of macrophages in A. fumigatus.


Assuntos
Aspergilose/imunologia , Aspergilose/microbiologia , Aspergillus fumigatus/enzimologia , Proteínas Fúngicas/metabolismo , Macrófagos/imunologia , Esporos Fúngicos/crescimento & desenvolvimento , Sequência de Aminoácidos , Animais , Aspergillus fumigatus/química , Aspergillus fumigatus/genética , Aspergillus fumigatus/crescimento & desenvolvimento , Parede Celular/genética , Parede Celular/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Imunidade , Macrófagos/microbiologia , Masculino , Camundongos , Alinhamento de Sequência , Esporos Fúngicos/química , Esporos Fúngicos/enzimologia , Esporos Fúngicos/genética
8.
mBio ; 11(6)2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33323509

RESUMO

Protein kinase A (PKA) signaling plays a critical role in the growth and development of all eukaryotic microbes. However, few direct targets have been characterized in any organism. The fungus Aspergillus fumigatus is a leading infectious cause of death in immunocompromised patients, but the specific molecular mechanisms responsible for its pathogenesis are poorly understood. We used this important pathogen as a platform for a comprehensive and multifaceted interrogation of both the PKA-dependent whole proteome and phosphoproteome in order to elucidate the mechanisms through which PKA signaling regulates invasive microbial disease. Employing advanced quantitative whole-proteomic and phosphoproteomic approaches with two complementary phosphopeptide enrichment strategies, coupled to an independent PKA interactome analysis, we defined distinct PKA-regulated pathways and identified novel direct PKA targets contributing to pathogenesis. We discovered three previously uncharacterized virulence-associated PKA effectors, including an autophagy-related protein, Atg24; a CCAAT-binding transcriptional regulator, HapB; and a CCR4-NOT complex-associated ubiquitin ligase, Not4. Targeted mutagenesis, combined with in vitro kinase assays, multiple murine infection models, structural modeling, and molecular dynamics simulations, was employed to characterize the roles of these new PKA targets in growth, environmental and antimicrobial stress responses, and pathogenesis in a mammalian system. We also elucidated the molecular mechanisms of PKA regulation for these effectors by defining the functionality of phosphorylation at specific PKA target sites. We have comprehensively characterized the PKA-dependent phosphoproteome and validated PKA targets as direct regulators of infectious disease for the first time in any pathogen, providing new insights into PKA signaling and control over microbial pathogenesis.IMPORTANCE PKA is essential for the virulence of eukaryotic human pathogens. Understanding PKA signaling mechanisms is therefore fundamental to deciphering pathogenesis and developing novel therapies. Despite its ubiquitous necessity, specific PKA effectors underlying microbial disease remain unknown. To address this fundamental knowledge gap, we examined the whole-proteomic and phosphoproteomic impacts of PKA on the deadly fungal pathogen Aspergillus fumigatus to uncover novel PKA targets controlling growth and virulence. We also defined the functional consequences of specific posttranslational modifications of these target proteins to characterize the molecular mechanisms of pathogenic effector regulation by PKA. This study constitutes the most comprehensive analysis of the PKA-dependent phosphoproteome of any human pathogen and proposes new and complex roles played by PKA signaling networks in governing infectious disease.


Assuntos
Aspergilose/microbiologia , Aspergillus fumigatus/enzimologia , Aspergillus fumigatus/patogenicidade , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Fúngicas/metabolismo , Proteoma/metabolismo , Animais , Aspergillus fumigatus/genética , Aspergillus fumigatus/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Fúngicas/genética , Humanos , Camundongos , Fosforilação , Proteoma/genética , Proteômica , Virulência
9.
mBio ; 11(3)2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32487759

RESUMO

Many species of pathogenic fungi deploy the unfolded protein response (UPR) to expand the folding capacity of the endoplasmic reticulum (ER) in proportion to the demand for virulence-related proteins that traffic through the secretory pathway. Although Ca2+ plays a pivotal role in ER function, the mechanism by which transcriptional upregulation of the protein folding machinery is coordinated with Ca2+ homeostasis is incompletely understood. In this study, we investigated the link between the UPR and genes encoding P-type Ca2+-ATPases in the human-pathogenic mold Aspergillus fumigatus We demonstrate that acute ER stress increases transcription of the srcA gene, encoding a member of the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) family, as well as that of pmrA, encoding a secretory pathway Ca2+-ATPase (SPCA) in the Golgi membrane. Loss of the UPR transcription factor HacA prevented the induction of srcA and pmrA transcription during ER stress, defining these ER/Golgi Ca2+ pumps as novel downstream targets of this pathway. While deletion of srcA alone caused no major deficiencies, a ΔsrcA/ΔpmrA mutant displayed a severe polarity defect, was hypersensitive to ER stress, and showed attenuated virulence. In addition, cell wall analyses revealed a striking reduction in mannose levels in the absence of both Ca2+ pumps. The ΔhacA mutant was hypersensitive to agents that block calcineurin-dependent signaling, consistent with a functional coupling between the UPR and Ca2+ homeostasis. Together, these findings demonstrate that the UPR integrates the need for increased levels of chaperone and folding enzymes with an influx of Ca2+ into the secretory pathway to support fungal growth, stress adaptation, and pathogenicity.IMPORTANCE The UPR is an intracellular signal transduction pathway that maintains homeostasis of the ER. The pathway is also tightly linked to the expression of virulence-related traits in diverse species of human-pathogenic and plant-pathogenic fungal species, including the predominant mold pathogen infecting humans, Aspergillus fumigatus Despite advances in the understanding of UPR signaling, the linkages and networks that are governed by this pathway are not well defined. In this study, we revealed that the UPR is a major driving force for stimulating Ca2+ influx at the ER and Golgi membranes and that the coupling between the UPR and Ca2+ import is important for virulence, cell wall biosynthesis, and resistance to antifungal compounds that inhibit Ca2+ signaling.


Assuntos
Adenosina Trifosfatases/metabolismo , Aspergillus fumigatus/enzimologia , Aspergillus fumigatus/patogenicidade , Parede Celular/fisiologia , Estresse do Retículo Endoplasmático , Resposta a Proteínas não Dobradas , Células A549 , Células Epiteliais Alveolares/microbiologia , Animais , Aspergillus fumigatus/genética , Cálcio/metabolismo , Retículo Endoplasmático/enzimologia , Feminino , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Complexo de Golgi/enzimologia , Humanos , Masculino , Camundongos , Transdução de Sinais , Virulência
10.
Int J Mol Med ; 46(2): 718-728, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32468025

RESUMO

Allergic bronchopulmonary aspergillosis (ABPA) is an allergic immunological response to Aspergillus fumigatus (Af) exposure, which induces a strong T helper 2 (Th2) response via mechanisms that have yet to be elucidated. The aim of the present study was to investigate the hypothesis that T2 ribonuclease from Af (Af RNASET2) induces M2­type macrophage polarization to produce a T helper 2 (Th2) immune response. Recombinant Af RNASET2 (rAf RNASET2) was expressed and purified in a prokaryotic pET system and BALB/c mice were immunized with rAf RNASET2 for in vivo analyses. Expression levels of M2 polarization factors were evaluated in RAW264.7 macrophages treated with rAf RNASET2 in vitro using flow cytometry, reverse transcription­quantitative PCR, and western blot analysis. The results predicted that the mature Af RNASET2 protein (382 amino acids; GenBank no. MN593022) contained two conserved amino acid sequence (CAS) domains, termed CAS­1 and CAS­2, which are also characteristic of the RNASET2 family proteins. The protein expression levels of the Th2­related cytokines interleukin (IL)­4, IL­10, and IL­13 were upregulated in mice immunized with rAf RNASET2. RAW264.7 macrophages treated with rAf RNASET2 showed increased mRNA expression levels of M2 factors [arginase 1, Il­10, and Il­13]; however, there was no difference in cells treated with rAf RNASET2 that had been inactivated with a ribonuclease inhibitor (RNasin). The protein expression levels of IL­10 in macrophage culture supernatant were also increased following stimulation with rAf RNASET2. In addition, rAf RNASET2 upregulated the expression of phosphorylated mitogen activated protein kinases (MAPKs) in RAW264.7 cells, whereas MAPK inhibitors attenuated rAf RNASET2­induced IL­10 expression in RAW264.7 cells. In conclusion, the present study reveals that high rAf RNASET2 activity is required for rAf RNASET2­induced M2 polarization of macrophages and suggests an important immune regulatory role for Af RNASET2 in ABPA pathogenesis.


Assuntos
Aspergillus fumigatus/enzimologia , Endorribonucleases/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Células Th2/citologia , Células Th2/metabolismo , Animais , Endorribonucleases/genética , Feminino , Interleucina-10/metabolismo , Interleucina-13/metabolismo , Interleucina-4/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Células RAW 264.7 , Células Th2/imunologia
11.
PLoS One ; 15(4): e0231990, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32320453

RESUMO

Environmental mold (fungus) exposure poses a significant threat to public health by causing illnesses ranging from invasive fungal diseases in immune compromised individuals to allergic hypertensive diseases such as asthma and asthma exacerbation in otherwise healthy people. However, the molecular pathogenesis has not been completely understood, and treatment options are limited. Due to its thermo-tolerance to the normal human body temperature, Aspergillus. fumigatus (A.fumigatus) is one of the most important human pathogens to cause different lung fungal diseases including fungal asthma. Airway obstruction and hyperresponsiveness caused by mucus overproduction are the hallmarks of many A.fumigatus induced lung diseases. To understand the underlying molecular mechanism, we have utilized a well-established A.fumigatus extracts (AFE) model to elucidate downstream signal pathways that mediate A.fumigatus induced mucin production in airway epithelial cells. AFE was found to stimulate time- and dose-dependent increase of major airway mucin gene expression (MUC5AC and MUC5B) partly via the elevation of their promoter activities. We also demonstrated that EGFR was required but not sufficient for AFE-induced mucin expression, filling the paradoxical gap from a previous study using the same model. Furthermore, we showed that fungal proteases in AFE were responsible for mucin induction by activating a Ras/Raf1/ERK signaling pathway. Ca2+ signaling, but ROS, both of which were stimulated by fungal proteases, was an indispensable determinant for ERK activation and mucin induction. The discovery of this novel pathway likely contributes to our understanding of the pathogenesis of fungal sensitization in allergic diseases such as fungal asthma.


Assuntos
Aspergillus fumigatus/enzimologia , Proteínas Fúngicas/toxicidade , Interações Hospedeiro-Patógeno/fisiologia , Mucinas/metabolismo , Peptídeo Hidrolases/toxicidade , Aspergillus fumigatus/patogenicidade , Cálcio/metabolismo , Linhagem Celular , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Receptores ErbB/metabolismo , Humanos , Pulmão/citologia , Sistema de Sinalização das MAP Quinases , Mucina-5AC/genética , Mucina-5AC/metabolismo , Mucina-5B/genética , Mucina-5B/metabolismo , Mucinas/genética , Proteínas Proto-Oncogênicas c-raf/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas ras/metabolismo
12.
Enzyme Microb Technol ; 124: 41-53, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30797478

RESUMO

Peptidylarginine deiminases (PADs) are a group of hydrolases, mediating the deimination of peptidylarginine residues into peptidyl-citrulline. Equivocal protein citrullination by PADs of fungal pathogens has a strong relation to the progression of multiple human diseases, however, the biochemical properties of fungal PADs remain ambiguous. Thus, this is the first report exploring the molecular properties of PAD from thermotolerant fungi, to imitate the human temperature. The teleomorph Emericella dentata and anamorph Aspergillus nidulans have been morphologically and molecularly identified, with observed robust growth at 37-40 °C, and strong PAD productivity. The physiological profiles of E. dentata and A. nidulans for PADs production in response to carbon, nitrogen sources, initial medium pH and incubation temperature were relatively identical, emphasizing the taxonomical proximity of these fungal isolates. PADs were purified from E. dentata and A. nidulans with apparent molecular masses 41 and 48 kDa, respectively. The peptide fingerprints of PADs from E. dentata and A. nidulans have been analyzed by MALDI-TOF/MS, displaying a higher sequence similarity to human PAD4 by 18% and 31%, respectively. The conserved peptide sequences of E. dentata and A. nidulans PADs displayed a higher similarity to human PAD than A. fumigatus PADs clade. PADs from both fungal isolates have an optimum pH and pH stability at 7.0-8.0, with putative pI 5.0-5.5, higher structural denaturation at pH 4.0-5.5 and 9.5-12 as revealed from absorbance at λ280nm. E. dentata PAD had a higher conformationally thermal stability than A. nidulans PAD as revealed from its lower Kr value. From the proteolytic mapping, the orientation of trypsinolytic recognition sites on the PADs surface from both fungal isolates was very similar. PADs from both isolates are calcium dependent, with participation of serine and cysteine residues on their catalytic sites. PADs displayed a higher affinity to deiminate the peptidylarginine residues with a feeble affinity to work as ADI. So, PADs from E. dentata and A. nidulans had a relatively similar conformational and kinetic properties. Further molecular modeling analysis are ongoing to explore the role of PADs in citrullination of human proteins in Aspergillosis, that will open a new avenue for unraveling the vague of protein-protein interaction of human A. nidulans pathogen.


Assuntos
Aspergillus nidulans/enzimologia , Emericella/enzimologia , Desiminases de Arginina em Proteínas/química , Desiminases de Arginina em Proteínas/metabolismo , Aspergillus fumigatus/enzimologia , Estabilidade Enzimática , Humanos , Concentração de Íons de Hidrogênio , Cinética , Peso Molecular , Peptídeos/química , Conformação Proteica , Desiminases de Arginina em Proteínas/isolamento & purificação , Temperatura
13.
Artigo em Inglês | MEDLINE | ID: mdl-30642940

RESUMO

Aspergillus fumigatus infections are associated with high mortality rates and high treatment costs. Limited available antifungals and increasing antifungal resistance highlight an urgent need for new antifungals. Thioredoxin reductase (TrxR) is essential for maintaining redox homeostasis and presents as a promising target for novel antifungals. We show that ebselen [2-phenyl-1,2-benzoselenazol-3(2H)-one] is an inhibitor of A. fumigatus TrxR (Ki = 0.22 µM) and inhibits growth of Aspergillus spp., with in vitro MIC values of 16 to 64 µg/ml. Mass spectrometry analysis demonstrates that ebselen interacts covalently with a catalytic cysteine of TrxR, Cys148. We also present the X-ray crystal structure of A. fumigatus TrxR and use in silico modeling of the enzyme-inhibitor complex to outline key molecular interactions. This provides a scaffold for future design of potent and selective antifungal drugs that target TrxR, improving the potency of ebselen toward inhbition of A. fumigatus growth.


Assuntos
Antifúngicos/farmacologia , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/enzimologia , Azóis/farmacologia , Compostos Organosselênicos/farmacologia , Tiorredoxina Dissulfeto Redutase/antagonistas & inibidores , Aspergillus fumigatus/crescimento & desenvolvimento , Cristalografia por Raios X , Farmacorresistência Fúngica , Humanos , Isoindóis , Testes de Sensibilidade Microbiana , Conformação Molecular , Simulação de Acoplamento Molecular , Tiorredoxina Dissulfeto Redutase/fisiologia
14.
mBio ; 9(6)2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30538182

RESUMO

Aspergillus fumigatus mitogen-activated protein kinases (MAPKs) are involved in maintaining the normal morphology of the cell wall and providing resistance against cell wall-damaging agents. Upon cell wall stress, cell wall-related sugars need to be synthesized from carbohydrate storage compounds. Here we show that this process is dependent on cAMP-dependent protein kinase A (PKA) activity and regulated by the high-osmolarity glycerol response (HOG) MAPKs SakA and MpkC. These protein kinases are necessary for normal accumulation/degradation of trehalose and glycogen, and the lack of these genes reduces glucose uptake and glycogen synthesis. Alterations in glycogen synthesis were observed for the sakA and mpkC deletion mutants, which also displayed alterations in carbohydrate exposure on the cell wall. Carbohydrate mobilization is controlled by SakA interaction with PkaC1 and PkaR, suggesting a putative mechanism where the PkaR regulatory subunit leaves the complex and releases the SakA-PkaC1 complex for activation of enzymes involved in carbohydrate mobilization. This work reveals the communication between the HOG and PKA pathways for carbohydrate mobilization for cell wall construction.IMPORTANCEAspergillus fumigatus is an opportunistic human pathogen causing allergic reactions or systemic infections such as invasive pulmonary aspergillosis, especially in immunocompromised patients. The fungal cell wall is the main component responsible for recognition by the immune system, due to the specific composition of polysaccharide carbohydrates exposed on the surface of the fungal cell wall called pathogen-associated molecular patterns (PAMPs). Key enzymes in the fungal cell wall biosynthesis are a good target for fungal drug development. This report elucidates the cooperation between the HOG and PKA pathways in the mobilization of carbohydrates for fungal cell wall biosynthesis. We suggest that the reduced mobilization of simple sugars causes defects in the structure of the fungal cell wall. In summary, we propose that SakA is important for PKA activity, therefore regulating the availability and mobilization of monosaccharides for fungal cell wall biosynthesis during cell wall damage and the osmotic stress response.


Assuntos
Aspergillus fumigatus/metabolismo , Metabolismo dos Carboidratos , Parede Celular/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Redes Reguladoras de Genes , Glicerol/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Aspergillus fumigatus/enzimologia , Aspergillus fumigatus/genética , AMP Cíclico , Glicogênio/metabolismo , Humanos , Transdução de Sinais
15.
Braz. j. microbiol ; Braz. j. microbiol;49(3): 647-655, July-Sept. 2018. graf
Artigo em Inglês | LILACS | ID: biblio-951810

RESUMO

Abstract An intronless endoglucanase from thermotolerant Aspergillus fumigatus DBINU-1 was cloned, characterized and expressed in the yeast Kluyveromyces lactis. The full-length open reading frame of the endoglucanase gene from A. fumigatus DBiNU-1, designated Cel7, was 1383 nucleotides in length and encoded a protein of 460 amino acid residues. The predicted molecular weight and the isoelectric point of the A. fumigatus Cel7 gene product were 48.19 kDa and 5.03, respectively. A catalytic domain in the N-terminal region and a fungal type cellulose-binding domain/module in the C-terminal region were detected in the predicted polypeptide sequences. Furthermore, a signal peptide with 20 amino acid residues at the N-terminus was also detected in the deduced amino acid sequences of the endoglucanase from A. fumigatus DBiNU-1. The endoglucanase from A. fumigatus DBiNU-1 was successfully expressed in K. lactis, and the purified recombinant enzyme exhibited its maximum activity at pH 5.0 and 60 °C. The enzyme was very stable in a pH range from 4.0 to 8.0 and a temperature range from 30 to 60 °C. These features make it suitable for application in the paper, biofuel, and other chemical production industries that use cellulosic materials.


Assuntos
Aspergillus fumigatus/enzimologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/química , Expressão Gênica , Celulase/genética , Celulase/química , Clonagem Molecular , Aspergillus fumigatus/genética , Especificidade por Substrato , Estabilidade Enzimática , Kluyveromyces/genética , Kluyveromyces/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/química , Proteínas Fúngicas/metabolismo , Celulase/metabolismo , Temperatura Alta , Concentração de Íons de Hidrogênio
16.
Int J Antimicrob Agents ; 52(5): 637-642, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30103005

RESUMO

OBJECTIVES: To evaluate the prevalence of triazole-resistant Aspergillus fumigatus and common molecular cyp51A polymorphisms amongst clinical isolates in a specialised cardiothoracic centre in London, UK. METHODS: All A. fumigatus isolates were prospectively analysed from April 2014 to March 2016. Isolates were screened with a four-well VIPcheck™ plate to assess triazole susceptibility. Resistance was confirmed with a standard microbroth dilution method according to European Committee on Antimicrobial Susceptibility Testing (EUCAST) guidelines. Triazole-resistant A. fumigatus isolates were subjected to a mixed-format real time polymerase chain reaction (RT-PCR) assay (AsperGenius®) to detect common cyp51A alterations. RESULTS: We identified 167 clinical A. fumigatus isolates from 135 patients. Resistance to at least one azole antifungal drug was confirmed in 22/167 (13.2%) of isolates from 18/135 (13.3%) patients, including 12/74 (16.2%) patients with cystic fibrosis (CF). The highest detection rate of azole-resistant A. fumigatus was among the 11- to 20-y age group. All triazole-resistant isolates (n = 22) were resistant to itraconazole, 18 showed cross-resistance to posaconazole and 10 displayed reduced susceptibility to voriconazole. No pan-azole-resistant A. fumigatus was identified. TR34/L98H was identified in 6/22 (27.3%) of azole-resistant isolates and detectable in 5/12 (42%) patients with CF. CONCLUSIONS: In our specialist cardiothoracic centre, the prevalence of triazole-resistant A. fumigatus is alarmingly high (13.2%). The majority of azole-resistant isolates were from patients with CF. We found a higher prevalence of the environmentally driven mutation TR34/L98H in our A. fumigatus isolates than in published UK data from other specialist respiratory centres, which may reflect differing patient populations managed at these institutions.


Assuntos
Antifúngicos/farmacologia , Aspergilose/microbiologia , Aspergillus fumigatus/efeitos dos fármacos , Farmacorresistência Fúngica , Triazóis/farmacologia , Adolescente , Adulto , Distribuição por Idade , Aspergilose/epidemiologia , Aspergillus fumigatus/enzimologia , Aspergillus fumigatus/genética , Aspergillus fumigatus/isolamento & purificação , Criança , Fibrose Cística/complicações , Sistema Enzimático do Citocromo P-450/genética , Feminino , Proteínas Fúngicas/genética , Hospitais , Humanos , Londres , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Polimorfismo Genético , Prevalência , Estudos Prospectivos , Reação em Cadeia da Polimerase em Tempo Real , Adulto Jovem
17.
Virulence ; 9(1): 1036-1049, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30052132

RESUMO

BACKGROUND: Aspergillus fumigatus is the most prevalent airborne fungal pathogen, causing invasive fungal infections mainly in immunosuppressed individuals. Death rates from invasive aspergillosis remain high because of limited treatment options and increasing antifungal resistance. The aim of this study was to identify key fungal-specific genes participating in vitamin B biosynthesis in A. fumigatus. Because these genes are absent in humans they can serve as possible novel targets for antifungal drug development. METHODS: By sequence homology we identified, deleted and analysed four key A. fumigatus genes (riboB, panA, pyroA, thiB) involved respectively in the biosynthesis of riboflavin (vitamin B2), pantothenic acid (vitamin B5), pyridoxine (vitamin B6) and thiamine (vitamin B1). RESULTS: Deletion of riboB, panA, pyroA or thiB resulted in respective vitamin auxotrophy. Lack of riboflavin and pantothenic acid biosynthesis perturbed many cellular processes including iron homeostasis. Virulence in murine pulmonary and systemic models of infection was severely attenuated following deletion of riboB and panA, strongly reduced after pyroA deletion and weakly attenuated after thiB deletion. CONCLUSIONS: This study reveals the biosynthetic pathways of the vitamins riboflavin and pantothenic acid as attractive targets for novel antifungal therapy. Moreover, the virulence studies with auxotrophic mutants serve to identify the availability of nutrients to pathogens in host niches. ABBREVIATIONS: BPS: bathophenanthrolinedisulfonate; BSA: bovine serum albumin; CFU: colony forming unit; -Fe: iron starvation; +Fe: iron sufficiency; hFe: high iron; NRPSs: nonribosomal peptide synthetases; PKSs: polyketide synthaseses; wt: wild type.


Assuntos
Aspergilose/microbiologia , Aspergillus fumigatus/enzimologia , Aspergillus fumigatus/patogenicidade , Proteínas Fúngicas/metabolismo , Ferro/metabolismo , Ácido Pantotênico/biossíntese , Riboflavina/biossíntese , Animais , Aspergillus fumigatus/genética , Aspergillus fumigatus/metabolismo , Vias Biossintéticas , Feminino , Proteínas Fúngicas/genética , GTP Cicloidrolase/genética , GTP Cicloidrolase/metabolismo , Deleção de Genes , Homeostase , Humanos , Camundongos , Camundongos Endogâmicos ICR , Fosforilases/genética , Fosforilases/metabolismo , Virulência
18.
FASEB J ; 32(6): 3385-3397, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29401615

RESUMO

Patients with cystic fibrosis (CF) experience chronic or recurrent bacterial and fungal lung infections. Many patients with CF cannot effectively clear Aspergillus from their lungs. This may result in IgE sensitization and the development of allergic bronchopulmonary aspergillosis, or invasive infections, such as Aspergillus bronchitis. Lung disease in patients with CF is associated with neutrophil-dominated inflammation and elevated levels of the serine protease, neutrophil elastase (NE). Various C-type lectin-like receptors (CLRs), including Dectin-1 and Dectin-2, are involved in the immune response to Aspergillus. Here, we show that purified NE cleaves Dectin-1 in an isoform-specific manner. Bronchoalveolar lavage fluid from patients with CF, which contains high NE activity, induces Dectin-1 cleavage. Similarly, filtrate from a protease-producing strain of Aspergillus fumigatus induces isoform-specific cleavage of Dectin-1. Dectin-1 knockout (KO) cells and NE-treated cells demonstrated reduced phagocytosis of zymosan, a fungal cell wall preparation. In addition, NE cleaves 2 other CLRs, Dectin-2 and Mincle, and fungal-induced cytokine production was reduced in Dectin-1 KO cells, Dectin-2 KO cells, and NE-treated cells. Thus, Dectin-1 and Dectin-2 cleavage by NE and/or A. fumigatus-derived proteases results in an aberrant antifungal immune response that likely contributes to disease pathology in patients with CF.-Griffiths, J. S., Thompson, A., Stott, M., Benny, A., Lewis, N. A., Taylor, P. R., Forton, J., Herrick, S., Orr, S. J., McGreal, E. P. Differential susceptibility of Dectin-1 isoforms to functional inactivation by neutrophil and fungal proteases.


Assuntos
Aspergillus fumigatus/enzimologia , Proteínas Fúngicas/química , Lectinas Tipo C/química , Elastase de Leucócito/química , Animais , Aspergillus fumigatus/imunologia , Proteínas Fúngicas/imunologia , Proteínas Fúngicas/metabolismo , Lectinas Tipo C/imunologia , Lectinas Tipo C/metabolismo , Elastase de Leucócito/imunologia , Elastase de Leucócito/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/imunologia , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Isoformas de Proteínas/química , Isoformas de Proteínas/imunologia , Isoformas de Proteínas/metabolismo
19.
Braz J Microbiol ; 49(3): 647-655, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29449177

RESUMO

An intronless endoglucanase from thermotolerant Aspergillus fumigatus DBINU-1 was cloned, characterized and expressed in the yeast Kluyveromyces lactis. The full-length open reading frame of the endoglucanase gene from A. fumigatus DBiNU-1, designated Cel7, was 1383 nucleotides in length and encoded a protein of 460 amino acid residues. The predicted molecular weight and the isoelectric point of the A. fumigatus Cel7 gene product were 48.19kDa and 5.03, respectively. A catalytic domain in the N-terminal region and a fungal type cellulose-binding domain/module in the C-terminal region were detected in the predicted polypeptide sequences. Furthermore, a signal peptide with 20 amino acid residues at the N-terminus was also detected in the deduced amino acid sequences of the endoglucanase from A. fumigatus DBiNU-1. The endoglucanase from A. fumigatus DBiNU-1 was successfully expressed in K. lactis, and the purified recombinant enzyme exhibited its maximum activity at pH 5.0 and 60°C. The enzyme was very stable in a pH range from 4.0 to 8.0 and a temperature range from 30 to 60°C. These features make it suitable for application in the paper, biofuel, and other chemical production industries that use cellulosic materials.


Assuntos
Aspergillus fumigatus/enzimologia , Celulase/química , Celulase/genética , Clonagem Molecular , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Expressão Gênica , Aspergillus fumigatus/genética , Celulase/metabolismo , Estabilidade Enzimática , Proteínas Fúngicas/metabolismo , Temperatura Alta , Concentração de Íons de Hidrogênio , Kluyveromyces/genética , Kluyveromyces/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
20.
FEBS Lett ; 591(22): 3730-3744, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29067690

RESUMO

Protein kinase A (PKA) signaling is essential for growth and virulence of the fungal pathogen Aspergillus fumigatus. Little is known concerning the regulation of this pathway in filamentous fungi. Employing liquid chromatography-tandem mass spectroscopy, we identified novel phosphorylation sites on the regulatory subunit PkaR, distinct from those previously identified in mammals and yeasts, and demonstrated the importance of two phosphorylation clusters for hyphal growth and cell wall-stress response. We also identified key differences in the regulation of PKA subcellular localization in A. fumigatus compared with other species. This is the first analysis of the phosphoregulation of a PKA regulatory subunit in a filamentous fungus and uncovers critical mechanistic differences between PKA regulation in filamentous fungi compared with mammals and yeast species, suggesting divergent targeting opportunities.


Assuntos
Aspergillus fumigatus/crescimento & desenvolvimento , Proteínas Quinases Dependentes de AMP Cíclico/química , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Aspergillus fumigatus/enzimologia , Aspergillus fumigatus/genética , Sítios de Ligação , Parede Celular/metabolismo , Cromatografia Líquida , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Modelos Moleculares , Mutação , Fosforilação , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA