Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 193
Filtrar
1.
Commun Biol ; 7(1): 855, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997419

RESUMO

Depending on their phosphorylation status, derivatives of phosphatidylinositol play important roles in vesicle identity, recognition and intracellular trafficking processes. In eukaryotic cells, phosphatidylinositol-4 phosphate pools generated by specific kinases are key determinants of the conventional secretion pathways. Earlier work in yeast has classified phosphatidylinositol-4 kinases in two types, Stt4p and Pik1p belonging to type III and Lsb6p to type II, with distinct cellular localizations and functions. Eurotiomycetes appear to lack Pik1p homologues. In Aspergillus nidulans, unlike homologues in other fungi, AnLsb6 is associated to late Golgi membranes and when heterologously overexpressed, it compensates for the thermosensitive phenotype in a Saccharomyces cerevisiae pik1 mutant, whereas its depletion leads to disorganization of Golgi-associated PHOSBP-labelled membranes, that tend to aggregate dependent on functional Rab5 GTPases. Evidence provided herein, indicates that the single type II phosphatidylinositol-4 kinase AnLsb6 is the main contributor for decorating secretory vesicles with relevant phosphatidylinositol-phosphate species, which navigate essential cargoes following the route of apical polarization via endocytic recycling.


Assuntos
1-Fosfatidilinositol 4-Quinase , Endocitose , Complexo de Golgi , Saccharomyces cerevisiae , 1-Fosfatidilinositol 4-Quinase/metabolismo , 1-Fosfatidilinositol 4-Quinase/genética , Aspergillus nidulans/metabolismo , Aspergillus nidulans/genética , Aspergillus nidulans/enzimologia , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Complexo de Golgi/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Transporte Proteico , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
2.
Biochim Biophys Acta Gene Regul Mech ; 1864(2): 194630, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32911111

RESUMO

The Spt-Ada-Gcn5 Acetyltransferase (SAGA) chromatin modifying complex is a critical regulator of gene expression and is highly conserved across species. Subunits of SAGA arrange into discrete modules with lysine aceyltransferase and deubiquitinase activities housed separately. Mutation of the SAGA deubiquitinase module can lead to substantial biological misfunction and diseases such as cancer, neurodegeneration, and blindness. Here, we review the structure and functions of the SAGA deubiquitinase module and regulatory mechanisms acting to control these.


Assuntos
Enzimas Desubiquitinantes/metabolismo , Complexos Multienzimáticos/metabolismo , Transativadores/metabolismo , Ativação Transcricional , Fatores de Transcrição de p300-CBP/metabolismo , Animais , Arabidopsis/enzimologia , Aspergillus nidulans/enzimologia , Ataxina-7/genética , Cegueira/genética , Enzimas Desubiquitinantes/genética , Drosophila/enzimologia , Histonas/metabolismo , Humanos , Camundongos , Complexos Multienzimáticos/genética , Mutação , Neoplasias/genética , Doenças Neurodegenerativas/genética , Peptídeos/genética , Processamento de Proteína Pós-Traducional , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/enzimologia , Transativadores/genética , Fatores de Transcrição de p300-CBP/genética
3.
PLoS Genet ; 16(8): e1008996, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32841242

RESUMO

The utilization of different carbon sources in filamentous fungi underlies a complex regulatory network governed by signaling events of different protein kinase pathways, including the high osmolarity glycerol (HOG) and protein kinase A (PKA) pathways. This work unraveled cross-talk events between these pathways in governing the utilization of preferred (glucose) and non-preferred (xylan, xylose) carbon sources in the reference fungus Aspergillus nidulans. An initial screening of a library of 103 non-essential protein kinase (NPK) deletion strains identified several mitogen-activated protein kinases (MAPKs) to be important for carbon catabolite repression (CCR). We selected the MAPKs Ste7, MpkB, and PbsA for further characterization and show that they are pivotal for HOG pathway activation, PKA activity, CCR via regulation of CreA cellular localization and protein accumulation, as well as for hydrolytic enzyme secretion. Protein-protein interaction studies show that Ste7, MpkB, and PbsA are part of the same protein complex that regulates CreA cellular localization in the presence of xylan and that this complex dissociates upon the addition of glucose, thus allowing CCR to proceed. Glycogen synthase kinase (GSK) A was also identified as part of this protein complex and shown to potentially phosphorylate two serine residues of the HOG MAPKK PbsA. This work shows that carbon source utilization is subject to cross-talk regulation by protein kinases of different signaling pathways. Furthermore, this study provides a model where the correct integration of PKA, HOG, and GSK signaling events are required for the utilization of different carbon sources.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/genética , Glucose/metabolismo , Quinases da Glicogênio Sintase/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Aspergillus nidulans/enzimologia , Repressão Catabólica/genética , Fungos/genética , Fungos/metabolismo , Glicerol/metabolismo , Concentração Osmolar , Fosforilação/genética , Mapas de Interação de Proteínas/genética , Proteínas Repressoras/genética , Xilose/metabolismo
4.
J Am Chem Soc ; 142(13): 6268-6284, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32131594

RESUMO

Mechanisms of enzymatic epoxidation via oxygen atom transfer (OAT) to an olefin moiety is mainly derived from the studies on thiolate-heme containing epoxidases, such as cytochrome P450 epoxidases. The molecular basis of epoxidation catalyzed by nonheme-iron enzymes is much less explored. Herein, we present a detailed study on epoxidation catalyzed by the nonheme iron(II)- and 2-oxoglutarate-dependent (Fe/2OG) oxygenase, AsqJ. The native substrate and analogues with different para substituents ranging from electron-donating groups (e.g., methoxy) to electron-withdrawing groups (e.g., trifluoromethyl) were used to probe the mechanism. The results derived from transient-state enzyme kinetics, Mössbauer spectroscopy, reaction product analysis, X-ray crystallography, density functional theory calculations, and molecular dynamic simulations collectively revealed the following mechanistic insights: (1) The rapid O2 addition to the AsqJ Fe(II) center occurs with the iron-bound 2OG adopting an online-binding mode in which the C1 carboxylate group of 2OG is trans to the proximal histidine (His134) of the 2-His-1-carboxylate facial triad, instead of assuming the offline-binding mode with the C1 carboxylate group trans to the distal histidine (His211); (2) The decay rate constant of the ferryl intermediate is not strongly affected by the nature of the para substituents of the substrate during the OAT step, a reactivity behavior that is drastically different from nonheme Fe(IV)-oxo synthetic model complexes; (3) The OAT step most likely proceeds through a stepwise process with the initial formation of a C(benzylic)-O bond to generate an Fe-alkoxide species, which is observed in the AsqJ crystal structure. The subsequent C3-O bond formation completes the epoxide installation.


Assuntos
Aspergillus nidulans/metabolismo , Compostos de Epóxi/metabolismo , Proteínas Fúngicas/metabolismo , Ácidos Cetoglutáricos/metabolismo , Oxigênio/metabolismo , Oxigenases/metabolismo , Aspergillus nidulans/química , Aspergillus nidulans/enzimologia , Cristalografia por Raios X , Compostos de Epóxi/química , Proteínas Fúngicas/química , Ferro/química , Ferro/metabolismo , Modelos Moleculares , Oxigênio/química , Oxigenases/química
5.
Enzyme Microb Technol ; 131: 109432, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31615671

RESUMO

The potential anticancer activity of arginine deiminase (ADI) via deimination of l-arginine into citrulline has been extensively verified against various arginine-auxotrophic tumors, however, the higher antigenicity, structural instability and in vivo proteolysis are the major challenges that limit this enzyme from further clinical implementation. Since, this clinically applied enzyme was derived from Mycobacterium spp, thus, searching for ADI from eukaryotic microbes "especially thermophilic fungi" could have a novel biochemical, conformational and catalytic properties. Aspergillus nidulans ADI was purified with 5.3 folds, with molecular subunit structure 48 kDa and entire molecular mass 120 kDa, ensuring its homotrimeric identity. The peptide fingerprinting analysis revealing the domain Glu95-Gly96-Gly97 as the conserved active site of A. nidulans ADI, with higher proximity to Mycobacterium ADI clade IV. In an endeavor to fortify the structural stability and anticancer activity of A. nidulans ADI, the enzyme was chemically modified with dextran. The optimal activity of Dextran-ADI conjugates was determined at 0.08:20 M ratio of ADI: Dextran, with an overall increase to ADI molecular subunit mass to ˜100 kDa. ADI was conjugated with dextran via the ε-amino groups interaction of surface lysine residues of ADI. The resistance of Dextran-ADI conjugate to proteolysis had been increased by 2.5 folds to proteinase K and trypsin, suggesting the shielding of >50% of ADI surface proteolytic recognition sites. The native and Dextran-ADI conjugates have the same optimum reaction temperature (37 °C), reaction pH and pH stability (7.0-8.0) with dependency on K+ ions as a cofactor. Dextran-ADI conjugates exhibited a higher thermal stability by ˜ 2 folds for all the tested temperatures, ensuring the acquired structural and catalytic stability upon dextran conjugation. Dextran conjugation slightly protect the reactive amino and thiols groups of surface amino acids of ADI from amino acids suicide inhibitors. The affinity of ADI was increased by 5.3 folds to free L-arginine with a dramatic reduction in citrullination of peptidylarginine residues upon dextran conjugation. The anticancer activity of ADI to breast (MCF-7), liver (HepG-2) and colon (HCT8, HT29, DLD1 and LS174 T) cancer cell lines was increased by 1.7 folds with dextran conjugation in vitro. Pharmacokinetically, the half-life time of ADI was increased by 1.7 folds upon dextran conjugation, in vivo. From the biochemical and hematological parameters, ADIs had no signs of toxicity to the experimental animals. In addition to the dramatic reduction of L-arginine in serum, citrulline level was increased by 2.5 folds upon dextran conjugation of ADI. This is first report exploring thermostable ADI from thermophilic A. nidulans with robust structural stability, catalytic efficiency and proteolytic resistance.


Assuntos
Antineoplásicos/química , Antineoplásicos/metabolismo , Aspergillus nidulans/enzimologia , Dextranos/metabolismo , Estabilidade Enzimática , Hidrolases/química , Hidrolases/metabolismo , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Arginina/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Citrulina/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Hidrolases/farmacocinética , Hidrolases/farmacologia , Cinética , Camundongos , Peso Molecular , Multimerização Proteica , Proteólise , Temperatura
6.
Biochem Biophys Res Commun ; 515(2): 255-260, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31101338

RESUMO

Pericyclic reactions are among the most powerful synthetic transformations widely applied in the synthesis of multiple regioselective and stereoselective carbon-carbon bonds. LepI is a recently identified S-adenosyl-l-methionine (SAM)-dependent enzyme, which could catalyze dehydration, Diels-Alder reaction, and the retro-Claisen rearrangement reactions. However, the mechanism underlying these reactions by LepI remains elusive. Here we report the structure of LepI in complex with SAM as its co-factor, which adopts a typical class I methyltransferase fold. Docking studies are performed to investigate the binding modes of various substrates/products and provide insights into the catalytic mechanism of the multiple reactions catalyzed by LepI. Our study suggests that the dehydration reaction may start from the deprotonation of the hydroxyl group on the pyridone ring of the substrate by LepIH133, during which R295 and D296 play important roles in substrate binding and stabilizing the reaction intermediate. The stereoselective dehydration is accomplished through the trans-conformer of the leaving alcohol group which is trapped by nearby residues. The pericyclic reactions following dehydration are facilitated by the hydrophobic and hydrophilic interactions in the binding pocket. H133 and R295, two residues not conserved in other methyltransferases, might account for the unique activity of LepI among the SAM-dependent methyltransferase family. Together, this study provides important structural insights into the unique reactions catalyzed by LepI and will shed light on the knowledge of mechanisms of pericyclic reactions.


Assuntos
Proteínas Fúngicas/química , Metiltransferases/química , Aspergillus nidulans/enzimologia , Aspergillus nidulans/genética , Sítios de Ligação , Biocatálise , Cristalografia por Raios X , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Metiltransferases/genética , Metiltransferases/metabolismo , Modelos Moleculares , Simulação de Acoplamento Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , S-Adenosilmetionina/metabolismo
7.
J Vis Exp ; (147)2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31107465

RESUMO

Class 1 histone deacetylases (HDACs) like RpdA have gained importance as potential targets for treatment of fungal infections and for genome mining of fungal secondary metabolites. Inhibitor screening, however, requires purified enzyme activities. Since class 1 deacetylases exert their function as multiprotein complexes, they are usually not active when expressed as single polypeptides in bacteria. Therefore, endogenous complexes need to be isolated, which, when conventional techniques like ion exchange and size exclusion chromatography are applied, is laborious and time consuming. Tandem affinity purification has been developed as a tool to enrich multiprotein complexes from cells and thus turned out to be ideal for the isolation of endogenous enzymes. Here we provide a detailed protocol for the single-step enrichment of active RpdA complexes via the first purification step of C-terminally TAP-tagged RpdA from Aspergillus nidulans. The purified complexes may then be used for the subsequent inhibitor screening applying a deacetylase assay. The protein enrichment together with the enzymatic activity assay can be completed within two days.


Assuntos
Aspergillus nidulans/enzimologia , Cromatografia de Afinidade/métodos , Ensaios Enzimáticos/métodos , Histona Desacetilases/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Animais , Galinhas , Histona Desacetilases/genética , Ácidos Hidroxâmicos/farmacologia
8.
Enzyme Microb Technol ; 124: 41-53, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30797478

RESUMO

Peptidylarginine deiminases (PADs) are a group of hydrolases, mediating the deimination of peptidylarginine residues into peptidyl-citrulline. Equivocal protein citrullination by PADs of fungal pathogens has a strong relation to the progression of multiple human diseases, however, the biochemical properties of fungal PADs remain ambiguous. Thus, this is the first report exploring the molecular properties of PAD from thermotolerant fungi, to imitate the human temperature. The teleomorph Emericella dentata and anamorph Aspergillus nidulans have been morphologically and molecularly identified, with observed robust growth at 37-40 °C, and strong PAD productivity. The physiological profiles of E. dentata and A. nidulans for PADs production in response to carbon, nitrogen sources, initial medium pH and incubation temperature were relatively identical, emphasizing the taxonomical proximity of these fungal isolates. PADs were purified from E. dentata and A. nidulans with apparent molecular masses 41 and 48 kDa, respectively. The peptide fingerprints of PADs from E. dentata and A. nidulans have been analyzed by MALDI-TOF/MS, displaying a higher sequence similarity to human PAD4 by 18% and 31%, respectively. The conserved peptide sequences of E. dentata and A. nidulans PADs displayed a higher similarity to human PAD than A. fumigatus PADs clade. PADs from both fungal isolates have an optimum pH and pH stability at 7.0-8.0, with putative pI 5.0-5.5, higher structural denaturation at pH 4.0-5.5 and 9.5-12 as revealed from absorbance at λ280nm. E. dentata PAD had a higher conformationally thermal stability than A. nidulans PAD as revealed from its lower Kr value. From the proteolytic mapping, the orientation of trypsinolytic recognition sites on the PADs surface from both fungal isolates was very similar. PADs from both isolates are calcium dependent, with participation of serine and cysteine residues on their catalytic sites. PADs displayed a higher affinity to deiminate the peptidylarginine residues with a feeble affinity to work as ADI. So, PADs from E. dentata and A. nidulans had a relatively similar conformational and kinetic properties. Further molecular modeling analysis are ongoing to explore the role of PADs in citrullination of human proteins in Aspergillosis, that will open a new avenue for unraveling the vague of protein-protein interaction of human A. nidulans pathogen.


Assuntos
Aspergillus nidulans/enzimologia , Emericella/enzimologia , Desiminases de Arginina em Proteínas/química , Desiminases de Arginina em Proteínas/metabolismo , Aspergillus fumigatus/enzimologia , Estabilidade Enzimática , Humanos , Concentração de Íons de Hidrogênio , Cinética , Peso Molecular , Peptídeos/química , Conformação Proteica , Desiminases de Arginina em Proteínas/isolamento & purificação , Temperatura
9.
Org Biomol Chem ; 17(8): 2070-2076, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30628619

RESUMO

LepI is a novel multifunctional enzyme that catalyzes stereoselective dehydration, Diels-Alder reaction, and retro-Claisen rearrangement. Here we report the crystal structure of LepI in complex with its co-factor S-adenosyl methionine (SAM). LepI forms a tetramer via the N-terminal helical domain and binds to a SAM molecule in the C-terminal catalytic domain. The binding modes of various LepI substrates are investigated by docking simulations, which suggest that the substrates are bound via both hydrophobic and hydrophilic forces, as well as cation-π interactions with the positively charged SAM. The reaction starts with a dehydration step in which H133 possibly deprotonates the pyridone hydroxyl group of the substrate, while D296 might protonate an alkyl-chain hydroxyl group. Subsequent pericyclization may be facilitated by the correct fold of the substrate's alkyl chain and a thermodynamic driving force towards σ-bonds at the expense of π-bonds. These results provide structural insights into LepI catalysis and are important in understanding the mechanism of enzymatic pericyclization.


Assuntos
Aspergillus nidulans/enzimologia , Benzopiranos/metabolismo , Proteínas Fúngicas/metabolismo , Piridonas/metabolismo , S-Adenosilmetionina/metabolismo , Sequência de Aminoácidos , Aspergillus nidulans/química , Aspergillus nidulans/metabolismo , Vias Biossintéticas , Domínio Catalítico , Cristalografia por Raios X , Reação de Cicloadição , Proteínas Fúngicas/química , Simulação de Acoplamento Molecular , Conformação Proteica , Multimerização Proteica , Estereoisomerismo
10.
Curr Genet ; 64(5): 1043-1056, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29492587

RESUMO

Aspergillus nidulans produces sterigmatocystin (ST), a precursor of a carcinogenic secondary metabolite aflatoxin (AF), during its developmental process. ST biosynthesis has been shown to be affected by various regulatory factors. In this study, we investigated the involvement of O-mannosyltransferases (PmtA, PmtB, PmtC), in ST production and morphological development. Deletion of pmtA (ΔpmtA), pmtB (ΔpmtB) or pmtC (ΔpmtC) caused no spore production and a significant decline of vegetative growth. A tremendous decline of ST level was observed in all Δpmt mutants at the third day after inoculation. By extending the growth period, ST production of ΔpmtA and ΔpmtB increased to the wild-type level 7 days after inoculation. On the other hand, ST was not detected from 7- or 14-day cultures in ΔpmtC. Expression levels of aflR gene, an essential regulator of the ST biosynthesis pathway, were also down-regulated in the Δpmt strains. By introducing the aflR overexpression cassette, ST production in the ΔpmtA and ΔpmtB significantly increased to levels comparable to the wild type. However, the presence of the aflR overexpression cassette could not improve ST production in the ΔpmtC mutant. These data suggest that the PMT family is a new endogenous factor that is required for ST biosynthesis in A. nidulans. These findings provide better understanding of the regulatory mechanisms of AF/ST biosynthesis, which can ultimately contribute to our ability to control aflatoxin contamination.


Assuntos
Aspergillus nidulans/metabolismo , Carcinógenos/metabolismo , Isoenzimas/metabolismo , Manosiltransferases/metabolismo , Esterigmatocistina/biossíntese , Aspergillus nidulans/enzimologia , Aspergillus nidulans/genética , Aspergillus nidulans/crescimento & desenvolvimento , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Técnicas de Silenciamento de Genes , Genes Fúngicos , Teste de Complementação Genética , Isoenzimas/genética , Manosiltransferases/genética , Mutação
11.
Angew Chem Int Ed Engl ; 57(7): 1831-1835, 2018 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-29314482

RESUMO

AsqJ, an iron(II)- and 2-oxoglutarate-dependent enzyme found in viridicatin-type alkaloid biosynthetic pathways, catalyzes sequential desaturation and epoxidation to produce cyclopenins. Crystal structures of AsqJ bound to cyclopeptin and its C3 epimer are reported. Meanwhile, a detailed mechanistic study was carried out to decipher the desaturation mechanism. These findings suggest that a pathway involving hydrogen atom abstraction at the C10 position of the substrate by a short-lived FeIV -oxo species and the subsequent formation of a carbocation or a hydroxylated intermediate is preferred during AsqJ-catalyzed desaturation.


Assuntos
Compostos de Epóxi/metabolismo , Proteínas Fúngicas/metabolismo , Peptídeos/metabolismo , Aspergillus nidulans/enzimologia , Biocatálise , Domínio Catalítico , Sistema Enzimático do Citocromo P-450/metabolismo , Compostos de Epóxi/química , Compostos Férricos/química , Proteínas Fúngicas/química , Ácidos Cetoglutáricos/química , Ácidos Cetoglutáricos/metabolismo , Simulação de Dinâmica Molecular , Peptídeos/química , Teoria Quântica , Estereoisomerismo
12.
Nat Commun ; 9(1): 104, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29317628

RESUMO

Non-heme iron and α-ketoglutarate (αKG) oxygenases catalyze remarkably diverse reactions using a single ferrous ion cofactor. A major challenge in studying this versatile family of enzymes is to understand their structure-function relationship. AusE from Aspergillus nidulans and PrhA from Penicillium brasilianum are two highly homologous Fe(II)/αKG oxygenases in fungal meroterpenoid biosynthetic pathways that use preaustinoid A1 as a common substrate to catalyze divergent rearrangement reactions to form the spiro-lactone in austinol and cycloheptadiene moiety in paraherquonin, respectively. Herein, we report the comparative structural study of AusE and PrhA, which led to the identification of three key active site residues that control their reactivity. Structure-guided mutagenesis of these residues results in successful interconversion of AusE and PrhA functions as well as generation of the PrhA double and triple mutants with expanded catalytic repertoire. Manipulation of the multifunctional Fe(II)/αKG oxygenases thus provides an excellent platform for the future development of biocatalysts.


Assuntos
Aspergillus nidulans/metabolismo , Ácidos Cetoglutáricos/química , Oxigenases de Função Mista/metabolismo , Ferroproteínas não Heme/química , Penicillium/metabolismo , Terpenos/metabolismo , Aspergillus nidulans/enzimologia , Domínio Catalítico/fisiologia , Oxigenases de Função Mista/genética , Oxirredução , Penicillium/classificação , Penicillium/enzimologia , Relação Estrutura-Atividade , Especificidade por Substrato , Terpenos/química
13.
J Microbiol Biotechnol ; 28(1): 145-156, 2018 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-29361208

RESUMO

Most eukaryotic peroxiredoxins (Prxs) are readily inactivated by a high concentration of hydrogen peroxide (H2O2) during catalysis owing to their "GGLG" and "YF" motifs. However, such oxidative stress sensitive motifs were not found in the previously identified filamentous fungal Prxs. Additionally, the information on filamentous fungal Prxs is limited and fragmentary. Herein, we cloned and gained insight into Aspergillus nidulans Prx (An.PrxA) in the aspects of protein properties, catalysis characteristics, and especially H2O2 tolerability. Our results indicated that An.PrxA belongs to the newly defined family of typical 2-Cys Prxs with a marked characteristic that the "resolving" cysteine (CR) is invertedly located preceding the "peroxidatic" cysteine (CP) in amino acid sequences. The inverted arrangement of CR and CP can only be found among some yeast, bacterial, and filamentous fungal deduced Prxs. The most surprising characteristic of An.PrxA is its extraordinary ability to resist inactivation by extremely high concentrations of H2O2, even that approaching 600 mM. By screening the H2O2-inactivation effects on the components of Prx systems, including Trx, Trx reductase (TrxR), and Prx, we ultimately determined that it is the robust filamentous fungal TrxR rather than Trx and Prx that is responsible for the extreme H2O2 tolerence of the An.PrxA system. This is the first investigation on the effect of the electron donor partner in the H2O2 tolerability of the Prx system.


Assuntos
Aspergillus nidulans/efeitos dos fármacos , Aspergillus nidulans/enzimologia , Peróxido de Hidrogênio/metabolismo , Oxidantes/metabolismo , Estresse Oxidativo , Peroxirredoxinas/metabolismo , Sequência de Aminoácidos , Aspergillus nidulans/genética , Aspergillus nidulans/fisiologia , Clonagem Molecular , Deleção de Genes , Peroxirredoxinas/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
14.
Appl Microbiol Biotechnol ; 102(1): 297-304, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29098413

RESUMO

Aurovertins are the structurally diverse polyketides that distribute widely in different fungal species. They feature a 2,6-dioxabicyclo[3.2.1]-octane ring in structure and exhibit the potential antitumor activity against breast cancer as F1-ATPase ß subunit inhibitor. In this study, we constructed the biosynthetic pathway of aurovertin in an Aspergillus nidulans host and obtained seven aurovertin-type compounds. Surprisingly, three new aurovertin geometric isomers were characterized. By introducing an inducible promoter xylP(p) in the pathway gene acyltransferase aurG, we can control the product ratios among different aurovertin compounds by adding glucose and/or inducer xylose. The yields of aurovertins could be increased up to about 20 times by adding a constitutive promoter gpdA(p) to transcription factor AurF, which indicates AurF's positive role in the biosynthesis of aurovertin. Taken together, our results provided not only an efficient way to generate bioactive fungal natural products but also realized the rational controlling their yields with designed promoters.


Assuntos
Aspergillus nidulans/metabolismo , Aurovertinas/metabolismo , Vias Biossintéticas/genética , Aciltransferases/genética , Aspergillus nidulans/efeitos dos fármacos , Aspergillus nidulans/enzimologia , Aspergillus nidulans/genética , Aurovertinas/análise , Aurovertinas/química , Aurovertinas/isolamento & purificação , Sítios de Ligação , Produtos Biológicos/metabolismo , Vias Biossintéticas/fisiologia , Glucose/farmacologia , Cinética , Regiões Promotoras Genéticas , Xilose/farmacologia
15.
RNA ; 23(12): 1902-1926, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28947555

RESUMO

Noncanonical RNA nucleotidyltransferases (NTases), including poly(A), poly(U) polymerases (PAPs/PUPs), and C/U-adding enzymes, modify 3'-ends of different transcripts affecting their functionality and stability. They contain PAP/OAS1 substrate-binding domain (SBD) with inserted NTase domain. Aspergillus nidulans CutA (AnCutA), synthesizes C/U-rich 3'-terminal extensions in vivo. Here, using high-throughput sequencing of the 3'-RACE products for tails generated by CutA proteins in vitro in the presence of all four NTPs, we show that even upon physiological ATP excess synthesized tails indeed contain an unprecedented number of cytidines interrupted by uridines and stretches of adenosines, and that the majority end with two cytidines. Strikingly, processivity assays documented that in the presence of CTP as a sole nucleotide, the enzyme terminates after adding two cytidines only. Comparison of our CutA 3D model to selected noncanonical NTases of known structures revealed substantial differences in the nucleotide recognition motif (NRM) within PAP/OAS1 SBD. We demonstrate that CutA specificity toward CTP can be partially changed to PAP or PUP by rational mutagenesis within NRM and, analogously, Cid1 PUP can be converted into a C/U-adding enzyme. Collectively, we suggest that a short cluster of amino acids within NRM is a determinant of NTases' substrate preference, which may allow us to predict their specificity.


Assuntos
Aspergillus nidulans/enzimologia , Biologia Computacional/métodos , Citidina Trifosfato/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Nucleotidiltransferases/química , Nucleotidiltransferases/metabolismo , Sequência de Aminoácidos , Citidina/química , Citidina Trifosfato/química , Modelos Moleculares , Homologia de Sequência , Especificidade por Substrato
16.
Nature ; 549(7673): 502-506, 2017 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-28902839

RESUMO

Pericyclic reactions-which proceed in a concerted fashion through a cyclic transition state-are among the most powerful synthetic transformations used to make multiple regioselective and stereoselective carbon-carbon bonds. They have been widely applied to the synthesis of biologically active complex natural products containing contiguous stereogenic carbon centres. Despite the prominence of pericyclic reactions in total synthesis, only three naturally existing enzymatic examples (the intramolecular Diels-Alder reaction, and the Cope and the Claisen rearrangements) have been characterized. Here we report a versatile S-adenosyl-l-methionine (SAM)-dependent enzyme, LepI, that can catalyse stereoselective dehydration followed by three pericyclic transformations: intramolecular Diels-Alder and hetero-Diels-Alder reactions via a single ambimodal transition state, and a retro-Claisen rearrangement. Together, these transformations lead to the formation of the dihydropyran core of the fungal natural product, leporin. Combined in vitro enzymatic characterization and computational studies provide insight into how LepI regulates these bifurcating biosynthetic reaction pathways by using SAM as the cofactor. These pathways converge to the desired biosynthetic end product via the (SAM-dependent) retro-Claisen rearrangement catalysed by LepI. We expect that more pericyclic biosynthetic enzymatic transformations remain to be discovered in naturally occurring enzyme 'toolboxes'. The new role of the versatile cofactor SAM is likely to be found in other examples of enzyme catalysis.


Assuntos
Aspergillus nidulans/enzimologia , Biocatálise , Produtos Biológicos/metabolismo , Vias Biossintéticas , Coenzimas/metabolismo , S-Adenosilmetionina/metabolismo , Aspergillus nidulans/genética , Benzopiranos/química , Benzopiranos/metabolismo , Produtos Biológicos/química , Cromatografia Líquida de Alta Pressão , Reação de Cicloadição , Escherichia coli/genética , Piranos/química , Piranos/metabolismo , Piridonas/química , Piridonas/metabolismo
17.
Org Lett ; 18(24): 6236-6239, 2016 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-27978657

RESUMO

A facile genetic methodology in the filamentous fungus Aspergillus nidulans allowed the exchange of various domains in nonribosomal peptide synthase (NRPS)-like enzymes from Aspergillus terreus. The newly generated engineered enzymes are capable of producing compounds with different chemical structures than its parent enzyme in vivo. This work provides insight in the programing of nonribosomal peptide biosynthesis in filamentous fungi.


Assuntos
Aspergillus nidulans/enzimologia , Peptídeo Sintases/metabolismo , Peptídeos/metabolismo , Engenharia de Proteínas , Estrutura Molecular , Biossíntese de Peptídeos Independentes de Ácido Nucleico , Peptídeos/química
18.
mBio ; 7(6)2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27803184

RESUMO

Histone deacetylases (HDACs) remove acetyl moieties from lysine residues at histone tails and nuclear regulatory proteins and thus significantly impact chromatin remodeling and transcriptional regulation in eukaryotes. In recent years, HDACs of filamentous fungi were found to be decisive regulators of genes involved in pathogenicity and the production of important fungal metabolites such as antibiotics and toxins. Here we present proof that one of these enzymes, the class 1 type HDAC RpdA, is of vital importance for the opportunistic human pathogen Aspergillus fumigatus Recombinant expression of inactivated RpdA shows that loss of catalytic activity is responsible for the lethal phenotype of Aspergillus RpdA null mutants. Furthermore, we demonstrate that a fungus-specific C-terminal region of only a few acidic amino acids is required for both the nuclear localization and catalytic activity of the enzyme in the model organism Aspergillus nidulans Since strains with single or multiple deletions of other classical HDACs revealed no or only moderate growth deficiencies, it is highly probable that the significant delay of germination and the growth defects observed in strains growing under the HDAC inhibitor trichostatin A are caused primarily by inhibition of catalytic RpdA activity. Indeed, even at low nanomolar concentrations of the inhibitor, the catalytic activity of purified RpdA is considerably diminished. Considering these results, RpdA with its fungus-specific motif represents a promising target for novel HDAC inhibitors that, in addition to their increasing impact as anticancer drugs, might gain in importance as antifungals against life-threatening invasive infections, apart from or in combination with classical antifungal therapy regimes. IMPORTANCE: This paper reports on the fungal histone deacetylase RpdA and its importance for the viability of the fungal pathogen Aspergillus fumigatus and other filamentous fungi, a finding that is without precedent in other eukaryotic pathogens. Our data clearly indicate that loss of RpdA activity, as well as depletion of the enzyme in the nucleus, results in lethality of the corresponding Aspergillus mutants. Interestingly, both catalytic activity and proper cellular localization depend on the presence of an acidic motif within the C terminus of RpdA-type enzymes of filamentous fungi that is missing from the homologous proteins of yeasts and higher eukaryotes. The pivotal role, together with the fungus-specific features, turns RpdA into a promising antifungal target of histone deacetylase inhibitors, a class of molecules that is successfully used for the treatment of certain types of cancer. Indeed, some of these inhibitors significantly delay the germination and growth of different filamentous fungi via inhibition of RpdA. Upcoming analyses of clinically approved and novel inhibitors will elucidate their therapeutic potential as new agents for the therapy of invasive fungal infections-an interesting aspect in light of the rising resistance of fungal pathogens to conventional therapies.


Assuntos
Aspergillus fumigatus/enzimologia , Cromatina/metabolismo , Regulação Fúngica da Expressão Gênica , Genes Essenciais , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Viabilidade Microbiana , Antifúngicos/farmacologia , Aspergillus fumigatus/genética , Aspergillus fumigatus/fisiologia , Aspergillus nidulans/enzimologia , Aspergillus nidulans/fisiologia , Ácidos Hidroxâmicos/farmacologia
19.
J Am Chem Soc ; 138(33): 10390-3, 2016 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-27442345

RESUMO

Mechanisms have been proposed for α-KG-dependent non-heme iron enzyme catalyzed oxygen atom insertion into an olefinic moiety in various natural products, but they have not been examined in detail. Using a combination of methods including transient kinetics, Mössbauer spectroscopy, and mass spectrometry, we demonstrate that AsqJ-catalyzed (-)-4'-methoxycyclopenin formation uses a high-spin Fe(IV)-oxo intermediate to carry out epoxidation. Furthermore, product analysis on (16)O/(18)O isotope incorporation from the reactions using the native substrate, 4'-methoxydehydrocyclopeptin, and a mechanistic probe, dehydrocyclopeptin, reveals evidence supporting oxo↔hydroxo tautomerism of the Fe(IV)-oxo species in the non-heme iron enzyme catalysis.


Assuntos
Biocatálise , Enzimas/metabolismo , Compostos de Epóxi/química , Ferro , Alcenos/química , Aspergillus nidulans/enzimologia , Benzodiazepinonas/química , Benzodiazepinonas/metabolismo , Cinética , Oxigênio/química
20.
Appl Microbiol Biotechnol ; 100(18): 7933-44, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27129531

RESUMO

The first and second preferred substrates of recombinant Escherichia coli cells expressing 10R-dioxygenase (PpoC) from Aspergillus nidulans and the purified enzyme were linoleic acid and α-linolenic acid, respectively. PpoC in cells showed higher thermal and reaction stabilities compared to purified PpoC. Thus, 10R-hydroxy unsaturated fatty acids were produced from linoleic acid, α-linolenic acid, and hempseed oil hydrolyzate containing linoleic acid and α-linolenic acid as substrates by whole recombinant cells expressing PpoC. The optimal reaction conditions for the production of 10R-hydroxy-8E,12Z-octadecadienoic acid (10R-HODE) were pH 8.0, 30 °C, 250 rpm, 5 % (v/v) dimethyl sulfoxide, 5 g l(-1) linoleic acid, and 60 g l(-1) cells in 100-ml baffled flask. Under these conditions, whole recombinant cells expressing PpoC produced 2.7 g l(-1) 10R-HODE from 5 g l(-1) linoleic acid for 40 min, with a conversion yield of 54 % (w/w) and a productivity of 4.0 g l(-1) h(-1); produced 2.2 g l(-1) 10R-hydroxy-8E,12Z,15Z-octadecatrienoic acid (10R-HOTrE) from 3 g l(-1) α-linolenic acid for 30 min, with a conversion yield of 72 % (w/w) and a productivity of 4.3 g l(-1) h(-1); and produced 1.8 g l(-1) 10R-HODE and 0.5 g l(-1) 10R-HOTrE from 5 g l(-1) hempseed oil hydrolyzate containing 2.5 g l(-1) linoleic acid and 1.0 g l(-1) α-linolenic acid for 30 min, with a conversion yield of 74 and 51 % (w/w), respectively, and a productivity of 3.6 and 1.0 g l(-1) h(-1), respectively. To the best of our knowledge, this is the first report on the biotechnological production of 10R-hydroxy unsaturated fatty acids.


Assuntos
Aspergillus nidulans/enzimologia , Dioxigenases/metabolismo , Escherichia coli/metabolismo , Ácidos Graxos Insaturados/metabolismo , Óleos de Plantas/metabolismo , Proteínas Recombinantes/metabolismo , Aspergillus nidulans/genética , Biotransformação , Dioxigenases/genética , Escherichia coli/genética , Concentração de Íons de Hidrogênio , Ácido Linoleico/metabolismo , Proteínas Recombinantes/genética , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA