Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.211
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Biomaterials ; 312: 122707, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39121729

RESUMO

Polypyrimidine tract-binding protein 1 (PTBP1) regulates numerous alternative splicing events during tumor progression and neurogenesis. Previously, PTBP1 downregulation was reported to convert astrocytes into functional neurons; however, how PTBP1 regulates astrocytic physiology remains unclear. In this study, we revealed that PTBP1 modulated glutamate uptake via ATP1a2, a member of Na+/K+-ATPases, and glutamate transporters in astrocytes. Ptbp1 knockdown altered mitochondrial function and energy metabolism, which involved PTBP1 regulating mitochondrial redox homeostasis via the succinate dehydrogenase (SDH)/Nrf2 pathway. The malfunction of glutamate transporters following Ptbp1 knockdown resulted in enhanced excitatory synaptic transmission in the cortex. Notably, we developed a biomimetic cationic triblock polypeptide system, i.e., polyethylene glycol44-polylysine30-polyleucine10 (PEG44-PLL30-PLLeu10) with astrocytic membrane coating to deliver Ptbp1 siRNA in vitro and in vivo, which approach allowed Ptbp1 siRNA to efficiently cross the blood-brain barrier and target astrocytes in the brain. Collectively, our findings suggest a framework whereby PTBP1 serves as a modulator in glutamate transport machinery, and indicate that biomimetic methodology is a promising route for in vivo siRNA delivery.


Assuntos
Astrócitos , Ácido Glutâmico , Ribonucleoproteínas Nucleares Heterogêneas , Homeostase , Fator 2 Relacionado a NF-E2 , Proteína de Ligação a Regiões Ricas em Polipirimidinas , RNA Interferente Pequeno , Animais , Astrócitos/metabolismo , Ácido Glutâmico/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Fator 2 Relacionado a NF-E2/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/genética , Camundongos , Transdução de Sinais , Membrana Celular/metabolismo , Camundongos Endogâmicos C57BL , Masculino , Humanos , Mitocôndrias/metabolismo
2.
Behav Brain Res ; 476: 115261, 2025 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-39313073

RESUMO

There are no approved therapeutics for psychostimulant use and recurrence of psychostimulant use. However, in preclinical rodent models environmental enrichment can decrease psychostimulant self-administration of low unit doses and cue-induced amphetamine seeking. We have previously demonstrated that glutamate-dependent therapeutics are able to alter amphetamine seeking to amphetamine-associated cues only in enriched rats. In the current experiment, we will determine if enrichment can attenuate responding and cue-induced amphetamine seeking during extended access to a high dose of intravenous amphetamine. We will also determine if N-acetylcysteine (NAC), a glutamate dependent therapeutic, can attenuate amphetamine seeking in differentially reared rats. Female and male Sprague-Dawley rats were reared in enriched, isolated, or standard conditions from postnatal day 21-51. Rats were trained to self-administer intravenous amphetamine (0.1 mg/kg/infusion) during twelve 6-hour sessions. During the abstinence period, NAC (100 mg/kg) or saline was administered daily. Following a cue-induced amphetamine-seeking test, astrocyte densities within regions of the medial prefrontal cortex (mPFC) and nucleus accumbens (ACb) were quantified using immunohistochemistry. Environmental enrichment decreased responding for amphetamine and during the cue-induced amphetamine-seeking test. NAC did not attenuate cue-induced amphetamine seeking or alter astrocyte density. Across all groups, female rats self-administered less amphetamine but responded more during cue-induced amphetamine seeking than male rats. While amphetamine increased astrocyte densities within the ACb and mPFC, it did not alter mPFC astrocyte densities in female rats. The results suggest that enrichment can attenuate responding during extended access to a high dose of amphetamine and the associated cues. Sex alters amphetamine-induced changes to astrocyte densities in a regionally specific matter.


Assuntos
Acetilcisteína , Anfetamina , Estimulantes do Sistema Nervoso Central , Sinais (Psicologia) , Meio Ambiente , Ratos Sprague-Dawley , Autoadministração , Animais , Masculino , Feminino , Anfetamina/farmacologia , Anfetamina/administração & dosagem , Acetilcisteína/farmacologia , Acetilcisteína/administração & dosagem , Estimulantes do Sistema Nervoso Central/farmacologia , Estimulantes do Sistema Nervoso Central/administração & dosagem , Comportamento de Procura de Droga/efeitos dos fármacos , Comportamento de Procura de Droga/fisiologia , Ratos , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Caracteres Sexuais , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo
3.
Cell Death Dis ; 15(10): 752, 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39419978

RESUMO

P21 activated kinase 6 (PAK6) is a serine-threonine kinase with physiological expression enriched in the brain and overexpressed in a number of human tumors. While the role of PAK6 in cancer cells has been extensively investigated, the physiological function of the kinase in the context of brain cells is poorly understood. Our previous work uncovered a link between PAK6 and the Parkinson's disease (PD)-associated kinase LRRK2, with PAK6 controlling LRRK2 activity and subcellular localization via phosphorylation of 14-3-3 proteins. Here, to gain more insights into PAK6 physiological function, we performed protein-protein interaction arrays and identified a subgroup of PAK6 binders related to ciliogenesis. We confirmed that endogenous PAK6 localizes at both the centrosome and the cilium, and positively regulates ciliogenesis not only in tumor cells but also in neurons and astrocytes. Notably, PAK6 rescues ciliogenesis and centrosomal cohesion defects associated with the G2019S but not the R1441C LRRK2 PD mutation. Since PAK6 binds LRRK2 via its GTPase/Roc-COR domain and the R1441C mutation is located in the Roc domain, we used microscale thermophoresis and AlphaFold2-based computational analysis to demonstrate that PD mutations in LRRK2 affecting the Roc-COR structure substantially decrease PAK6 affinity, providing a rationale for the differential protective effect of PAK6 toward the distinct forms of mutant LRRK2. Altogether, our study discloses a novel role of PAK6 in ciliogenesis and points to PAK6 as the first LRRK2 modifier with PD mutation-specificity.


Assuntos
Centrossomo , Cílios , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Mutação , Quinases Ativadas por p21 , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Quinases Ativadas por p21/metabolismo , Quinases Ativadas por p21/genética , Centrossomo/metabolismo , Cílios/metabolismo , Mutação/genética , Animais , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Fosforilação , Células HEK293 , Ligação Proteica , Neurônios/metabolismo , Astrócitos/metabolismo , Camundongos
4.
Sci Adv ; 10(42): eadn3057, 2024 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-39423273

RESUMO

Stem cell therapies for Parkinson's disease are at an exciting time of development, and several clinical trials have recently been initiated. Human pluripotent stem cells are differentiated into transplantable dopamine (DA) progenitors which are proliferative at the time of grafting and undergo terminal differentiation and maturation in vivo. While the progenitors are homogeneous at the time of transplantation, they give rise to heterogeneous grafts composed not only of therapeutic DA neurons but also of other mature cell types. The mechanisms for graft diversification are unclear. We used single-nucleus RNA-seq and ATAC-seq to profile DA progenitors before transplantation combined with molecular barcode-based tracing to determine origin and shared lineages of the mature cell types in the grafts. Our data demonstrate that astrocytes, vascular leptomeningeal cells, and DA neurons are the main component of the DAergic grafts, originating from a common progenitor that is tripotent at the time of transplantation.


Assuntos
Diferenciação Celular , Linhagem da Célula , Neurônios Dopaminérgicos , Doença de Parkinson , Doença de Parkinson/metabolismo , Doença de Parkinson/terapia , Doença de Parkinson/patologia , Doença de Parkinson/genética , Linhagem da Célula/genética , Animais , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/citologia , Humanos , Transplante de Células-Tronco/métodos , Camundongos , Dopamina/metabolismo , Modelos Animais de Doenças , Astrócitos/metabolismo , Astrócitos/citologia
5.
Zhen Ci Yan Jiu ; 49(9): 909-916, 2024.
Artigo em Chinês | MEDLINE | ID: mdl-39401827

RESUMO

OBJECTIVES: To observe effects of electroacupuncture (EA) on the activation of astrocytes and high mobility group protein B1(HMGB1)/Toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88) signaling pathway, as well as related cytokines in rats with cervical spondylosis radiculopathy(CSR), so as to explore the analgesic mechanism of EA in treating CSR. METHODS: Twenty-four male SD rats were randomly divided into blank, sham surgery, model, and EA groups, with 6 rats in each group. CSR rat model was established by using cervical spinal cord canal puncture method. On the 7th day after successful modeling, EA was applied to rats in the EA group at bilateral "Hegu"(LI4) and "Taichong"(LR3) for 20 minutes(1.5 Hz, 1 mA), once daily for 7 consecutive days. Before and after intervention, gait impairment scores and mechanical pain thresholds were assessed. HE staining was used to observe pathological changes in spinal cord tissue. Western blot was used to detect the expression of HMGB1, TLR4, MyD88, and glial fibrillary acidic protein (GFAP) in the spinal cord. ELISA was used to measure the contents of CXC chemokine ligand 1 (CXCL1), chemokine ligand 2 (CCL2), tumor necrosis factor (TNF)-α, and interleukin (IL)-1ß in spinal cord. Immunofluorescence staining was used to observe GFAP protein positive expression in spinal cord tissue. RESULTS: There was no significant difference of all indexes between the blank group and the sham surgery group. Compared with the sham surgery group, mechanical pain threshold of rats in the model group was decreased(P<0.01), while gait impairment score, the contents of CXCL1, CCL2, TNF-α, IL-1ß, protein expressions of HMGB1, TLR4, MyD88 and GFAP, and positive expression of GFAP in spinal cord tissue were increased (P<0.01);HE staining indicated severe overall morphological damage in the spinal cord of rats in the model group, with significant shrinkage of gray matter neurons, reduced number of Nissl bodies, and increased inflammatory cell infiltration. Compared with the model group, mechanical pain threshold in the EA group was increased (P<0.01), while gait impairment score, the contents of CXCL1, CCL2, TNF-α, IL-1ß, protein expressions of HMGB1, TLR4, MyD88 and GFAP, and positive expression of GFAP in spinal cord were reduced (P<0.01);HE staining showed more intact neuronal cell bodies, increased number of Nissl bodies, and reduced shrinkage of gray matter neurons, inflammatory cell infiltration, and microvascular dilation in the spinal cord of rats in the EA group. CONCLUSIONS: EA can effectively alleviate pain in CSR rats, which is possibly by inhibiting astrocyte activation, HMGB1/TLR4/MyD88 signaling pathway, and reducing the release of related inflammatory cytokines, thus alleviating central sensitization in spinal segments.


Assuntos
Astrócitos , Eletroacupuntura , Proteína HMGB1 , Fator 88 de Diferenciação Mieloide , Radiculopatia , Ratos Sprague-Dawley , Transdução de Sinais , Espondilose , Receptor 4 Toll-Like , Animais , Ratos , Masculino , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Proteína HMGB1/metabolismo , Proteína HMGB1/genética , Radiculopatia/terapia , Radiculopatia/metabolismo , Radiculopatia/fisiopatologia , Radiculopatia/genética , Humanos , Astrócitos/metabolismo , Espondilose/terapia , Espondilose/metabolismo , Espondilose/genética , Pontos de Acupuntura
6.
Sci Rep ; 14(1): 22984, 2024 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-39363030

RESUMO

The reflexive excitation of the sympathetic nervous system in response to psychological stress leads to elevated blood pressure, a condition that persists even after the stress has been alleviated. This sustained increase in blood pressure, which may contribute to the pathophysiology of hypertension, could be linked to neural plasticity in sympathetic nervous activity. Given the critical role of astrocytes in various forms of neural plasticity, we investigated their involvement in maintaining elevated blood pressure during the post-stress phase. Specifically, we examined the effects of arundic acid, an astrocytic inhibitor, on blood pressure and heart rate responses to air-jet stress. First, we confirmed that the inhibitory effect of arundic acid is specific to astrocytes. Using c-Fos immunohistology, we then observed that psychological stress activates neurons in cardiovascular brain regions, and that this stress-induced neuronal activation was suppressed by arundic acid pre-treatment in rats. By evaluating astrocytic process thickness, we also confirmed that astrocytes in the cardiovascular brain regions were activated by stress, and this activation was blocked by arundic acid pre-treatment. Next, we conducted blood pressure measurements on unanesthetized, unrestrained rats. Air-jet stress elevated blood pressure, which remained high for a significant period during the post-stress phase. However, pre-treatment with arundic acid, which inhibited astrocytic activation, suppressed stress-induced blood pressure elevation both during and after stress. In contrast, arundic acid had no significant impact on heart rate. These findings suggest that both neurons and astrocytes play integral roles in stress-induced blood pressure elevation and its persistence after stress, offering new insights into the pathophysiological mechanisms underlying hypertension.


Assuntos
Astrócitos , Pressão Sanguínea , Estresse Psicológico , Animais , Astrócitos/metabolismo , Ratos , Estresse Psicológico/fisiopatologia , Masculino , Hipertensão/fisiopatologia , Hipertensão/metabolismo , Ratos Sprague-Dawley , Frequência Cardíaca , Neurônios/metabolismo , Encéfalo/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo
7.
Mol Brain ; 17(1): 73, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39363318

RESUMO

Lipocalin-2 (Lcn2), a protein secreted by immune-activated cells, including reactive astrocytes, is detrimental to the brain and induces neurodegeneration. We previously showed that Lcn2 levels are reduced in primary mouse astrocytes after treatment with the proteasome inhibitor bortezomib (BTZ). However, it remains unknown whether a decrease in Lcn2 levels after BTZ treatment can also be observed in vivo and whether it reduces neurotoxicity during lipopolysaccharide (LPS)-induced systemic inflammation in vivo. To answer these questions, we performed LPS challenge experiments by intraperitoneal injection in mice and found that Lcn2 levels were significantly increased in the brain, recapitulating in vitro experiments using astrocytes. Co-administration of LPS and BTZ reduced the Lcn2 levels compared to the levels in LPS-treated controls. Upon LPS challenge, the expression levels of glial marker genes were upregulated in the mouse brain. Of note, this upregulation was hampered by the co-administration of BTZ. Taken together, our results suggested that BTZ can reduce LPS-induced Lcn2 levels and may alleviate LPS-induced neuroinflammation and neurotoxicity in mice.


Assuntos
Astrócitos , Bortezomib , Lipocalina-2 , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Inibidores de Proteassoma , Animais , Lipocalina-2/metabolismo , Lipopolissacarídeos/farmacologia , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Inibidores de Proteassoma/farmacologia , Bortezomib/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Masculino , Camundongos , Complexo de Endopeptidases do Proteassoma/metabolismo , Regulação para Cima/efeitos dos fármacos
8.
Nat Commun ; 15(1): 8983, 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39419964

RESUMO

H3K27M diffuse midline gliomas (DMG), including diffuse intrinsic pontine gliomas (DIPG), exhibit cellular heterogeneity comprising less-differentiated oligodendrocyte precursors (OPC)-like stem cells and more differentiated astrocyte (AC)-like cells. Here, we establish in vitro models that recapitulate DMG-OPC-like and AC-like phenotypes and perform transcriptomics, metabolomics, and bioenergetic profiling to identify metabolic programs in the different cellular states. We then define strategies to target metabolic vulnerabilities within specific tumor populations. We show that AC-like cells exhibit a mesenchymal phenotype and are sensitized to ferroptotic cell death. In contrast, OPC-like cells upregulate cholesterol biosynthesis, have diminished mitochondrial oxidative phosphorylation (OXPHOS), and are accordingly more sensitive to statins and OXPHOS inhibitors. Additionally, statins and OXPHOS inhibitors show efficacy and extend survival in preclinical orthotopic models established with stem-like H3K27M DMG cells. Together, this study demonstrates that cellular subtypes within DMGs harbor distinct metabolic vulnerabilities that can be uniquely and selectively targeted for therapeutic gain.


Assuntos
Diferenciação Celular , Glioma , Fosforilação Oxidativa , Humanos , Animais , Diferenciação Celular/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Camundongos , Linhagem Celular Tumoral , Glioma/metabolismo , Glioma/patologia , Glioma/genética , Glioma/tratamento farmacológico , Astrócitos/metabolismo , Astrócitos/efeitos dos fármacos , Oligodendroglia/metabolismo , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/patologia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Neoplasias do Tronco Encefálico/metabolismo , Neoplasias do Tronco Encefálico/genética , Neoplasias do Tronco Encefálico/patologia , Neoplasias do Tronco Encefálico/tratamento farmacológico , Glioma Pontino Intrínseco Difuso/metabolismo , Glioma Pontino Intrínseco Difuso/tratamento farmacológico , Glioma Pontino Intrínseco Difuso/genética , Glioma Pontino Intrínseco Difuso/patologia , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Neurobiol Dis ; 201: 106686, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39353514

RESUMO

Corticobasal degeneration (CBD) is a major four-repeat tauopathy along with progressive supranuclear palsy (PSP). Although detergent-insoluble 37-40-kDa carboxyl-terminal tau fragments (CTFs) are hallmarks of CBD pathology, the process of their formation is unknown. This study monitored the formation of CBD-type fibrils that exhibit astrocytic plaques, a characteristic CBD pathology, using its biochemical properties different from those of Alzheimer's disease/PSP-type fibrils. Tau fibrils from patients with CBD were amplified in non-astrocytic cultured cells, which maintained CBD-specific biochemical properties. We found that the lysosomal protease Legumain (LGMN) was involved in the generation of CBD-specific 37-40-kDa CTFs. While LGMN cleaved tau fibrils at Asn167 and Asn368 in the brain tissues of patients with Alzheimer's disease and PSP, tau fibrils from patients with CBD were predominantly resistant to cleavage at Asn368 by LGMN, resulting in the generation of CBD-specific CTFs. LGMN preference in tau fibrils was lost upon unraveling the tau fibril fold, suggesting that the CBD-specific tau fibril fold contributes to CBD-specific CTF production. From these findings, we found a way to differentiate astrocytic plaque from tufted astrocyte using the anti-Asn368 LGMN cleavage site-specific antibody. Inoculation of tau fibrils amplified in non-astrocytic cells into the mouse brain reproduced LGMN-resistant tau fibrils and recapitulated anti-Asn368-negative astrocytic plaques, which are characteristic of CBD pathology. This study supports the existence of disease-specific tau fibrils and contribute to further understanding of the tauopathy diagnosis. Our tau propagation mouse model using cellular tau seeds may contribute to uncovering disease mechanisms and screening for potential therapeutic compounds.


Assuntos
Degeneração Corticobasal , Cisteína Endopeptidases , Proteínas tau , Humanos , Animais , Proteínas tau/metabolismo , Cisteína Endopeptidases/metabolismo , Camundongos , Degeneração Corticobasal/metabolismo , Degeneração Corticobasal/patologia , Doença de Alzheimer/patologia , Doença de Alzheimer/metabolismo , Feminino , Masculino , Camundongos Transgênicos , Astrócitos/metabolismo , Astrócitos/patologia , Encéfalo/patologia , Encéfalo/metabolismo , Idoso , Emaranhados Neurofibrilares/patologia , Emaranhados Neurofibrilares/metabolismo
10.
Neurobiol Dis ; 201: 106687, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39362568

RESUMO

Astrocytes play a crucial role in the onset and progression of amyotrophic lateral sclerosis (ALS), a fatal disorder marked by the degeneration of motor neurons (MNs) in the central nervous system. Although astrocytes in ALS are known to be toxic to MNs, the pathological changes leading to their neurotoxic phenotype remain poorly understood. In this study, we generated human astrocytes from induced pluripotent stem cells (iPSCs) carrying the ALS-associated A4V mutation in superoxide dismutase 1 (SOD1) to examine early cellular pathways and network changes. Proteomic analysis revealed that ALS astrocytes are both dysfunctional and reactive compared to control astrocytes. We identified significant alterations in the levels of proteins linked to ALS pathology and the innate immune cGAS-STING pathway. Furthermore, we found that ALS astrocyte reactivity differs from that of control astrocytes treated with tumor necrosis factor alpha (TNFα), a key cytokine in inflammatory reactions. We then evaluated the potential of fibroblast growth factor (FGF) 2, 4, 16, and 18 to reverse ALS astrocyte phenotype. Among these, FGF4 successfully reversed ALS astrocyte dysfunction and reactivity in vitro. When delivered to the spinal cord of the SOD1G93A mouse model of ALS, FGF4 lowered astrocyte reactivity. However, this was not sufficient to protect MNs from cell death. Further analysis indicated that TNFα abrogated the reactivity reduction achieved by FGF4, suggesting that complete rescue of the ALS phenotype by FGF4 is hindered by ongoing complex neuroinflammatory processes in vivo. In summary, our data demonstrate that astrocytes generated from ALS iPSCs are inherently dysfunctional and exhibit an immune reactive phenotype. Effectively targeting astrocyte dysfunction and reactivity in vivo may help mitigate ALS and prevent MN death.


Assuntos
Esclerose Lateral Amiotrófica , Astrócitos , Fator 4 de Crescimento de Fibroblastos , Fator de Necrose Tumoral alfa , Astrócitos/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Humanos , Animais , Camundongos , Fator de Necrose Tumoral alfa/metabolismo , Fator 4 de Crescimento de Fibroblastos/metabolismo , Fator 4 de Crescimento de Fibroblastos/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Camundongos Transgênicos , Modelos Animais de Doenças , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Medula Espinal/metabolismo , Medula Espinal/patologia
11.
Chem Biol Interact ; 403: 111258, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39362619

RESUMO

Silicon dioxide (SiO2) particles are novel materials with wide-ranging applications across various fields, posing potential neurotoxic effects. This study investigates the toxicological mechanisms of SiO2 particles of different sizes on murine cerebellar tissue and cells. Six-week-old C57BL/6 mice were orally administered SiO2 particles of three sizes (1 µm, 300 nm, 50 nm) for 21 days to establish an in vivo model, and mice cerebellar astrocytes (C8-D1A cells) were cultured in vitro. Indicators of oxidative stress, DNA damage, and the PANoptosis pathway were detected using methods such as immunofluorescence staining, comet assay, western blotting, and qRT-PCR. The results show that SiO2 particles induce oxidative stress leading to DNA oxidative damage. The aberrant DNA is recognized by AIM2 (absent in melanoma 2), which activates the assembly of the PANoptosome complex, subsequently triggering PANoptosis. Furthermore, the extent of damage is inversely correlated with the size of SiO2 particles. This study elucidates the toxicological mechanism of SiO2 particles causing cerebellar damage via PANoptosis, extending research on PANoptosis in neurotoxicology, and aiding in the formulation of stricter safety standards and protective measures to reduce the potential toxic risk of SiO2 particles to humans.


Assuntos
Cerebelo , Dano ao DNA , Proteínas de Ligação a DNA , Estresse Oxidativo , Dióxido de Silício , Animais , Masculino , Camundongos , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/patologia , Linhagem Celular , Cerebelo/efeitos dos fármacos , Cerebelo/metabolismo , Cerebelo/patologia , Dano ao DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , Dióxido de Silício/toxicidade , Dióxido de Silício/química
12.
Nat Commun ; 15(1): 8682, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39375345

RESUMO

Deficiencies in the electron transport chain (ETC) lead to mitochondrial diseases. While mutations are distributed across the organism, cell and tissue sensitivity to ETC disruption varies, and the molecular mechanisms underlying this variability remain poorly understood. Here we show that, upon ETC inhibition, a non-canonical tricarboxylic acid (TCA) cycle upregulates to maintain malate levels and concomitant production of NADPH. Our findings indicate that the adverse effects observed upon CI inhibition primarily stem from reduced NADPH levels, rather than ATP depletion. Furthermore, we find that Pyruvate carboxylase (PC) and ME1, the key mediators orchestrating this metabolic reprogramming, are selectively expressed in astrocytes compared to neurons and underlie their differential sensitivity to ETC inhibition. Augmenting ME1 levels in the brain alleviates neuroinflammation and corrects motor function and coordination in a preclinical mouse model of CI deficiency. These studies may explain why different brain cells vary in their sensitivity to ETC inhibition, which could impact mitochondrial disease management.


Assuntos
Astrócitos , Ciclo do Ácido Cítrico , Complexo I de Transporte de Elétrons , Malatos , Mitocôndrias , Neurônios , Animais , Complexo I de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/deficiência , Camundongos , Astrócitos/metabolismo , Mitocôndrias/metabolismo , Neurônios/metabolismo , Malatos/metabolismo , Piruvato Carboxilase/metabolismo , Piruvato Carboxilase/genética , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/genética , NADP/metabolismo , Encéfalo/metabolismo , Camundongos Endogâmicos C57BL , Masculino , Humanos , Modelos Animais de Doenças , Trifosfato de Adenosina/metabolismo
13.
Nagoya J Med Sci ; 86(3): 392-406, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39355370

RESUMO

Traumatic spinal cord injury is characterized by immediate and irreversible tissue loss at the lesion site and secondary tissue damage. Secondary injuries should, in principle, be preventable, although no effective treatment options currently exist for patients with acute spinal cord injury. Traumatized tissues release excessive amounts of adenosine triphosphate and activate the P2X purinoceptor 7/pannexin1 complex, which is associated with secondary injury. We investigated the neuroprotective effects of the blue dye Brilliant Blue FCF, a selective inhibitor of P2X purinoceptor 7/pannexin1 that is approved for use as a food coloring, by comparing it with Brilliant Blue G, a P2X7 purinoceptor antagonist, and carbenoxolone, which attenuates P2X purinoceptor 7/pannexin1 function, in a rat spinal cord injury model. Brilliant Blue FCF administered early after spinal cord injury reduced spinal cord anatomical damage and improved motor recovery without apparent toxicity. Brilliant Blue G had the highest effect on this neurological recovery, with Brilliant Blue FCF and carbenoxolone having comparable improvement. Furthermore, Brilliant Blue FCF administration reduced local astrocytic and microglial activation and neutrophil infiltration, and no differences in these histological effects were observed between compounds. Thus, Brilliant Blue FCF protects spinal cord neurons after spinal cord injury and suppresses local inflammatory responses as well as Brilliant Blue G and carbenoxolone.


Assuntos
Trifosfato de Adenosina , Carbenoxolona , Conexinas , Proteínas do Tecido Nervoso , Recuperação de Função Fisiológica , Corantes de Rosanilina , Traumatismos da Medula Espinal , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/metabolismo , Animais , Conexinas/metabolismo , Conexinas/antagonistas & inibidores , Trifosfato de Adenosina/metabolismo , Carbenoxolona/farmacologia , Carbenoxolona/uso terapêutico , Corantes de Rosanilina/farmacologia , Corantes de Rosanilina/uso terapêutico , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/antagonistas & inibidores , Recuperação de Função Fisiológica/efeitos dos fármacos , Ratos , Antagonistas do Receptor Purinérgico P2X/farmacologia , Antagonistas do Receptor Purinérgico P2X/uso terapêutico , Ratos Sprague-Dawley , Modelos Animais de Doenças , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Receptores Purinérgicos P2X7/efeitos dos fármacos , Feminino , Infiltração de Neutrófilos/efeitos dos fármacos
14.
Nat Commun ; 15(1): 8639, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39366972

RESUMO

Social memory impairment is a key symptom of many brain disorders, but its underlying mechanisms remain unclear. Neuroligins (NLGs) are a family of cell adhesion molecules essential for synapse development and function and their dysfunctions are linked to neurodevelopmental and neuropsychiatric disorders, including autism and schizophrenia. Although NLGs are extensively studied in neurons, their role in glial cells is poorly understood. Here we show that astrocytic deletion of NLG3 in the ventral hippocampus of adult male mice impairs social memory, attenuates astrocytic Ca2+ signals, enhances the expression of EAAT2 and prevents long-term potentiation, and these impairments are rescued by increasing astrocyte activity, reducing EAAT2 function or enhancing adenosine/A2a receptor signaling. This study has revealed an important role of NLG3 in astrocyte function, glutamate homeostasis and social memory and identified the glutamate transporter and adenosine signaling pathway as potential therapeutic strategies to treat brain disorders.


Assuntos
Adenosina , Astrócitos , Moléculas de Adesão Celular Neuronais , Hipocampo , Proteínas de Membrana , Memória , Proteínas do Tecido Nervoso , Plasticidade Neuronal , Receptor A2A de Adenosina , Transdução de Sinais , Animais , Masculino , Adenosina/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Moléculas de Adesão Celular Neuronais/genética , Astrócitos/metabolismo , Plasticidade Neuronal/fisiologia , Hipocampo/metabolismo , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Memória/fisiologia , Receptor A2A de Adenosina/metabolismo , Receptor A2A de Adenosina/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Transportador 2 de Aminoácido Excitatório/metabolismo , Transportador 2 de Aminoácido Excitatório/genética , Potenciação de Longa Duração , Camundongos Knockout , Camundongos Endogâmicos C57BL , Ácido Glutâmico/metabolismo , Comportamento Social
15.
Front Immunol ; 15: 1485374, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39464885

RESUMO

Autoimmune glial fibrillary acidic protein (GFAP) astrocytopathy is a rare autoimmune disease, which is characterized by the immune system attacking astrocytes in the central nervous system, resulting in inflammation and damage to the nervous system. We reported a 41-year-old female patient with only drowsiness for 3 months, who was, otherwise, healthy with no other signs of meningoencephalitis or myelitis. There were no obvious abnormalities in her neurological and ophthalmic tests. Brain magnetic resonance imaging (MRI) plain scan + enhancement with the gadolinium contrast agent revealed patchy hypointensity on T1-weighted imaging, hyperintensity on T2-weighted imaging, hyperintensity on T2-weighted fluid-attenuated inversion recovery in the left basal ganglia, corona radiata, and local septum pellucida, with no enhancement in the enhanced lesions. Cerebrospinal fluid (CSF) revealed white blood cell count of 5.00 × 106/L, CSF protein of 828.53 mg/L, and glucose of 2.83 mmol/L. Aquaporin-4 (AQP4) antibody, N-methyl-D-aspartate receptor (NMDAR) antibody and GFAP antibody were all positive, whereas the remaining autoimmune encephalitis antibody tests were negative. Oncology screening [including head, chest, and whole-abdomen (involving the pelvic cavity) CT and tumor markers] did not reveal any obvious evidence of tumor presence. The patient received systemic treatment with high-dose intravenous injection of steroids combined with immunosuppressive agents, and the clinical and imaging features of the patients improved. To the best of our knowledge, reports on overlapping positivity of AQP4 antibody and NMDAR antibody in patients with GFAP astrocytopathy were still very rare. We hope to supplement the existing literature on this topic, review the relevant literature, and strive to increase the understanding toward GFAP astrocytopathy with overlapping autoimmune syndrome so as to enable early diagnosis and early treatment and to improve the clinical outcome of patients.


Assuntos
Astrócitos , Proteína Glial Fibrilar Ácida , Humanos , Feminino , Adulto , Proteína Glial Fibrilar Ácida/imunologia , Proteína Glial Fibrilar Ácida/líquido cefalorraquidiano , Astrócitos/imunologia , Astrócitos/metabolismo , Astrócitos/patologia , Autoanticorpos/sangue , Autoanticorpos/imunologia , Doenças Autoimunes/diagnóstico , Doenças Autoimunes/imunologia , Doenças Autoimunes/tratamento farmacológico , Doenças Autoimunes do Sistema Nervoso/imunologia , Doenças Autoimunes do Sistema Nervoso/diagnóstico , Doenças Autoimunes do Sistema Nervoso/tratamento farmacológico , Imageamento por Ressonância Magnética
16.
Cell Rep Methods ; 4(10): 100876, 2024 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-39413778

RESUMO

The etiology of Parkinson's disease (PD) remains elusive, and the limited availability of suitable animal models hampers research on pathogenesis and drug development. We report the development of a cynomolgus monkey model of PD that combines adeno-associated virus (AAV)-mediated overexpression of α-synuclein into the substantia nigra with an injection of poly(ADP-ribose) (PAR) into the striatum. Our results show that pathological processes were accelerated, including dopaminergic neuron degeneration, Lewy body aggregation, and hallmarks of inflammation in microglia and astrocytes. Behavioral phenotypes, dopamine transporter imaging, and transcriptomic profiling further demonstrate consistencies between the model and patients with PD. This model can help to determine the mechanisms underlying PD impacted by α-synuclein and PAR and aid in the accelerated development of therapeutic strategies for PD.


Assuntos
Dependovirus , Modelos Animais de Doenças , Neurônios Dopaminérgicos , Macaca fascicularis , Doença de Parkinson , Poli Adenosina Difosfato Ribose , alfa-Sinucleína , Animais , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , Dependovirus/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Doença de Parkinson/genética , Poli Adenosina Difosfato Ribose/metabolismo , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Humanos , Substância Negra/metabolismo , Substância Negra/patologia , Masculino , Microglia/metabolismo , Microglia/patologia , Astrócitos/metabolismo , Astrócitos/patologia
17.
Front Immunol ; 15: 1421455, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39434878

RESUMO

Introduction: Erlotinib is an epidermal growth factor receptor (EGFR) inhibitor that is approved by the FDA to treat non-small cell lung cancer (NSCLC). Several membrane receptors, including EGFR, interact with amyloid ß (Aß), raising the possibility that erlotinib could have therapeutic effects on Alzheimer's disease (AD). However, the effects of erlotinib on Aß/tau-related pathology and cognitive function in mouse models of AD and its mechanisms of action have not been examined in detail. Methods: To investigate the effects of erlotinib on cognitive function and AD pathology, 3 to 6-month-old PS19 mice and 3 to 3.5-month-old 5xFAD mice and WT mice were injected with vehicle (5% DMSO + 10% PEG + 20% Tween80 + 65% D.W.) or erlotinib (20 mg/kg, i.p.) daily for 14 or 21 days. Then, behavioral tests, Golgi staining, immunofluorescence staining, western blotting ELISA, and real-time PCR were conducted. Results and discussion: We found that erlotinib significantly enhanced short-term spatial memory and dendritic spine formation in 6-month-old P301S tau transgenic (PS19) mice. Importantly, erlotinib administration reduced tau phosphorylation at Ser202/Thr205 (AT8) and Thr231 (AT180) and further aggregation of tau into paired helical fragments (PHFs) and neurofibrillary tangles (NFTs) in 3-month-old and/or 6-month-old PS19 mice by suppressing the expression of the tau kinase DYRK1A. Moreover, erlotinib treatment decreased astrogliosis in 6-month-old PS19 mice and reduced proinflammatory responses in primary astrocytes (PACs) from PS19 mice. In 3- to 3.5-month-old 5xFAD mice, erlotinib treatment improved short-term spatial memory and hippocampal dendritic spine number and diminished Aß plaque deposition and tau hyperphosphorylation. Furthermore, erlotinib-treated 5xFAD mice exhibited significant downregulation of astrocyte activation, and treating PACs from 5xFAD mice with erlotinib markedly reduced cxcl10 (reactive astrocyte marker) and gbp2 (A1 astrocyte marker) mRNA levels and proinflammatory cytokine mRNA and protein levels. Taken together, our results suggest that erlotinib regulates tau/Aß-induced AD pathology, cognitive function, and Aß/tau-evoked astrogliosis and therefore could be a potent therapeutic drug for ameliorating AD symptoms.


Assuntos
Doença de Alzheimer , Cloridrato de Erlotinib , Gliose , Memória de Curto Prazo , Animais , Humanos , Masculino , Camundongos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Astrócitos/metabolismo , Astrócitos/efeitos dos fármacos , Modelos Animais de Doenças , Cloridrato de Erlotinib/farmacologia , Cloridrato de Erlotinib/uso terapêutico , Gliose/tratamento farmacológico , Memória de Curto Prazo/efeitos dos fármacos , Camundongos Transgênicos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas tau/metabolismo
18.
J Appl Biomed ; 22(3): 129-135, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39434509

RESUMO

Cell senescence is intensively related to aging and neurodegenerative diseases. This study aimed to explore the effect and targets of Astragaloside IV against amyloid-beta-induced astrocyte senescence. Oligomerized amyloid-beta was prepared to culture with human astrocytes. The effects of Astragaloside IV were assessed based on SA-ß-gal staining analysis, senescence markers (p53, p16INK4, and p21WAF1), neurotrophic growth factor levels (qRT-PCR), and cell proliferation (CCK-8 kit). The targets for Astragaloside IV were predicted, and hsp90aa1 protein was verified using molecular docking. After hsp90aa1 overexpression, the effects of Astragaloside IV on amyloid-beta-induced astrocytes were assessed. Treatment of human amyloid-beta-induced astrocytes with Astragaloside IV can decrease the percentage of SA-ß-gal positive cells, downregulate the p53, p16INK4, and p21WAF1 levels, and increase the levels of neurotrophic growth factors (IGF-1 and NGF mRNA) and cell proliferation. Based on target prediction, hsp90aa1 was found to be a potential target of Astragaloside IV. Moreover, cellular experiments demonstrated that exogenously enhanced expression of hsp90aa1 overexpression suppressed the protective effect of Astragaloside IV on amyloid-beta-induced human astrocytes. The results presented here demonstrate that Astragaloside IV could confront amyloid-beta-induced astrocyte senescence via hsp90aa1, possibly opening new therapeutic avenues.


Assuntos
Peptídeos beta-Amiloides , Astrócitos , Proliferação de Células , Senescência Celular , Saponinas , Triterpenos , Saponinas/farmacologia , Triterpenos/farmacologia , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Humanos , Senescência Celular/efeitos dos fármacos , Peptídeos beta-Amiloides/metabolismo , Proliferação de Células/efeitos dos fármacos , Proteínas de Choque Térmico HSP90/metabolismo , Fator de Crescimento Neural/farmacologia , Células Cultivadas , Simulação de Acoplamento Molecular , Proteína Supressora de Tumor p53/metabolismo
19.
Mol Cell ; 84(20): 3950-3966.e6, 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39383879

RESUMO

The role of long non-coding RNAs (lncRNAs) in malignant cell transformation remains elusive. We previously identified an enhancer-associated lncRNA, LINC01116 (named HOXDeRNA), as a transformative factor converting human astrocytes into glioma-like cells. Employing a combination of CRISPR editing, chromatin isolation by RNA purification coupled with sequencing (ChIRP-seq), in situ mapping RNA-genome interactions (iMARGI), chromatin immunoprecipitation sequencing (ChIP-seq), HiC, and RNA/DNA FISH, we found that HOXDeRNA directly binds to CpG islands within the promoters of 35 glioma-specific transcription factors (TFs) distributed throughout the genome, including key stem cell TFs SOX2, OLIG2, POU3F2, and ASCL1, liberating them from PRC2 repression. This process requires a distinct RNA quadruplex structure and other segments of HOXDeRNA, interacting with EZH2 and CpGs, respectively. Subsequent transformation activates multiple oncogenes (e.g., EGFR, miR-21, and WEE1), driven by the SOX2- and OLIG2-dependent glioma-specific super enhancers. These results help reconstruct the sequence of events underlying the process of astrocyte transformation, highlighting HOXDeRNA's central genome-wide activity and suggesting a shared RNA-dependent mechanism in otherwise heterogeneous and multifactorial gliomagenesis.


Assuntos
Elementos Facilitadores Genéticos , Regulação Neoplásica da Expressão Gênica , Glioma , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Glioma/genética , Glioma/patologia , Glioma/metabolismo , Astrócitos/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Regiões Promotoras Genéticas , Ilhas de CpG , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Linhagem Celular Tumoral , Transcrição Gênica , Sítios de Ligação , Super Intensificadores
20.
J Neuroinflammation ; 21(1): 258, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39390606

RESUMO

Under neuroinflammatory conditions, astrocytes acquire a reactive phenotype that drives acute inflammatory injury as well as chronic neurodegeneration. We hypothesized that astrocytic Delta-like 4 (DLL4) may interact with its receptor NOTCH1 on neighboring astrocytes to regulate astrocyte reactivity via downstream juxtacrine signaling pathways. Here we investigated the role of astrocytic DLL4 on neurovascular unit homeostasis under neuroinflammatory conditions. We probed for downstream effectors of the DLL4-NOTCH1 axis and targeted these for therapy in two models of CNS inflammatory disease. We first demonstrated that astrocytic DLL4 is upregulated during neuroinflammation, both in mice and humans, driving astrocyte reactivity and subsequent blood-brain barrier permeability and inflammatory infiltration. We then showed that the DLL4-mediated NOTCH1 signaling in astrocytes directly drives IL-6 levels, induces STAT3 phosphorylation promoting upregulation of astrocyte reactivity markers, pro-permeability factor secretion and consequent blood-brain barrier destabilization. Finally we revealed that blocking DLL4 with antibodies improves experimental autoimmune encephalomyelitis symptoms in mice, identifying a potential novel therapeutic strategy for CNS autoimmune demyelinating disease. As a general conclusion, this study demonstrates that DLL4-NOTCH1 signaling is not only a key pathway in vascular development and angiogenesis, but also in the control of astrocyte reactivity during neuroinflammation.


Assuntos
Astrócitos , Proteínas de Ligação ao Cálcio , Interleucina-6 , Camundongos Endogâmicos C57BL , Receptor Notch1 , Fator de Transcrição STAT3 , Transdução de Sinais , Animais , Feminino , Humanos , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Astrócitos/metabolismo , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Proteínas de Ligação ao Cálcio/metabolismo , Células Cultivadas , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Interleucina-6/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Doenças Neuroinflamatórias/metabolismo , Receptor Notch1/metabolismo , Transdução de Sinais/fisiologia , Fator de Transcrição STAT3/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA